Symbionts modify interactions between insects and natural enemies in the field
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27561159
PubMed Central
PMC5082498
DOI
10.1111/1365-2656.12586
Knihovny.cz E-zdroje
- Klíčová slova
- aphid *, field experiment *, host-parasite *, host-pathogen *, interactions *, symbiosis *,
- MeSH
- Enterobacteriaceae fyziologie MeSH
- genetická zdatnost MeSH
- houby fyziologie MeSH
- interakce hostitele a parazita MeSH
- interakce hostitele a patogenu * MeSH
- mšice genetika mikrobiologie parazitologie fyziologie MeSH
- sršňovití fyziologie MeSH
- symbióza * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Eukaryotes commonly host communities of heritable symbiotic bacteria, many of which are not essential for their hosts' survival and reproduction. There is laboratory evidence that these facultative symbionts can provide useful adaptations, such as increased resistance to natural enemies. However, we do not know how symbionts affect host fitness when the latter are subject to attack by a natural suite of parasites and pathogens. Here, we test whether two protective symbionts, Regiella insecticola and Hamiltonella defensa, increase the fitness of their host, the pea aphid (Acyrthosiphon pisum), under natural conditions. We placed experimental populations of two pea aphid lines, each with and without symbionts, in five wet meadow sites to expose them to a natural assembly of enemy species. The aphids were then retrieved and mortality from parasitoids, fungal pathogens and other causes assessed. We found that both Regiella and Hamiltonella reduce the proportion of aphids killed by the specific natural enemies against which they have been shown to protect in laboratory and cage experiments. However, this advantage was nullified (Hamiltonella) or reversed (Regiella) by an increase in mortality from other natural enemies and by the cost of carrying the symbiont. Symbionts therefore affect community structure by altering the relative success of different natural enemies. Our results show that protective symbionts are not necessarily advantageous to their hosts, and may even behave more like parasites than mutualists. Nevertheless, bacterial symbionts may play an important role in determining food web structure and dynamics.
Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS UK
Institute of Entomology Biology Centre CAS Branisovska 31 Ceske Budejovice 37005 Czech Republic
Zobrazit více v PubMed
Ahmed, M.Z. , Li, S.‐J. , Xue, X. , Yin, X.‐J. , Ren, S.‐X. , Jiggins, F.M. et al (2015) The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathogens, 11, e1004672. PubMed PMC
Akman, L. , Yamashita, A. , Watanabe, H. , Oshima, K. , Shiba, T. , Hattori, M. et al (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia . Nature Genetics, 32, 402–407. PubMed
Bennett, G.M. & Moran, N.A. (2015) Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proceedings of the National Academy of Sciences of the United States of America, 112, 10169–10176. PubMed PMC
Brisson, J.A. & Stern, D.L. (2006) The pea aphid, Acyrthosiphon pisum: an emerging genomic model system for ecological, developmental and evolutionary studies. BioEssays, 28, 747–755. PubMed
Castañeda, L.E. , Sandrock, C. & Vorburger, C. (2010) Variation and covariation of life history traits in aphids are related to infection with the facultative bacterial endosymbiont Hamiltonella defensa . Biological Journal of the Linnean Society, 100, 237–247.
Douglas, A.E. (2014) Molecular dissection of nutrient exchange at the insect‐microbial interface. Current Opinion in Insect Science, 4, 23–28. PubMed
Dunbar, H.E. , Wilson, A.C. , Ferguson, N.R. & Moran, N.A. (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology, 5, e96. PubMed PMC
Engelstädter, J. & Hurst, G.D.D. (2009) The ecology and evolution of microbes that manipulate host reproduction. Annual Review of Ecology, Evolution, and Systematics, 40, 127–149.
Ferrari, J. , West, J.A. , Via, S. & Godfray, H.C.J. (2012) Population genetic structure and secondary symbionts in host‐associated populations of the pea aphid complex. Evolution, 66, 375–390. PubMed
Gehrer, L. & Vorburger, C. (2012) Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biology Letters, 8, 613–615. PubMed PMC
Gerardo, N.M. & Parker, B.J. (2014) Mechanisms of symbiont‐conferred protection against natural enemies: an ecological and evolutionary framework. Current Opinion in Insect Science, 4, 8–14. PubMed
Guay, J.‐F. , Boudreault, S. , Michaud, D. & Cloutier, C. (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. Journal of Insect Physiology, 55, 919–926. PubMed
Hamilton, P.T. , Leong, J.S. , Koop, B.F. & Perlman, S.J. (2014) Transcriptional responses in a Drosophila defensive symbiosis. Molecular Ecology, 23, 1558–1570. PubMed
Harmon, J.P. , Moran, N.A. & Ives, A.R. (2009) Species response to environmental change: impacts of food web interactions and evolution. Science, 323, 1347–1350. PubMed
Henry, L.M. , Peccoud, J. , Simon, J.‐C. , Hadfield, J.D. , Maiden, M.J.C. , Ferrari, J. et al (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Current Biology, 23, 1713–1717. PubMed PMC
Herzog, J. , Muller, C.B. & Vorburger, C. (2007) Strong parasitoid‐mediated selection in experimental populations of aphids. Biology Letters, 3, 667–669. PubMed PMC
Heyworth, E.R. & Ferrari, J. (2015) A facultative endosymbiont in aphids can provide diverse ecological benefits. Journal of Evolutionary Biology, 28, 1753–1760. PubMed PMC
Himler, A.G. , Adachi‐Hagimori, T. , Bergen, J.E. , Kozuch, A. , Kelly, S.E. , Tabashnik, B.E. et al (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science, 332, 254–256. PubMed
Hrček, J. , McLean, A.H.C. & Godfray, H.C.J. (2016) Data from: Symbionts modify interactions between insects and natural enemies in the field. Dryad Digital Repository, http://dx.doi.org/10.5061/dryad.3p071. PubMed DOI PMC
Jaenike, J. (2012) Population genetics of beneficial heritable symbionts. Trends in Ecology & Evolution, 27, 226–232. PubMed
Jaenike, J. , Unckless, R. , Cockburn, S.N. , Boelio, L.M. & Perlman, S.J. (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329, 212–215. PubMed
Johnson, P.T.J. , de Roode, J.C. & Fenton, A. (2015) Why infectious disease research needs community ecology. Science, 349, 1259504. PubMed PMC
Jones, E.O. , White, A. & Boots, M. (2007) Interference and the persistence of vertically transmitted parasites. Journal of Theoretical Biology, 246, 10–17. PubMed
Łukasik, P. , van Asch, M. , Guo, H. , Ferrari, J. , Charles, J. & Godfray, H. (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecology Letters, 16, 214–218. PubMed
Martinez, J. , Ok, S. , Smith, S. , Snoeck, K. , Day, J.P. & Jiggins, F.M. (2015) Should symbionts be nice or selfish? Antiviral effects of Wolbachia are costly but reproductive parasitism is not. PLoS Pathogens, 11, e1005021. PubMed PMC
Maunsell, S.C. , Kitching, R.L. , Burwell, C.J. & Morris, R.J. (2015) Changes in host–parasitoid food web structure with elevation. Journal of Animal Ecology, 84, 353–363. PubMed
McLean, A.H.C. & Godfray, H.C.J. (2015) Evidence for specificity in symbiont‐conferred protection against parasitoids. Proceedings of the Royal Society of London. Series B, Biological Sciences, 282, 20150977. PubMed PMC
McLean, A.H.C. , van Asch, M. , Ferrari, J. & Godfray, H.C.J. (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, 760–766. PubMed PMC
McLean, A.H.C. , Parker, B.J. , Hrček, J. , Henry, L.M. & Godfray, H.C.J. (2016) Insect symbionts in food webs. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371, 20150325. PubMed PMC
Montllor, C.B. , Maxmen, A. & Purcell, A.H. (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology, 27, 189–195.
Moran, N.A. & Dunbar, H.E. (2006) Sexual acquisition of beneficial symbionts in aphids. Proceedings of the National Academy of Sciences of the United States of America, 103, 12803–12806. PubMed PMC
Oliver, K.M. , Smith, A.H. & Russell, J.A. (2014) Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology, 28, 341–355.
Oliver, K.M. , Russell, J.A. , Moran, N.A. & Hunter, M.S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America, 100, 1803–1807. PubMed PMC
Oliver, K.M. , Campos, J. , Moran, N.A. & Hunter, M.S. (2008) Population dynamics of defensive symbionts in aphids. Proceedings of the Royal Society of London. Series B, Biological Sciences, 275, 293–299. PubMed PMC
Papierok, B. & Hajek, A.E. (1997) Fungi: entomophthorales Manual of Techniques in Insect Pathology (ed. Lacey L.A.), pp. 187–212. Academic Press, London, UK.
Parker, B.J. , Spragg, C.J. , Altincicek, B. & Gerardo, N.M. (2013) Symbiont‐mediated protection against fungal pathogens in pea aphids: a role for pathogen specificity? Applied and Environmental Microbiology, 79, 2455–2458. PubMed PMC
Peccoud, J. , Ollivier, A. , Plantegenest, M. & Simon, J.‐C. (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proceedings of the National Academy of Sciences of the United States of America, 106, 7495–7500. PubMed PMC
Pedersen, A.B. & Babayan, S.A. (2011) Wild immunology. Molecular Ecology, 20, 872–880. PubMed
Polin, S. , Le Gallic, J.‐F. , Simon, J.‐C. , Tsuchida, T. & Outreman, Y. (2015) Conditional reduction of predation risk associated with a facultative symbiont in an insect. PLoS ONE, 10, e0143728. PubMed PMC
Rothacher, L. , Ferrer‐Suay, M. & Vorburger, C. (2016) Bacterial endosymbionts protect aphids in the field and alter parasitoid community composition. Ecology, 97, 1712–1723. PubMed
Russell, J.A. & Moran, N.A. (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proceedings of the Royal Society of London. Series B, Biological Sciences, 273, 603–610. PubMed PMC
Russell, J.A. , Latorre, A. , Sabater‐Muñoz, B. , Moya, A. & Moran, N.A. (2003) Side‐stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Molecular Ecology, 12, 1061–1075. PubMed
Russell, J.A. , Weldon, S. , Smith, A.H. , Kim, K.L. , Hu, Y. , Łukasik, P. et al (2013) Uncovering symbiont‐driven genetic diversity across North American pea aphids. Molecular Ecology, 22, 2045–2059. PubMed
Scarborough, C.L. , Ferrari, J. & Godfray, H.C.J. (2005) Aphid protected from pathogen by endosymbiont. Science, 310, 1781. PubMed
Simon, J.‐C. , Boutin, S. , Tsuchida, T. , Koga, R. , Le Gallic, J.‐F. , Frantz, A. et al (2011) Facultative symbiont infections affect aphid reproduction. PLoS ONE, 6, e21831. PubMed PMC
Smith, A.H. , Łukasik, P. , O'Connor, M.P. , Lee, A. , Mayo, G. , Drott, M.T. et al (2015) Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Molecular Ecology, 24, 1135–1149. PubMed
Tsuchida, T. , Koga, R. , Shibao, H. , Matsumoto, T. & Fukatsu, T. (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum . Molecular Ecology, 11, 2123–2135. PubMed
van Veen, F.J.F. , Müller, C.B. , Pell, J.K. & Godfray, H.C.J. (2008) Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphids. Journal of Animal Ecology, 77, 191–200. PubMed
Vorburger, C. & Gouskov, A. (2011) Only helpful when required: a longevity cost of harbouring defensive symbionts. Journal of Evolutionary Biology, 24, 1611–1617. PubMed
Xie, J. , Vilchez, I. & Mateos, M. (2010) Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma . PLoS ONE, 5, e12149. PubMed PMC
Xie, J. , Butler, S. , Sanchez, G. & Mateos, M. (2014) Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity, 112, 399–408. PubMed PMC
Metacommunity theory for transmission of heritable symbionts within insect communities
Symbionts modify interactions between insects and natural enemies in the field
Dryad
10.5061/dryad.3p071