Eggshell pigment composition covaries with phylogeny but not with life history or with nesting ecology traits of British passerines

. 2016 Mar ; 6 (6) : 1637-45. [epub] 20160212

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26904185

No single hypothesis is likely to explain the diversity in eggshell coloration and patterning across birds, suggesting that eggshell appearance is most likely to have evolved to fulfill many nonexclusive functions. By controlling for nonindependent phylogenetic associations between related species, we describe this diversity using museum eggshells of 71 British breeding passerine species to examine how eggshell pigment composition and concentrations vary with phylogeny and with life-history and nesting ecology traits. Across species, concentrations of biliverdin and protoporphyrin, the two main pigments found in eggshells, were strongly and positively correlated, and both pigments strongly covaried with phylogenetic relatedness. Controlling for phylogeny, cavity-nesting species laid eggs with lower protoporphyrin concentrations in the shell, while higher biliverdin concentrations were associated with thicker eggshells for species of all nest types. Overall, these relationships between eggshell pigment concentrations and the biology of passerines are similar to those previously found in nonpasserine eggs, and imply that phylogenetic dependence must be considered across the class in further explanations of the functional significance of avian eggshell coloration.

Zobrazit více v PubMed

Akaike, H. 1974. A new look at statistical model identification. IEEE Trans. Automat. Contr. 19:716–723.

Barton, K. 2010. MuMIn: Multi‐model inference R package [version 1.13.4].

Bennett, A. T. D. , and Cuthill I. C.. 1994. Ultraviolet vision in birds: what is its function? Vis. Res. 34:1471–1478. PubMed

Brulez, K. , Cassey P., Meeson A., Mikšík I., Webber S. L., Gosler A. G., et al. 2014. Eggshell spot scoring methods cannot be used as a reliable proxy to determine pigment quantity? J. Av. Biol. 45:94–102.

Cassey, P. , Portugal S. J., Maurer G., Ewen J. G., Boulton R. L., Hauber M. E., et al. 2010a. Variability in avian eggshell colour: a comparative study of museum eggshells. PLoS ONE 5:e12054. PubMed PMC

Cassey, P. , Maurer G., Duval C., Ewen J., and Hauber M. E.. 2010b. Impact of time since collection on avian eggshell color: a comparison of museum and fresh egg specimens. Behav. Ecol. Sociobiol. 64:1711–1720.

Cassey, P. , Thomas G. H., Portugal S. J., Maurer G., Hauber M. E., Grim T., et al. 2012a. Why are birds' eggs colourful? Eggshell pigments co‐vary with life‐history and nesting ecology among British breeding non‐passerine birds. Biol. J. Linn. Soc. 106:657–672.

Cassey, P. , Mikšík I., Portugal S. J., Maurer G., Ewen J. G., Zarate E., et al. 2012b. Avian eggshell pigments are not consistently correlated with colour measurements or egg constituents in two Turdus thrushes. J. Av. Biol. 43:503–512.

Cherry, M. I. , and Gosler A. G.. 2010. Avian eggshell coloration: new perspectives on adaptive explanations. Biol. J. Linn. Soc. 100:753–762.

Cott, H. B. 1940. Adaptive colouration in animals. Methuen & Co., Ltd, London.

Cramp, S. , and Simmons K. E. L., eds. 1978. –1994. The birds of the Western Palearctic. Oxford University Press, Oxford.

Csernus, V. , Becher P., and Mess B.. 1999. Wavelength dependency of light induced changes in rhythmic melatonin secretion from chicken pineal gland in vitro. Neuroendocrinol. Lett. 20:299–304. PubMed

Cuthill, I. C. 2006. Color Perception Pp. 3–40 in Hill G. E. and McGraw K. J., eds. Bird coloration, Vol I: mechanisms and measurements. Harvard University Press, Cambridge, MA.

Del Hoyo, J. , Elliott A., and Christie D. A., eds. 1992. –2011. Handbook of birds of the world. Lynx Edicions, Barcelona.

Endler, J. A. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41:315–352.

Falchuk, K. H. , Contin J. M., Dziedzic T. S., Feng Z., French T. C., Heffron G. J., et al. 2002. A role for biliverdin IX in dorsal axis development of Xenopus laevis embryos. Proc. Nat. Acad. Sci. USA 99:251–256. PubMed PMC

Fecheyr‐Lippens, D. C. , Igic B., D'Alba L., Hanley D., Verdes A., Holford M., et al. 2015. The cuticle modulates ultraviolet reflectance of avian eggshells. Biol. Open 4:753–759. bio‐012211. PubMed PMC

Freckleton, R. , Harvey P., and Pagel M.. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160:712–726. PubMed

Gorchein, A. , Lim C. K., and Cassey P.. 2009. Extraction and analysis of colourful eggshell pigments using HPLC and HPLC/electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 23:602–606. PubMed

Hanley, D. , Grim T., Cassey P., and Hauber M. E.. 2015. Not so colourful after all: eggshell pigments constrain avian eggshell colour space. Biol. Lett. 11:20150087. PubMed PMC

Igic, B. , Greenwood D. R., Palmer D. J., Cassey P., Gill B. J., Grim T., et al. 2010. Detecting pigments from colourful eggshells of extinct birds. Chemoecology 20:43–48.

Igic, B. , Fecheyr‐Lippens D., Xiao M., Chan A., Hanley D., Brennan P. R., et al. 2015. A nanostructural basis for gloss of avian eggshells. J. R. Soc. Interface 12:20141210. PubMed PMC

Jarvis, E. D. , Mirarab S., Aberer A. J., Li B., Houde P., Li C., et al. 2014. Whole‐genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331. PubMed PMC

Kennedy, G. Y. , and Vevers H. G.. 1973. Eggshell pigments of the araucano fowl. Comp. Biochem. Physiol., B: Comp. Biochem. 44:11–25. PubMed

Kennedy, G. Y. , and Vevers H. G.. 1976. Survey of avian eggshell pigments. Comp. Biochem. Physiol., B: Comp. Biochem. 55:117–123. PubMed

Kilner, R. M. 2006. The evolution of egg colour and patterning in birds. Biol. Rev. 81:383–406. PubMed

Lack, D. 1958. The significance of the colour of turdine eggs. The Ibis 100:145–166.

Lovell, P. G. , Tolhurst D. J., Párraga C. A., Troscianko J., Troscianko T., Baddeley R., et al. 2005. Stability of the color‐opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. A 22:2060–2071. PubMed

Lovell, P. G. , Ruxton R. G., Langridge K. V., and Spencer K. A.. 2013. Egg‐laying substrate selection for optimal camouflage by quail. Curr. Biol. 23:260–264. PubMed

Maurer, G. , Portugal S. J., and Cassey P.. 2011a. Review: an embryo's eye view of avian eggshell pigmentation. J. Av. Biol. 42:494–504.

Maurer, G. , Portugal S. J., Mikšík I., and Cassey P.. 2011b. Speckles of cryptic black‐headed gull eggs show no mechanical or conductance structural function. J. Zool. 285:194–204.

Maurer, G. , Portugal S. J., and Cassey P.. 2012. A comparison of indices and measured values of eggshell thickness of different shell regions using museum eggs of 230 European bird species. The Ibis 154:714–724.

Maurer, G. , Portugal S. J., Hauber M. E., Mikšík I., Russel D., and Cassey P.. 2015. First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Funct. Ecol. 29:209–218.

Mikšík, I. , Holáň V., and Deyl Z.. 1996. Avian eggshell pigments and their variability. Comp. Biochem. Physiol., B: Comp. Biochem. 113:607–612.

Navarro, J. Y. , and Lahti D. C.. 2014. Light dulls and darkens bird eggs. PLoS ONE 9:e116112. PubMed PMC

Orme, D. , Freckleton R., Thomas G., Petzoldt T., Fritz S., Isaac N., et al. 2012. Caper: comparative analyses of phylogenetics and evolution in R. Available at: https://cran.r-project.org/web/packages/caper/index.html.

Otsu, N. 1979. A threshold selection method from gray‐level histograms. IEEE Trans. Syst. Man Cybern. 9:62–66.

Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401:877–884. PubMed

Poole, H. K. 1965. Spectrophotometric Identification of Eggshell Pigments and Timing of Superficial Pigment Deposition in the Japanese Quail. Proc. Soc. Exp. Biol. Med. 119:547–551.

Portugal, S. J. , Maurer G., and Cassey P.. 2010. Eggshell permeability: a standard technique for determining interspecific rates of water vapor conductance. Physiol. Biochem. Zool. 83:1023–1031. PubMed

R Development Core Team . 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: http://www.R-project.org/.

Rasband, W. S. 1997. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA: http://imagej.nih.gov/ij/.

Russell, D. , White J., Maurer G., and Cassey P.. 2010. Data‐poor egg collections: cracking an important research resource. J. Afrotrop. Zool. 6:77–82.

Sibley, C. G. , and Monroe B. L. Jr. 1990. Distribution and taxonomy of birds of the world. Yale University Press, New Haven.

Stevens, M. , and Merilaita S.. 2009a. Animal camouflage: current issues and new perspectives. Philos. Trans. R. Soc. B: Biol. Sci. 364:423–427. PubMed PMC

Stevens, M. , and Merilaita S.. 2009b. Defining disruptive colouration and distinguishing its functions. Philos. Trans. R. Soc. B: Biol. Sci. 364:481–488. PubMed PMC

Stoddard, C. M. , Marshall K. L., and Kilner R. M.. 2011. Imperfectly camouflaged avian eggs: artefact or adaptation? Av. Biol. Res. 4:196–213.

Thomas, G. H. 2008. Phylogenetic distributions of British birds of conservation concern. Proc. R. Soc. B: Biol. Sci. 275:2077–2083. PubMed PMC

Thomas, G. H. , and Freckleton R. P.. 2012. MOTMOT: models of trait macroevolution on trees. Methods in Ecology and Evolution 3:145–151.

Troscianko, J. 2014. A simple tool for calculating egg shape, volume and surface area from digital images. The Ibis 156:874–878.

Wallace, A. R. 1889. Darwinism: an exposition of the theory of natural selection with some of its applications. Macmillan and Co, London.

Wang, X. T. , Zhao C. J., Li J. Y., Xu G. Y., Lian L. S., Wu C. X., et al. 2009. Comparison of the total amount of eggshell pigments in Dongxiang brown‐shelled eggs and Dongxiang blue‐shelled eggs. Poult. Sci. 88:1735–1739. PubMed

Wiemann, J. , Yang T., Sander P. N. N., Schneider M., Engeser M., Kath‐Schorr S., et al. 2015. The blue‐green eggs of dinosaurs: how fossil metabolites provide insights into the evolution of bird reproduction. PeerJ PrePrints 3:e1323 https://dx.doi.org/10.7287/peerj.preprints.1080v1. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Analysis of Siamese Crocodile (Crocodylus siamensis) Eggshell Proteome

. 2018 Feb ; 37 (1) : 21-37.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...