The cuticle modulates ultraviolet reflectance of avian eggshells

. 2015 May 11 ; 4 (7) : 753-9. [epub] 20150511

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25964661

Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.

Zobrazit více v PubMed

Aickin M. and Gensler H. (1996). Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am. J. Public Health 86, 726-728. 10.2105/AJPH.86.5.726 PubMed DOI PMC

Albalasmeh A. A., Berhe A. A. and Ghezzehei T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym. 97, 253-261. 10.1016/j.carbpol.2013.04.072 PubMed DOI

Andersson S. (1999). Morphology of UV reflectance in a whistling-thrush: implications for the study of structural colour signalling in birds. J. Avian Biol. 30, 193-204. 10.2307/3677129 DOI

Andrady A. L., Hamid S. H., Hu X. and Torikai A. (1998). Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B 46, 96-103. 10.1016/S1011-1344(98)00188-2 PubMed DOI

Baker J. R. and Balch D. A. (1962). A study of the organic material of hen's-egg shell. Biochem. J. 82, 352-361. PubMed PMC

Board R. G. (1974). Microstructure, water resistance and water repellency of the pigeon egg shell. Br. Poult. Sci. 15, 415-419. 10.1080/00071667408416126 PubMed DOI

Board R. G., Perrott H. R., Love G. and Scott V. D. (1984). The phosphate-rich cover on the eggshells of grebes (Aves: Podicipitiformes). J. Zool. 203, 329-343. 10.1111/j.1469-7998.1984.tb02336.x DOI

Bogrekci I. and Lee W. S. (2004). Spectral signatures of common phosphates in soils and their effect on absorbance spectra of soil samples with different phosphorus concentrations. In Proceedings of the Annual International Meeting of American Society of Agricultural Engineers and Canadian Society of Agricultural Engineers, Ottawa, ON, Canada. Meeting Paper No. 043114 St Joseph, MI: ASAE.

Bonderer L. J., Studart A. R. and Gauckler L. J. (2008). Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069-1073. 10.1126/science.1148726 PubMed DOI

Cassey P., Mikšík I., Portugal S. J., Maurer G., Ewen J. G., Zarate E., Sewell M. A., Karadas F., Grim T. and Hauber M. E. (2012a). Avian eggshell pigments are not consistently correlated with colour measurements or egg constituents in two Turdus thrushes. J. Avian Biol. 43, 503-512. 10.1111/j.1600-048X.2012.05576.x DOI

Cassey P., Thomas G. H., Portugal S. J., Maurer G., Hauber M. E., Grim T., Lovell P. G. and Mikšík I. (2012b). Why are birds’ eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biol. J. Linn. Soc. 106, 657-672. 10.1111/j.1095-8312.2012.01877.x DOI

D'Alba L., Jones D. N., Badawy H. T., Eliason C. M. and Shawkey M. D. (2014). Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird. J. Exp. Biol. 217, 1116-1121. 10.1242/jeb.098343 PubMed DOI

Dennis J. E., Xiao S.-Q., Agarwal M., Fink D. J., Heuer A. H. and Caplan A. I. (1996). Microstructure of matrix and mineral components of eggshells from White Leghorn chickens (Gallus gallus). J. Morphol. 228, 287-306. 10.1002/(SICI)1097-4687(199606)228:3<287::AID-JMOR2>3.0.CO;2-# PubMed DOI

Edelhoch H. (1967). Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948-1954. 10.1021/bi00859a010 PubMed DOI

Finnemore A., Cunha P., Shean T., Vignolini S., Guldin S., Oyen M. and Steiner U. (2012). Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 3, 966 10.1038/ncomms1970 PubMed DOI

Gorchein A., Lim C. K. and Cassey P. (2009). Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 23, 602-606. 10.1002/bmc.1158 PubMed DOI

Grégoire C. (1957). Topography of the organic components in mother-of pearl. J. Biophys. Biochem. Cytol. 3, 797-808. 10.1083/jcb.3.5.797 PubMed DOI PMC

Hamilton R. M. G. (1986). The microstructure of the hen's egg shell – a short review. Food Microstruct. 5, 99-110.

Hauber M. E. (2014). The Book of Eggs: A Life-Size Guide to the Eggs of Six Hundred of the World's Bird Species. Chicago, IL: University of Chicago Press.

Hill G. E. and McGraw K. J. (2006). Bird Coloration: Function and Evolution. Cambridge, MA: Harvard University Press.

Hincke M. T., Bernard A. M., Lee E. R., Tsang C. P. W. and Narbaitz R. (1992). Soluble protein constituents of the domestic fowl's eggshell. Br. Poult. Sci. 33, 505-516. 10.1080/00071669208417489 PubMed DOI

Holiday E. R. (1936). Spectrophotometry of proteins: absorption spectra of tyrosine, tryptophan and their mixtures. II. Estimation of tyrosine and tryptophan in proteins. Biochem. J. 30, 1795-1803. PubMed PMC

Holzmann D., Holzinger D., Hesser G., Schmidt T. and Knör G. (2009). Hydroxyapatite nanoparticles as novel low-refractive index additives for the long-term UV-photoprotection of transparent composite materials. J. Mater. Chem. 19, 8102-8106. 10.1039/b912116a DOI

Igic B., Cassey P., Grim T., Greenwood D. R., Moskát C., Rutila J. and Hauber M. E. (2012). A shared chemical basis of avian host-parasite egg colour mimicry. Proc. Biol. Sci. 279, 1068-1076. 10.1098/rspb.2011.1718 PubMed DOI PMC

Igic B., Fecheyr-Lippens D., Xiao M., Chan A., Hanley D., Brennan P. R. L., Grim T., Waterhouse G. I. N., Hauber M. E. and Shawkey M. D. (2015). A nanostructural basis for gloss of avian eggshells. Proc. R. Soc. Lond. B 12, 20141210 10.1098/rsif.2014.1210 PubMed DOI PMC

Itagaki H. (1994). Saccharification process of cellulose in 97% sulfuric acid monitored by sulfuric acid induced ultraviolet absorption behaviour. Polymer 35, 50-52. 10.1016/0032-3861(94)90048-5 DOI

Kennedy G. Y. and Vevers H. G. (1976). A survey of avian eggshell pigments. Comp. Biochem. Physiol. 55B, 117-123. 10.1016/0305-0491(76)90183-8 PubMed DOI

Kilner R. M. (2006). The evolution of egg colour and patterning in birds. Biol. Rev. Camb. Philos. Soc. 81, 383-406. 10.1017/S1464793106007044 PubMed DOI

Kinoshita S., Yoshioka S. and Miyazaki J. (2008). Physics of structural colors. Rep. Prog. Phys. 71, 076401 10.1088/0034-4885/71/7/076401 DOI

Kusuda S., Iwasawa A., Doi O., Ohya Y. and Yoshizaki N. (2011). Diversity of the cuticle layer of avian eggshells. J. Poult. Sci. 48, 119-124. 10.2141/jpsa.010103 DOI

Lahti D. C. (2008). Population differentiation and rapid evolution of egg color in accordance with solar radiation. Auk 125, 796-802. 10.1525/auk.2008.07033 DOI

Li Q., Xia L., Zhang Z. and Zhang M. (2010). Ultraviolet extinction and visible transparency by ivy nanoparticles. Nanoscale Res. Lett. 5, 1487-1491. 10.1007/s11671-010-9666-2 PubMed DOI PMC

Maia R., Eliason C. M., Bitton P.-P., Doucet S. M. and Shawkey M. D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4, 906-913. 10.1111/2041-210X.12069 DOI

Maurer G., Portugal S. J., Hauber M. E., Mikšík I., Russell D. G. D. and Cassey P. (2015). First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Funct. Ecol. 29, 209-218. 10.1111/1365-2435.12314 DOI

Merilaita S. and Lind J. (2005). Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc. R. Soc. Lond. B 272, 665-670. 10.1098/rspb.2004.3000 PubMed DOI PMC

Mikhailov K. E. (1997). Avian Eggshells: an Atlas of Scanning Electron Micrographs. Peterborough: British Ornithologists’ Club.

Moreno J. and Osorno J. L. (2003). Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality? Ecol. Lett. 6, 803-806. 10.1046/j.1461-0248.2003.00505.x DOI

Panheleux M., Bain M., Fernandez M. S., Morales I., Gautron J., Arias J. L., Solomon S. E., Hincke M. and Nys Y. (1999). Organic matrix composition and ultrastructure of eggshell: a comparative study. Br. Poult. Sci. 40, 240-252. 10.1080/00071669987665 PubMed DOI

Parker A. R. (2000). 515 million years of structural colour. J. Opt. Pure Appl. Opt. 2, R15-R28. 10.1088/1464-4258/2/6/201 DOI

Piccirillo C., Rocha C., Tobaldi D. M., Pullar R. C., Labrincha J. A., Ferreira M. O., Castro P. M. L. and Pintado M. M. E. (2014). A hydroxyapatite–Fe2O3 based material of natural origin as an active sunscreen filter. J. Mater. Chem. B 2, 5999-6009. 10.1039/C4TB00984C PubMed DOI

R Development Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 Available at: http://www.R-project.org.

Rodríguez-Navarro A. B., Domínguez-Gasca N., Muñoz A. and Ortega-Huertas M. (2013). Change in the chicken eggshell cuticle with hen age and egg freshness. Poult. Sci. 92, 3026-3035. 10.3382/ps.2013-03230 PubMed DOI

Sparks N. H. C. (1994). Shell accessory materials: structure and function. In Microbiology of the Avian Egg (Board R. G. and Fuller R.), pp. 25-42. New York, NY: Springer.

Srinivasarao M. (1999). Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935-1962. 10.1021/cr970080y PubMed DOI

Sun J., Bhushan B. and Tong J. (2013). Structural coloration in nature. RSC Advances 3, 14862-14889. 10.1039/c3ra41096j DOI

Wedral E. M., Vadehra D. V. and Baker R. C. (1974). Chemical composition of the cuticle, and the inner and outer shell membranes from eggs of Gallus gallus. Comp. Biochem. Physiol. 47B, 631-640. 10.1016/0305-0491(74)90011-X PubMed DOI

Yang C., Wang L., Hsu Y.-C., Antonov A., Moksnes A., Røskaft E., Liang W. and Stokke B. G. (2013). UV reflectance as a cue in egg discrimination in two Prinia species exploited differently by brood parasites in Taiwan. Ibis 155, 571-575. 10.1111/ibi.12043 DOI

Yoo S., Hsieh J. S., Zou P. and Kokoszka J. (2009). Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper. Bioresour. Technol. 100, 6416-6421. 10.1016/j.biortech.2009.06.112 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...