Ellipticine-aimed polymer-conjugated auger electron emitter: multistage organelle targeting approach
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
21513348
DOI
10.1021/bc200064v
Knihovny.cz E-resources
- MeSH
- Cell Nucleus drug effects metabolism MeSH
- DNA chemistry MeSH
- Electrons * MeSH
- Ellipticines chemistry pharmacology MeSH
- Hydrazines chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Polymethacrylic Acids chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Molecular Structure MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Organelles chemistry drug effects MeSH
- Iodine Radioisotopes MeSH
- Stereoisomerism MeSH
- Tissue Distribution MeSH
- Cell Survival drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Duxon MeSH Browser
- Ellipticines MeSH
- ellipticine MeSH Browser
- Hydrazines MeSH
- Polymethacrylic Acids MeSH
- Iodine Radioisotopes MeSH
Radioactive decay of some radionuclides produces a shower of Auger electrons, potent ionizing radiation within a very short range in living tissue (typically ca. 100 nm). Therefore, they must be brought to DNA-containing cell compartments and preferentially directly to DNA to be fully biologically effective. They may be used for a triple-targeting approach (first targeting, polymer-based system targeting into tumor tissue due to EPR effect; second targeting, pH-controlled release of intercalator-bound Auger electron emitter in slightly acidic tumor tissue or endosome; third targeting, into DNA in cell nucleus by the intercalator) minimizing radiation burden of healthy tissues. We describe a first system of this type, an ellipticine derivative-bound iodine-125 attached to hydrazide moieties containing poly[N-(2-hydroxypropyl)methacrylamide]. The system is stable at pH 7.4 (0% intercalator released after 24 h incubation), while iodine-containing biologically active intercalator is released upon decrease of pH (25% intercalator released after 24 h incubation at pH 5.0-model of late endosomes). Both 2-N-(2-oxobutyl)-9-iodoellipticinium bromide and the noniodinated 2-N-(2-oxobutyl)ellipticinium bromide are potent intercalators, as proven by direct titration with DNA and ethidium displacement assay, and readily penetrate into cell nuclei, as proven by confocal microscopy. They retain chemotherapeutical antiproliferative properties of ellipticine against Raji, EL-4, and 4T1cells with IC(50) in the range 0.27-8.8 μmol/L. Polymer conjugate of 2-N-(2-oxobutyl)-9-iodoellipticinium bromide is internalized into endosomes, releases active drug, possesses cytotoxic activity, and the drug accumulates in cell nuclei.
References provided by Crossref.org
Formation of DNA adducts by ellipticine and its micellar form in rats - a comparative study