Formation of DNA adducts by ellipticine and its micellar form in rats - a comparative study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25479328
PubMed Central
PMC4299049
DOI
10.3390/s141222982
PII: s141222982
Knihovny.cz E-zdroje
- MeSH
- adukty DNA chemie metabolismus MeSH
- antitumorózní látky aplikace a dávkování chemie farmakokinetika MeSH
- elipticiny aplikace a dávkování chemie farmakokinetika MeSH
- krysa rodu Rattus MeSH
- metabolická clearance MeSH
- micely MeSH
- orgánová specificita MeSH
- potkani Wistar MeSH
- příprava léků metody MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA MeSH
- antitumorózní látky MeSH
- elipticiny MeSH
- ellipticine MeSH Prohlížeč
- micely MeSH
The requirements for early diagnostics as well as effective treatment of cancer diseases have increased the pressure on development of efficient methods for targeted drug delivery as well as imaging of the treatment success. One of the most recent approaches covering the drug delivery aspects is benefitting from the unique properties of nanomaterials. Ellipticine and its derivatives are efficient anticancer compounds that function through multiple mechanisms. Formation of covalent DNA adducts after ellipticine enzymatic activation is one of the most important mechanisms of its pharmacological action. In this study, we investigated whether ellipticine might be released from its micellar (encapsulated) form to generate covalent adducts analogous to those formed by free ellipticine. The (32)P-postlabeling technique was used as a useful imaging method to detect and quantify covalent ellipticine-derived DNA adducts. We compared the efficiencies of free ellipticine and its micellar form (the poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PAGE-PEO) block copolymer, P 119 nanoparticles) to form ellipticine-DNA adducts in rats in vivo. Here, we demonstrate for the first time that treatment of rats with ellipticine in micelles resulted in formation of ellipticine-derived DNA adducts in vivo and suggest that a gradual release of ellipticine from its micellar form might produce the enhanced permeation and retention effect of this ellipticine-micellar delivery system.
Zobrazit více v PubMed
Stiborova M., Bieler C.A., Wiessler M., Frei E. The anticancer agent ellipticine on activation by cytochrome P450 forms covalent DNA adducts. Biochem. Pharmacol. 2001;62:1675–1684. PubMed
Stiborova M., Rupertova M., Schmeiser H.H., Frei E. Molecular mechanisms of antineoplastic action of an anticancer drug ellipticine. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2006;150:13–23. PubMed
Stiborova M., Rupertova M., Frei E. Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim. Biophys. Acta. 2011;1814:175–185. PubMed
Kizek R., Adam V., Hrabeta J., Eckschlager T., Smutny S., Burda J.V., Frei E., Stiborova M. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharmacol. Ther. 2012;133:26–39. PubMed
Auclair C. Multimodal action of antitumor agents on DNA: The ellipticine series. Arch. Biochem. Biophys. 1987;259:1–14. PubMed
Garbett N.C., Graves D.E. Extending nature's leads: The anticancer agent ellipticine. Curr. Med. Chem. Anti-Cancer Agents. 2004;4:149–172. PubMed
Tmejova K., Krejcova L., Hynek D., Adam V., Babula P., Trnkova L., Stiborova M., Eckschlager T., Kizek R. Electrochemical study of ellipticine interaction with single and double stranded oligonucleotides. Anti-Cancer Age. Med. 2014;14:331–340. PubMed
Stiborová M., Sejbal J., Borek-Dohalská L., Aimová D., Poljaková J., Forsterová K., Rupertová M., Wiesner J., Hudecek J., Wiessler M., et al. The anticancer drug ellipticine forms covalent DNA adducts, mediated by human cytochromes P450, through metabolism to 13-hydroxyellipticine and ellipticine N2-oxide. Cancer Res. 2004;64:8374–8380. PubMed
Stiborová M., Poljaková J., Ryslavá H., Dracínský M., Eckschlager T., Frei E. Mammalian peroxidases activate anticancer drug ellipticine to intermediates forming deoxyguanosine adducts in DNA identical to those found in vivo and generated from 12-hydroxyellipticine and 13-hydroxyellipticine. Int. J. Cancer. 2007;120:243–251. PubMed
Stiborová M., Rupertová M., Aimová D., Ryslavá H., Frei E. Formation and persistence of DNA adducts of anticancer drug ellipticine in rats. Toxicology. 2007;236:50–60. PubMed
Stiborová M., Indra R., Moserová M., Cerná V., Rupertová M., Martínek V., Eckschlager T., Kizek R., Frei E. Cytochrome b5 increases cytochrome P450 3A4-mediated activation of anticancer drug ellipticine to 13-hydroxyellipticine whose covalent binding to DNA is elevated by sulfotransferases and N,O-acetyltransferases. Chem. Res. Toxicol. 2012;25:1075–1085. PubMed
Kotrbová V., Mrázová B., Moserová M., Martínek V., Hodek P., Hudeček J., Frei E., Stiborová M. Cytochrome b5 shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy. Biochem. Pharmacol. 2011;82:669–680. PubMed
Stiborova M., Frei E. Ellipticines as DNA-targeted chemotherapeutics. Current Med. Chem. 2014;21:575–591. PubMed
Moserova M., Kotrbova V., Rupertova M., Naiman K., Hudecek J., Hodek P., Frei E., Stiborova M. Isolation and partial characterization of the adduct formed by 13-hydroxyellipticine with deoxyguanosine in DNA. Neuro Endocrinol. Lett. 2008;29:728–732. PubMed
Stiborová M., Breuer A., Aimová D., Stiborová-Rupertová M., Wiessler M., Frei E. DNA adduct formation by the anticancer drug ellipticine in rats determined by 32P-postlabeling. Int. J. Cancer. 2003;107:885–890. PubMed
Stiborová M., Arlt V.M., Henderson C.J., Wolf C.R., Kotrbová V., Moserová M., Hudecek J., Phillips D.H., Frei E. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH: Cytochrome P450 reductase null mouse. Toxicol. Appl. Pharmacol. 2008;226:318–327. PubMed
Stiborova M., Moserova M., Mrazova B., Kotrbova V., Frei E. Role of cytochromes P450 and peroxidases in metabolism of the anticancer drug ellipticine: Additional evidence of their contribution to ellipticine activation in rat liver, lung and kidney. Neuro Endocrinol. Lett. 2010;31(Suppl. 2):26–35. PubMed
Bořek-Dohalská L., Frei E., Stiborová M. DNA adduct formation by the anticancer drug ellipticine and its hydroxy derivatives in human breast adenocarcinoma MCF-7 cells. Collect. Czech. Chem. Commun. 2004;69:603–615.
Poljaková J., Frei E., Gomez J.E., Aimová D., Eckschlager T., Hrabeta J., Stiborová M. DNA adduct formation by the anticancer drug ellipticine in human leukemia HL-60 and CCRF-CEM cells. Cancer Lett. 2007;252:270–279. PubMed
Poljaková J., Eckschlager T., Hrabeta J., Hrebacková J., Smutný S., Frei E., Martínek V., Kizek R., Stiborová M. The mechanism of cytotoxicity and DNA adduct formation by the anticancer drug ellipticine in human neuroblastoma cells. Biochem. Pharmacol. 2009;77:1466–1479. PubMed
Poljakova J., Hrebackova J., Dvorakova M., Moserova M., Eckschlager T., Hrabeta J., Göttlicherova M., Kopejtkova B., Frei E., Kizek R., et al. Anticancer agent ellipticine combined with histone deacetylase inhibitors, valproic acid and trichostatin A, is an effective DNA damage strategy in human neuroblastoma. Neuro Endocrinol. Lett. 2011;32(Suppl. 1):101–116. PubMed
Martinkova E., Dontenwill M., Frei E., Stiborova M. Cytotoxicity of and DNA adduct formation by ellipticine in human U87MG glioblastoma cancer cells. Neuro Endocrinol. Lett. 2009;30(Suppl. 1):60–66. PubMed
Poljaková J., Eckschlager T., Kizek R., Frei E., Stiborová M. Electrochemical determination of enzymes metabolizing ellipticine in thyroid cancer cells—A tool to explain the mechanism of ellipticine toxicity to these cells. Int. J. Electrochem. Sci. 2013;8:1573–1585.
Stiborova M., Poljakova J., Mrizova I., Borek-Dohalska L., Eckschlager T., Adam V., Kizek R., Frei E. Expression levels of enzymes metabolizing an anticancer drug ellipticine determined by electromigration assays influence its cytotoxicity to cancer cells—A comparative study. Int. J. Electrochem. Sci. 2014;9:5675–5689.
Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. PubMed
Ali I., Rahis-Uddin, Salim K., Rather M.A., Wani W.A., Haque A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets. 2011;11:135–146. PubMed
Ryvolova M., Chomoucka J., Drbohlavova J., Kopel P., Babula P., Hynek D., Adam V., Eckschlager T., Hubalek J., Stiborova M., et al. Modern micro and nanoparticle-based imaging techniques. Sensors. 2012;12:14792–14820. PubMed PMC
Liu J., Xiao Y., Allen C. Polymer-drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci. 2004;93:132–143. PubMed
Liu J., Zeng F., Allen C. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J. Control. Release. 2005;103:481–497. PubMed
Wu M., Ye Z., Liu Y., Liu B., Zhao X. Release of hydrophobic anticancer drug from a newly designed self-assembling peptide. Mol. Biosyst. 2011;7:2040–2047. PubMed
Wu Y., Sadatmousavi P., Wang R., Lu S., Yuan Y.F., Chen P. Self-assembling peptide-based nanoparticles enhance anticancer effect of ellipticine in vitro and in vivo. Int. J. Nanomed. 2012;7:3221–3233. PubMed PMC
Bawa R., Fung S.Y., Shiozaki A., Yang H., Zheng G., Keshavjee S., Liu M. Self-assembling peptide-based nanoparticles enhance cellular delivery of the hydrophobic anticancer drug ellipticine through caveolae-dependent endocytosis. Nanomedicine. 2012;8:647–654. PubMed
Lu S., Wang H., Sheng Y., Liu M., Chen P. Molecular binding of self-assembling peptide EAK16-II with anticancer agent EPT and its implication in cancer cell inhibition. J. Control. Release. 2012;160:33–40. PubMed
Wang H., Yang L., Rempel G.L. Preparation of pH-responsive polymer core-shell nanospheres for delivery of hydrophobic antineoplastic drug ellipticine. Macromol. Biosci. 2014;14:166–172. PubMed
Sedlacek O., Hruby M., Studenovsky M., Kucka J., Větvička D., Kovar L., Rihova B., Ulbrich K. Ellipticine-aimed polymer-conjugated auger electron emitter: Multistage organelle targeting approach. Bioconjug. Chem. 2011;22:1194–1201. PubMed
Sedláček O., Studenovský M., Větvička D., Ulbrich K., Hrubý M. Fine tuning of the pH-dependent drug release rate from polyHPMA-ellipticinium conjugates. Bioorg. Med. Chem. 2013;21:5669–5672. PubMed
Sedlacek O., Kucka J., Mantova J., Parizek M., Studenovsky M., Zadinova M., Pouckova P., Hruby M. Multistage-targeted pH-responsive polymer conjugate of Auger electron emitter: Optimized design and in vivo activity. Eur. J. Pharm. Sci. 2014;63:216–225. PubMed
Ma W., Lu S., Pan P., Sadatmousavi P., Yuan Y., Chen P. Pharmacokinetics of peptide mediated delivery of anticancer drug ellipticine. PLoS One. 2012;7:e43684. PubMed PMC
Masood F., Chen P., Yasin T., Fatima N., Hasan F., Hameed A. Encapsulation of ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:1054–1060. PubMed
Masood F., Chen P., Yasin T., Hasan F., Ahmad B., Hameed A. Synthesis of poly-(3-hydroxybutyrate-co-12 mol % 3-hydroxyvalerate) by Bacillus cereus FB11: Its characterization and application as a drug carrier. J. Mater. Sci. Mater. Med. 2013;24:1927–1937. PubMed
Gavvala K., Koninci R.K., Sengupta A., Hazra P. Excited state proton transfer dynamics of an eminent anticancer drug, ellipticine, in octyl glucoside micelle. Phys. Chem. Chem. Phys. 2014;16:14953–14960. PubMed
Kwon G.S., Naito M., Yokoyama M., Okano T., Samuraj Y., Katanka K. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 1995;12:192–195. PubMed
Kwon G.S. Diblock copolymer nanoparticles for drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 1998;15:481–512. PubMed
Hrubý M., Konák C., Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control. Release. 2005;103:137–148. PubMed
Hrubý M., Konák C., Ulbrich K. Poly(allyl glycidyl ether)-block -poly(ethylene oxide)—A novel promising polymeric intermediate for the preparation of micellar drug delivery systems. J. Appl. Polym. Sci. 2005;95:201–211.
Kataoka K., Matsumoto T., Yokoyama M., Okano T., Sakurai Y., Fukushima S., Okamoto K., Kwon G.S. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance. J. Control. Release. 2000;64:143–153. PubMed
Kataoka K., Kwon G.S., Yokoyama M., Okano T., Sakurai Y. Block-copolymer micelles as vehicles for drug delivery. J. Control. Release. 1993;24:119–132.
Son Y.J., Jang J.S., Cho Y.W., Chung H., Park R.W., Kwon I.C., Kim I.S., Park J.Y., Seo S.B., Park C.R., et al. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J. Control. Release. 2003;91:135–45. PubMed
Hruby M., Subr V., Kucka J., Kozempel J., Lebeda O., Sikora A. Thermoresponsive polymers as promising new materials for local radiotherapy. Appl. Radiat. Isot. 2005;63:423–431. PubMed
Oh I., Lee K., Kwon H.Y., Lee Y.B., Shin S.C., Cho C.S., Kim C.K. Release of adriamycin from poly(gamma-benzyl-L-glutamate)/poly(ethylene oxide) nanoparticles. Int. J. Pharm. 1999;181:107–115. PubMed
De Rosa G., Salzano G., Caraglia M., Abbruzzese A. Nanotechnologies: A strategy to overcome blood-brain barrier. Curr. Drug Metab. 2012;13:61–69. PubMed