The cuticle modulates ultraviolet reflectance of avian eggshells
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
25964661
PubMed Central
PMC4571098
DOI
10.1242/bio.012211
PII: bio.012211
Knihovny.cz E-zdroje
- Klíčová slova
- Avian eggshells, Biomimicry, Cuticle, Light modulation, Ultraviolet reflectance,
- Publikační typ
- časopisecké články MeSH
Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.
Department of Biology University of Akron Akron OH 44325 USA
Department of Zoology and Laboratory of Ornithology Palacký University Olomouc 771 46 Czech Republic
School of Chemical Sciences University of Auckland Auckland 1142 New Zealand
Zobrazit více v PubMed
Aickin M. and Gensler H. (1996). Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am. J. Public Health 86, 726-728. 10.2105/AJPH.86.5.726 PubMed DOI PMC
Albalasmeh A. A., Berhe A. A. and Ghezzehei T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym. 97, 253-261. 10.1016/j.carbpol.2013.04.072 PubMed DOI
Andersson S. (1999). Morphology of UV reflectance in a whistling-thrush: implications for the study of structural colour signalling in birds. J. Avian Biol. 30, 193-204. 10.2307/3677129 DOI
Andrady A. L., Hamid S. H., Hu X. and Torikai A. (1998). Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B 46, 96-103. 10.1016/S1011-1344(98)00188-2 PubMed DOI
Baker J. R. and Balch D. A. (1962). A study of the organic material of hen's-egg shell. Biochem. J. 82, 352-361. PubMed PMC
Board R. G. (1974). Microstructure, water resistance and water repellency of the pigeon egg shell. Br. Poult. Sci. 15, 415-419. 10.1080/00071667408416126 PubMed DOI
Board R. G., Perrott H. R., Love G. and Scott V. D. (1984). The phosphate-rich cover on the eggshells of grebes (Aves: Podicipitiformes). J. Zool. 203, 329-343. 10.1111/j.1469-7998.1984.tb02336.x DOI
Bogrekci I. and Lee W. S. (2004). Spectral signatures of common phosphates in soils and their effect on absorbance spectra of soil samples with different phosphorus concentrations. In Proceedings of the Annual International Meeting of American Society of Agricultural Engineers and Canadian Society of Agricultural Engineers, Ottawa, ON, Canada. Meeting Paper No. 043114 St Joseph, MI: ASAE.
Bonderer L. J., Studart A. R. and Gauckler L. J. (2008). Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069-1073. 10.1126/science.1148726 PubMed DOI
Cassey P., Mikšík I., Portugal S. J., Maurer G., Ewen J. G., Zarate E., Sewell M. A., Karadas F., Grim T. and Hauber M. E. (2012a). Avian eggshell pigments are not consistently correlated with colour measurements or egg constituents in two Turdus thrushes. J. Avian Biol. 43, 503-512. 10.1111/j.1600-048X.2012.05576.x DOI
Cassey P., Thomas G. H., Portugal S. J., Maurer G., Hauber M. E., Grim T., Lovell P. G. and Mikšík I. (2012b). Why are birds’ eggs colourful? Eggshell pigments co-vary with life-history and nesting ecology among British breeding non-passerine birds. Biol. J. Linn. Soc. 106, 657-672. 10.1111/j.1095-8312.2012.01877.x DOI
D'Alba L., Jones D. N., Badawy H. T., Eliason C. M. and Shawkey M. D. (2014). Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird. J. Exp. Biol. 217, 1116-1121. 10.1242/jeb.098343 PubMed DOI
Dennis J. E., Xiao S.-Q., Agarwal M., Fink D. J., Heuer A. H. and Caplan A. I. (1996). Microstructure of matrix and mineral components of eggshells from White Leghorn chickens (Gallus gallus). J. Morphol. 228, 287-306. 10.1002/(SICI)1097-4687(199606)228:3<287::AID-JMOR2>3.0.CO;2-# PubMed DOI
Edelhoch H. (1967). Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948-1954. 10.1021/bi00859a010 PubMed DOI
Finnemore A., Cunha P., Shean T., Vignolini S., Guldin S., Oyen M. and Steiner U. (2012). Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 3, 966 10.1038/ncomms1970 PubMed DOI
Gorchein A., Lim C. K. and Cassey P. (2009). Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 23, 602-606. 10.1002/bmc.1158 PubMed DOI
Grégoire C. (1957). Topography of the organic components in mother-of pearl. J. Biophys. Biochem. Cytol. 3, 797-808. 10.1083/jcb.3.5.797 PubMed DOI PMC
Hamilton R. M. G. (1986). The microstructure of the hen's egg shell – a short review. Food Microstruct. 5, 99-110.
Hauber M. E. (2014). The Book of Eggs: A Life-Size Guide to the Eggs of Six Hundred of the World's Bird Species. Chicago, IL: University of Chicago Press.
Hill G. E. and McGraw K. J. (2006). Bird Coloration: Function and Evolution. Cambridge, MA: Harvard University Press.
Hincke M. T., Bernard A. M., Lee E. R., Tsang C. P. W. and Narbaitz R. (1992). Soluble protein constituents of the domestic fowl's eggshell. Br. Poult. Sci. 33, 505-516. 10.1080/00071669208417489 PubMed DOI
Holiday E. R. (1936). Spectrophotometry of proteins: absorption spectra of tyrosine, tryptophan and their mixtures. II. Estimation of tyrosine and tryptophan in proteins. Biochem. J. 30, 1795-1803. PubMed PMC
Holzmann D., Holzinger D., Hesser G., Schmidt T. and Knör G. (2009). Hydroxyapatite nanoparticles as novel low-refractive index additives for the long-term UV-photoprotection of transparent composite materials. J. Mater. Chem. 19, 8102-8106. 10.1039/b912116a DOI
Igic B., Cassey P., Grim T., Greenwood D. R., Moskát C., Rutila J. and Hauber M. E. (2012). A shared chemical basis of avian host-parasite egg colour mimicry. Proc. Biol. Sci. 279, 1068-1076. 10.1098/rspb.2011.1718 PubMed DOI PMC
Igic B., Fecheyr-Lippens D., Xiao M., Chan A., Hanley D., Brennan P. R. L., Grim T., Waterhouse G. I. N., Hauber M. E. and Shawkey M. D. (2015). A nanostructural basis for gloss of avian eggshells. Proc. R. Soc. Lond. B 12, 20141210 10.1098/rsif.2014.1210 PubMed DOI PMC
Itagaki H. (1994). Saccharification process of cellulose in 97% sulfuric acid monitored by sulfuric acid induced ultraviolet absorption behaviour. Polymer 35, 50-52. 10.1016/0032-3861(94)90048-5 DOI
Kennedy G. Y. and Vevers H. G. (1976). A survey of avian eggshell pigments. Comp. Biochem. Physiol. 55B, 117-123. 10.1016/0305-0491(76)90183-8 PubMed DOI
Kilner R. M. (2006). The evolution of egg colour and patterning in birds. Biol. Rev. Camb. Philos. Soc. 81, 383-406. 10.1017/S1464793106007044 PubMed DOI
Kinoshita S., Yoshioka S. and Miyazaki J. (2008). Physics of structural colors. Rep. Prog. Phys. 71, 076401 10.1088/0034-4885/71/7/076401 DOI
Kusuda S., Iwasawa A., Doi O., Ohya Y. and Yoshizaki N. (2011). Diversity of the cuticle layer of avian eggshells. J. Poult. Sci. 48, 119-124. 10.2141/jpsa.010103 DOI
Lahti D. C. (2008). Population differentiation and rapid evolution of egg color in accordance with solar radiation. Auk 125, 796-802. 10.1525/auk.2008.07033 DOI
Li Q., Xia L., Zhang Z. and Zhang M. (2010). Ultraviolet extinction and visible transparency by ivy nanoparticles. Nanoscale Res. Lett. 5, 1487-1491. 10.1007/s11671-010-9666-2 PubMed DOI PMC
Maia R., Eliason C. M., Bitton P.-P., Doucet S. M. and Shawkey M. D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods Ecol. Evol. 4, 906-913. 10.1111/2041-210X.12069 DOI
Maurer G., Portugal S. J., Hauber M. E., Mikšík I., Russell D. G. D. and Cassey P. (2015). First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Funct. Ecol. 29, 209-218. 10.1111/1365-2435.12314 DOI
Merilaita S. and Lind J. (2005). Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc. R. Soc. Lond. B 272, 665-670. 10.1098/rspb.2004.3000 PubMed DOI PMC
Mikhailov K. E. (1997). Avian Eggshells: an Atlas of Scanning Electron Micrographs. Peterborough: British Ornithologists’ Club.
Moreno J. and Osorno J. L. (2003). Avian egg colour and sexual selection: does eggshell pigmentation reflect female condition and genetic quality? Ecol. Lett. 6, 803-806. 10.1046/j.1461-0248.2003.00505.x DOI
Panheleux M., Bain M., Fernandez M. S., Morales I., Gautron J., Arias J. L., Solomon S. E., Hincke M. and Nys Y. (1999). Organic matrix composition and ultrastructure of eggshell: a comparative study. Br. Poult. Sci. 40, 240-252. 10.1080/00071669987665 PubMed DOI
Parker A. R. (2000). 515 million years of structural colour. J. Opt. Pure Appl. Opt. 2, R15-R28. 10.1088/1464-4258/2/6/201 DOI
Piccirillo C., Rocha C., Tobaldi D. M., Pullar R. C., Labrincha J. A., Ferreira M. O., Castro P. M. L. and Pintado M. M. E. (2014). A hydroxyapatite–Fe2O3 based material of natural origin as an active sunscreen filter. J. Mater. Chem. B 2, 5999-6009. 10.1039/C4TB00984C PubMed DOI
R Development Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 Available at: http://www.R-project.org.
Rodríguez-Navarro A. B., Domínguez-Gasca N., Muñoz A. and Ortega-Huertas M. (2013). Change in the chicken eggshell cuticle with hen age and egg freshness. Poult. Sci. 92, 3026-3035. 10.3382/ps.2013-03230 PubMed DOI
Sparks N. H. C. (1994). Shell accessory materials: structure and function. In Microbiology of the Avian Egg (Board R. G. and Fuller R.), pp. 25-42. New York, NY: Springer.
Srinivasarao M. (1999). Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935-1962. 10.1021/cr970080y PubMed DOI
Sun J., Bhushan B. and Tong J. (2013). Structural coloration in nature. RSC Advances 3, 14862-14889. 10.1039/c3ra41096j DOI
Wedral E. M., Vadehra D. V. and Baker R. C. (1974). Chemical composition of the cuticle, and the inner and outer shell membranes from eggs of Gallus gallus. Comp. Biochem. Physiol. 47B, 631-640. 10.1016/0305-0491(74)90011-X PubMed DOI
Yang C., Wang L., Hsu Y.-C., Antonov A., Moksnes A., Røskaft E., Liang W. and Stokke B. G. (2013). UV reflectance as a cue in egg discrimination in two Prinia species exploited differently by brood parasites in Taiwan. Ibis 155, 571-575. 10.1111/ibi.12043 DOI
Yoo S., Hsieh J. S., Zou P. and Kokoszka J. (2009). Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper. Bioresour. Technol. 100, 6416-6421. 10.1016/j.biortech.2009.06.112 PubMed DOI
Probing the Limits of Egg Recognition Using Egg Rejection Experiments Along Phenotypic Gradients
Not so colourful after all: eggshell pigments constrain avian eggshell colour space