The cuticle modulates ultraviolet reflectance of avian eggshells

. 2015 May 11 ; 4 (7) : 753-9. [epub] 20150511

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25964661

Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

Zobrazit více v PubMed

Aickin M. and Gensler H. (1996). Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. PubMed DOI PMC

Albalasmeh A. A., Berhe A. A. and Ghezzehei T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. PubMed DOI

Andersson S. (1999). Morphology of UV reflectance in a whistling-thrush: implications for the study of structural colour signalling in birds. DOI

Andrady A. L., Hamid S. H., Hu X. and Torikai A. (1998). Effects of increased solar ultraviolet radiation on materials. PubMed DOI

Baker J. R. and Balch D. A. (1962). A study of the organic material of hen's-egg shell. PubMed PMC

Board R. G. (1974). Microstructure, water resistance and water repellency of the pigeon egg shell. PubMed DOI

Board R. G., Perrott H. R., Love G. and Scott V. D. (1984). The phosphate-rich cover on the eggshells of grebes (Aves: Podicipitiformes). DOI

Bogrekci I. and Lee W. S. (2004). Spectral signatures of common phosphates in soils and their effect on absorbance spectra of soil samples with different phosphorus concentrations. In

Bonderer L. J., Studart A. R. and Gauckler L. J. (2008). Bioinspired design and assembly of platelet reinforced polymer films. PubMed DOI

Cassey P., Mikšík I., Portugal S. J., Maurer G., Ewen J. G., Zarate E., Sewell M. A., Karadas F., Grim T. and Hauber M. E. (2012a). Avian eggshell pigments are not consistently correlated with colour measurements or egg constituents in two Turdus thrushes. DOI

Cassey P., Thomas G. H., Portugal S. J., Maurer G., Hauber M. E., Grim T., Lovell P. G. and Mikšík I. (2012b). Why are birds’ eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. DOI

D'Alba L., Jones D. N., Badawy H. T., Eliason C. M. and Shawkey M. D. (2014). Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird. PubMed DOI

Dennis J. E., Xiao S.-Q., Agarwal M., Fink D. J., Heuer A. H. and Caplan A. I. (1996). Microstructure of matrix and mineral components of eggshells from White Leghorn chickens (Gallus gallus). PubMed DOI

Edelhoch H. (1967). Spectroscopic determination of tryptophan and tyrosine in proteins. PubMed DOI

Finnemore A., Cunha P., Shean T., Vignolini S., Guldin S., Oyen M. and Steiner U. (2012). Biomimetic layer-by-layer assembly of artificial nacre. PubMed DOI

Gorchein A., Lim C. K. and Cassey P. (2009). Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. PubMed DOI

Grégoire C. (1957). Topography of the organic components in mother-of pearl. PubMed DOI PMC

Hamilton R. M. G. (1986). The microstructure of the hen's egg shell – a short review.

Hauber M. E. (2014). The Book of Eggs: A Life-Size Guide to the Eggs of Six Hundred of the World's Bird Species. Chicago, IL: University of Chicago Press.

Hill G. E. and McGraw K. J. (2006).

Hincke M. T., Bernard A. M., Lee E. R., Tsang C. P. W. and Narbaitz R. (1992). Soluble protein constituents of the domestic fowl's eggshell. PubMed DOI

Holiday E. R. (1936). Spectrophotometry of proteins: absorption spectra of tyrosine, tryptophan and their mixtures. II. Estimation of tyrosine and tryptophan in proteins. PubMed PMC

Holzmann D., Holzinger D., Hesser G., Schmidt T. and Knör G. (2009). Hydroxyapatite nanoparticles as novel low-refractive index additives for the long-term UV-photoprotection of transparent composite materials. DOI

Igic B., Cassey P., Grim T., Greenwood D. R., Moskát C., Rutila J. and Hauber M. E. (2012). A shared chemical basis of avian host-parasite egg colour mimicry. PubMed DOI PMC

Igic B., Fecheyr-Lippens D., Xiao M., Chan A., Hanley D., Brennan P. R. L., Grim T., Waterhouse G. I. N., Hauber M. E. and Shawkey M. D. (2015). A nanostructural basis for gloss of avian eggshells. PubMed DOI PMC

Itagaki H. (1994). Saccharification process of cellulose in 97% sulfuric acid monitored by sulfuric acid induced ultraviolet absorption behaviour. DOI

Kennedy G. Y. and Vevers H. G. (1976). A survey of avian eggshell pigments. PubMed DOI

Kilner R. M. (2006). The evolution of egg colour and patterning in birds. PubMed DOI

Kinoshita S., Yoshioka S. and Miyazaki J. (2008). Physics of structural colors. DOI

Kusuda S., Iwasawa A., Doi O., Ohya Y. and Yoshizaki N. (2011). Diversity of the cuticle layer of avian eggshells. DOI

Lahti D. C. (2008). Population differentiation and rapid evolution of egg color in accordance with solar radiation. DOI

Li Q., Xia L., Zhang Z. and Zhang M. (2010). Ultraviolet extinction and visible transparency by ivy nanoparticles. PubMed DOI PMC

Maia R., Eliason C. M., Bitton P.-P., Doucet S. M. and Shawkey M. D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. DOI

Maurer G., Portugal S. J., Hauber M. E., Mikšík I., Russell D. G. D. and Cassey P. (2015). First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. DOI

Merilaita S. and Lind J. (2005). Background-matching and disruptive coloration, and the evolution of cryptic coloration. PubMed DOI PMC

Mikhailov K. E. (1997). Avian Eggshells: an Atlas of Scanning Electron Micrographs. Peterborough: British Ornithologists’ Club.

Moreno J. and Osorno J. L. (2003). Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality? DOI

Panheleux M., Bain M., Fernandez M. S., Morales I., Gautron J., Arias J. L., Solomon S. E., Hincke M. and Nys Y. (1999). Organic matrix composition and ultrastructure of eggshell: a comparative study. PubMed DOI

Parker A. R. (2000). 515 million years of structural colour. DOI

Piccirillo C., Rocha C., Tobaldi D. M., Pullar R. C., Labrincha J. A., Ferreira M. O., Castro P. M. L. and Pintado M. M. E. (2014). A hydroxyapatite–Fe PubMed DOI

R Development Core Team (2013).

Rodríguez-Navarro A. B., Domínguez-Gasca N., Muñoz A. and Ortega-Huertas M. (2013). Change in the chicken eggshell cuticle with hen age and egg freshness. PubMed DOI

Sparks N. H. C. (1994). Shell accessory materials: structure and function. In

Srinivasarao M. (1999). Nano-optics in the biological world: beetles, butterflies, birds, and moths. PubMed DOI

Sun J., Bhushan B. and Tong J. (2013). Structural coloration in nature. DOI

Wedral E. M., Vadehra D. V. and Baker R. C. (1974). Chemical composition of the cuticle, and the inner and outer shell membranes from eggs of Gallus gallus. PubMed DOI

Yang C., Wang L., Hsu Y.-C., Antonov A., Moksnes A., Røskaft E., Liang W. and Stokke B. G. (2013). UV reflectance as a cue in egg discrimination in two Prinia species exploited differently by brood parasites in Taiwan. DOI

Yoo S., Hsieh J. S., Zou P. and Kokoszka J. (2009). Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...