Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26543399
PubMed Central
PMC4624813
DOI
10.1007/s11051-015-3226-8
PII: 3226
Knihovny.cz E-zdroje
- Klíčová slova
- Bioconjugation, Biomarkers, Chip-CE, Health effects, Metallothionein, Quantum dots,
- Publikační typ
- časopisecké články MeSH
ABSTRACT: Quantum dots (QDs) are fluorescence nanoparticles (NPs) with unique optic properties which allow their use as probes in chemical, biological, immunological, and molecular imaging. QDs linked with target ligands such as peptides or small molecules can be used as tumor biomarkers. These particles are a promising tool for selective, fast, and sensitive tagging and imaging in medicine. In this study, an attempt was made to use QDs as a marker for human metallothionein (MT) isoforms 1 and 2. Four kinds of CdTe QDs of different sizes bioconjugated with MT were analyzed using the chip-CE technique. Based on the results, it can be concluded that MT is willing to interact with QDs, and the chip-CE technique enables the observation of their complexes. It was also observed that changes ranging roughly 6-7 kDa, a value corresponding to the MT monomer, depend on the hydrodynamic diameters of QDs; also, the MT sample without cadmium interacted stronger with QDs than MT saturated with cadmium. Results show that MT is willing to interact with smaller QDs (blue CdTe) rather than larger ones QDs (red CdTe). To our knowledge, chip-CE has not previously been applied in the study of CdTe QDs interaction with MT.
Zobrazit více v PubMed
Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–937. doi: 10.1126/science.271.5251.933. DOI
Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol. 2000;59:95–104. doi: 10.1016/S0006-2952(99)00301-9. PubMed DOI
Bizon A, Milnerowicz-Nabzdyk E, Zalewska M, Zimmer M, Milnerowicz H. Changes in pro/antioxidant balance in smoking and non-smoking pregnant women with intrauterine growth restriction. Reprod Toxicol. 2011;32:360–367. doi: 10.1016/j.reprotox.2011.08.007. PubMed DOI
Bousse L, Mouradian S, Minalla A, Yee H, Williams K, Dubrow R. Protein sizing on a microchip. Anal Chem. 2001;73:1207–1212. doi: 10.1021/ac0012492. PubMed DOI
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:206–212. doi: 10.1016/j.addr.2012.09.033. PubMed DOI
Bremner I, Beattie JH. Metallothionein and the trace minerals. Ann. Rev Nutr. 1990;10:63–83. doi: 10.1146/annurev.nu.10.070190.000431. PubMed DOI
Cai L, Klein JB, Kang YJ. Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J Biol Chem. 2000;275:38957–38960. doi: 10.1074/jbc.C000593200. PubMed DOI
Carpene E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol. 2007;21(Suppl 1):35–39. doi: 10.1016/j.jtemb.2007.09.011. PubMed DOI
Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281:2016–2018. doi: 10.1126/science.281.5385.2016. PubMed DOI
Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13:40–46. doi: 10.1016/S0958-1669(02)00282-3. PubMed DOI
Cherian MG, Jayasurya A, Bay BH. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res. 2003;533:201–209. doi: 10.1016/j.mrfmmm.2003.07.013. PubMed DOI
Chua CK, Pumera M. Detection of silver nanoparticles on a lab-on-chip platform. Electrophoresis. 2013;34:2007–2010. doi: 10.1002/elps.201200426. PubMed DOI
Chubatsu LS, Meneghini R. Metallothionein protects DNA from oxidative damage. Biochem J. 1993;291(Pt 1):193–198. doi: 10.1042/bj2910193. PubMed DOI PMC
Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cellular and molecular life sciences. 2002;59:627–647. doi: 10.1007/s00018-002-8454-2. PubMed DOI PMC
Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer’s disease. Neurobiol Dis. 2009;35:128–140. doi: 10.1016/j.nbd.2008.10.003. PubMed DOI PMC
Davis SR, Cousins RJ. Metallothionein expression in animals: a physiological perspective on function. J Nutr. 2000;130:1085–1088. PubMed
Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18. doi: 10.1021/nl0347334. PubMed DOI PMC
Doz F, Roosen N, Rosenblum ML. Metallothionein and anticancer agents: the role of metallothionein in cancer chemotherapy. J Neurooncol. 1993;17:123–129. doi: 10.1007/BF01050214. PubMed DOI
Drbohlavova J, Adam V, Kizek R, Hubalek J. Quantum dots—characterization, preparation and usage in biological systems. Int J Mol Sci. 2009;10:656–673. doi: 10.3390/ijms10020656. PubMed DOI PMC
Duan JL, Song LX, Zhan JH. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties. Nano Res. 2009;2:61–68. doi: 10.1007/s12274-009-9004-0. DOI
Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C. A versatile strategy for quantum dot ligand exchange. J Am Chem Soc. 2007;129:482–483. doi: 10.1021/ja067742y. PubMed DOI
Duncan KER, Stillman MJ. Metal-dependent protein folding: metallation of metallothionein. J Inorg Biochem. 2006;100:2101–2107. doi: 10.1016/j.jinorgbio.2006.09.005. PubMed DOI
Frasco MF, Chaniotakis N. Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem. 2010;396:229–240. doi: 10.1007/s00216-009-3033-0. PubMed DOI
Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S. In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol. 2005;16:63–72. doi: 10.1016/j.copbio.2004.11.003. PubMed DOI
Grieve K, Mulvaney P, Grieser F. Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr Opin Colloid Interface Sci. 2000;5:168–172. doi: 10.1016/S1359-0294(00)00050-9. DOI
Hamer DH. Metallothionein. Ann Rev Biochem. 1986;55:913–951. doi: 10.1146/annurev.bi.55.070186.004405. PubMed DOI
Hong SH, Gohya M, Ono H, Murakami H, Yamashita M, Hirayama N, Murooka Y. Molecular design of novel metal-binding oligomeric human metallothioneins. Appl Microbiol Biotechnol. 2000;54:84–89. doi: 10.1007/s002530000360. PubMed DOI
Hoshino A, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004;4:2163–2169. doi: 10.1021/nl048715d. DOI
Kagi JH, Schaffer A. Biochemistry of metallothionein. Biochemistry. 1988;27:8509–8515. doi: 10.1021/bi00423a001. PubMed DOI
Karotki AV, Vasak M. Reaction of human metallothionein-3 with cisplatin and transplatin. J Biol Inorg Chem. 2009;14:1129–1138. doi: 10.1007/s00775-009-0557-x. PubMed DOI
Koberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: preclinical findings and clinical implications. Biochim Biophys Acta. 2010;1806:172–182. PubMed
Krizkova S, Adam V, Kizek R. Study of metallothionein oxidation by using of chip CE. Electrophoresis. 2009;30:4029–4033. doi: 10.1002/elps.200900226. PubMed DOI
Krizkova S, Fabrik I, Adam V, Hrabeta J, Eckschlager T, Kizek R. Metallothionein-a promising tool for cancer diagnostics. Bratisl Lek Listy. 2009;110:93–97. PubMed
Krizkova S, Masarik M, Eckschlager T, Adam V, Kizek R. Effects of redox conditions and zinc(II) ions on metallothionein aggregation revealed by chip capillary electrophoresis. J Chromatogr A. 2010;1217:7966–7971. doi: 10.1016/j.chroma.2010.07.022. PubMed DOI
Krizkova S, et al. Serum metallothionein in newly diagnosed patients with childhood solid tumours. Acta Biochim Pol. 2010;57:561–566. PubMed
Krizkova S, et al. Electrophoretic fingerprint metallothionein analysis as a potential prostate cancer biomarker. Electrophoresis. 2011;32:1952–1961. doi: 10.1002/elps.201000519. PubMed DOI
Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer (Journal international du cancer) 2007;120:2527–2537. doi: 10.1002/ijc.22709. PubMed DOI
Manso Y, et al. Characterization of the role of metallothionein-3 in an animal model of Alzheimer’s disease. Cell Mol life Sci. 2012;69:3683–3700. doi: 10.1007/s00018-012-1047-9. PubMed DOI PMC
Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957;79:4813–4814. doi: 10.1021/ja01574a064. DOI
Michalet X, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–544. doi: 10.1126/science.1104274. PubMed DOI PMC
Milnerowicz H, Bizon A. Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Biochim Pol. 2010;57:99–104. PubMed
Minami T, Ichida S, Kubo K. Study of metallothionein using capillary zone electrophoresis. J Chromatogr B. 2002;781:303–311. doi: 10.1016/S1570-0232(02)00496-8. PubMed DOI
Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc. 1999;121:8122–8123. doi: 10.1021/ja991662v. DOI
Miyawaki A, Sawano A, Kogure T. Lighting up cells: labelling proteins with fluorophores. Nature Cell Biology. 2003;5:S1–S7. doi: 10.1038/ncb0103-1. PubMed DOI
Moffatt P, Denizeau F. Metallothionein in physiological and physiopathological processes. Drug Metab Rev. 1997;29:261–307. doi: 10.3109/03602539709037585. PubMed DOI
Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101:239–253. doi: 10.1093/toxsci/kfm240. PubMed DOI
Namdarghanbari M, Wobig W, Krezoski S, Tabatabai NM, Petering DH. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J Biol Inorg Chem. 2011;16:1087–1101. doi: 10.1007/s00775-011-0823-6. PubMed DOI
Nielson KB, Atkin CL, Winge DR. Distinct metal-binding configurations in metallothionein. J Biol Chem. 1985;260:5342–5350. PubMed
Niemeyer CM. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Edit. 2001;40:4128–4158. doi: 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S. PubMed DOI
Palumaa P, Vasak M. Binding of inorganic phosphate to the cadmium-induced dimeric form of metallothionein from rabbit liver. Eur J Biochem/FEBS. 1992;205:1131–1135. doi: 10.1111/j.1432-1033.1992.tb16882.x. PubMed DOI
Petersen JR, Okorodudu AO, Mohammad A, Payne DA. Capillary electrophoresis and its application in the clinical laboratory. Clinica Chimica Acta. 2003;330:1–30. doi: 10.1016/S0009-8981(03)00006-8. PubMed DOI
Pons T, Uyeda HT, Medintz IL, Mattoussi H. Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B. 2006;110:20308–20316. doi: 10.1021/jp065041h. PubMed DOI
Rana S, Yeh YC, Rotello VM. Engineering the nanoparticle-protein interface: applications and possibilities. Curr Opin Chem Biol. 2010;14:828–834. doi: 10.1016/j.cbpa.2010.10.001. PubMed DOI PMC
Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18:17–25. doi: 10.1016/j.copbio.2007.01.003. PubMed DOI
Richards MP, Beattie JH. Comparison of different techniques for the analysis of metallothionein isoforms by capillary electrophoresis. J Chromatogr B. 1995;669:27–37. doi: 10.1016/0378-4347(95)00008-7. PubMed DOI
Righetti PG, Sebastiano R, Citterio A. Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics. 2013;13:325–340. doi: 10.1002/pmic.201200378. PubMed DOI
Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol. 2003;14:337–346. doi: 10.1016/S0958-1669(03)00068-5. PubMed DOI
Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem Biol. 2011;18:10–24. doi: 10.1016/j.chembiol.2010.11.013. PubMed DOI PMC
Ruttkay-Nedecky B, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14:6044–6066. doi: 10.3390/ijms14036044. PubMed DOI PMC
Ryvolova M, Hynek D, Skutkova H, Adam V, Provaznik I, Kizek R. Structural changes in metallothionein isoforms revealed by capillary electrophoresis and Brdicka reaction. Electrophoresis. 2012;33:270–279. doi: 10.1002/elps.201100312. PubMed DOI
Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals. 2010;23:897–926. doi: 10.1007/s10534-010-9351-z. PubMed DOI
Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2:3. doi: 10.1186/1477-3155-2-3. PubMed DOI PMC
Sanvicens N, Marco MP. Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26:425–433. doi: 10.1016/j.tibtech.2008.04.005. PubMed DOI
Shen JC, Liu J, Zhuang ZX, Wang XR, Lee FS. Investigation of zinc binding metallothioneins’ polymerization in tris(hydroxymethyl)-aminomethane buffer by coupling of size exclusion chromatography with electrospray ionization mass spectrometry. Talanta. 2006;69:988–995. doi: 10.1016/j.talanta.2005.12.002. PubMed DOI
Sieradzka E, Witt K, Milnerowicz H. The application of capillary electrophoresis techniques in toxicological analysis. Biomed Chromatogr. 2014;28:1507–1513. doi: 10.1002/bmc.3234. PubMed DOI
Silva AC, Silva MJ, da Luz FA, Silva DP, de Deus SL, Dantas NO. Controlling the cytotoxicity of CdSe magic-sized quantum dots as a function of surface defect density. Nano Lett. 2014;14:5452–5457. doi: 10.1021/nl5028028. PubMed DOI
Simpkins CO. Metallothionein in human disease. Cell Mol Biol. 2000;46:465–488. PubMed
Skalickova S, et al. Study of interaction between metallothionein and CdTe quantum dots. Chromatographia. 2013;76:345–353. doi: 10.1007/s10337-013-2418-6. DOI
Smejkal P, Foret F. Microfluidics in bioanalytical instrumentation. Chem Listy. 2012;106:104–112.
Smith AM, Gao XH, Nie SM. Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol. 2004;80:377–385. doi: 10.1562/2004-06-21-IR-209.1. PubMed DOI
Sogawa N, et al. Protective effect of cepharanthin on cisplatin-induced renal toxicity through metallothionein expression. Life Sci. 2013;92:727–732. doi: 10.1016/j.lfs.2013.01.031. PubMed DOI
Sturzenbaum SR, et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat Nanotechnol. 2013;8:57–60. doi: 10.1038/nnano.2012.232. PubMed DOI
Swinney K, Bornhop DJ. Detection in capillary electrophoresis Electrophoresis. 2000;21:1239–1250. PubMed
Terai T, Nagano T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch. 2013;465:347–359. doi: 10.1007/s00424-013-1234-z. PubMed DOI
Thormann W, Lurie IS, McCord B, Marti U, Cenni B, Malik N. Advances of capillary electrophoresis in clinical and forensic analysis (1999-2000) Electrophoresis. 2001;22:4216–4243. doi: 10.1002/1522-2683(200111)22:19<4216::AID-ELPS4216>3.0.CO;2-W. PubMed DOI
Tmejova K, et al. Study of metallothionein-quantum dots interactions. Colloids Surf B. 2014;117:534–537. doi: 10.1016/j.colsurfb.2014.03.013. PubMed DOI
Trabelsi H, Azzouz I, Sakly M, Abdelmelek H. Subacute toxicity of cadmium on hepatocytes and nephrocytes in the rat could be considered as a green biosynthesis of nanoparticles. Int J Nanomed. 2013;8:1121–1128. doi: 10.2147/IJN.S39426. PubMed DOI PMC
Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron. 1991;7:337–347. doi: 10.1016/0896-6273(91)90272-2. PubMed DOI
Vasak M, Meloni G. Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem. 2011;16:1067–1078. doi: 10.1007/s00775-011-0799-2. PubMed DOI
Waalkes MP, Harvey MJ, Klaassen CD. Relative in vitro affinity of hepatic metallothionein for metals. Toxicol Lett. 1984;20:33–39. doi: 10.1016/0378-4274(84)90179-6. PubMed DOI
Wang LY, Li YD. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater. 2007;19:727–734. doi: 10.1021/cm061887m. DOI
Wang H, et al. Solution structure and dynamics of human metallothionein-3 (MT-3) FEBS Lett. 2006;580:795–800. doi: 10.1016/j.febslet.2005.12.099. PubMed DOI
Zalewska M, Bizon A, Milnerowicz H. Comparison of capillary electrophoretic techniques for analysis and characterization of metallothioneins. J Sep Sci. 2011;34:3061–3069. doi: 10.1002/jssc.201100379. PubMed DOI
Zalewska M, Trefon J, Milnerowicz H. The role of metallothionein interactions with other proteins. Proteomics. 2014;14:1343–1356. doi: 10.1002/pmic.201300496. PubMed DOI
Zhu ZF, Lu JJ, Liu SR. Protein separation by capillary gel electrophoresis: a review. Anal Chim Acta. 2012;709:21–31. doi: 10.1016/j.aca.2011.10.022. PubMed DOI PMC