The role of metallothionein in oxidative stress
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
23502468
PubMed Central
PMC3634463
DOI
10.3390/ijms14036044
PII: ijms14036044
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Free radicals are chemical particles containing one or more unpaired electrons, which may be part of the molecule. They cause the molecule to become highly reactive. The free radicals are also known to play a dual role in biological systems, as they can be either beneficial or harmful for living systems. It is clear that there are numerous mechanisms participating on the protection of a cell against free radicals. In this review, our attention is paid to metallothioneins (MTs) as small, cysteine-rich and heavy metal-binding proteins, which participate in an array of protective stress responses. The mechanism of the reaction of metallothioneins with oxidants and electrophilic compounds is discussed. Numerous reports indicate that MT protects cells from exposure to oxidants and electrophiles, which react readily with sulfhydryl groups. Moreover, MT plays a key role in regulation of zinc levels and distribution in the intracellular space. The connections between zinc, MT and cancer are highlighted.
See more in PubMed
Halliwell B., Gutteridge J.M.C. Oxygen free-radicals and iron in relation to biology and medicine—Some problems and concepts. Arch. Biochem. Biophys. 1986;246:501–514. PubMed
Cadenas E. Biochemistry of oxygen-toxicity. Annu. Rev. Biochem. 1989;58:79–110. PubMed
Valko M., Izakovic M., Mazur M., Rhodes C.J., Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem. 2004;266:37–56. PubMed
Poli G., Leonarduzzi G., Biasi F., Chiarpotto E. Oxidative stress and cell signalling. Curr. Med. Chem. 2004;11:1163–1182. PubMed
Halliwell B. Antioxidants in human health and disease. Annu. Rev. Nutr. 1996;16:33–50. PubMed
Gutteridge J.M.C., Halliwell B. Comments on review of free-radicals in biology and medicine. Free Radic. Biol. Med. 1992;12:93–95. PubMed
Niki E. Free radicals in biology and medicine: Good, unexpected, and uninvited friends. Free Radic. Biol. Med. 2010;49:S2.
Halliwell B., Gutteridge J.M.C. Free-Radicals in Biology and Medicine. Clarendon Press; Gloucestershire, UK: 1985.
Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87:315–424. PubMed PMC
Ramalingam M., Kim S.J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J. Neural Transm. 2012;119:891–910. PubMed
Pourova J., Kottova M., Voprsalova M., Pour M. Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol. 2010;198:15–35. PubMed
Vasak M. Advances in metallothionein structure and functions. J. Trace Elements Med Biol. 2005;19:13–17. PubMed
Henkel G., Krebs B. Metallothioneins: Zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features—Structural aspects and biological implications. Chem. Rev. 2004;104:801–824. PubMed
Coyle P., Philcox J.C., Carey L.C., Rofe A.M. Metallothionein: The multipurpose protein. Cell. Mol. Life Sci. 2002;59:627–647. PubMed PMC
Margoshes M., Vallee B.L. A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 1957;79:4813–4814.
Kagi J.H.R., Schaffer A. Biochemistry of metallothionein. Biochemistry. 1988;27:8509–8515. PubMed
Romero-Isart N., Vasak M. Advances in the structure and chemistry of metallothioneins. J. Inorg. Biochem. 2002;88:388–396. PubMed
Davis S.R., Cousins R.J. Metallothionein expression in animals: A physiological perspective on function. J. Nutr. 2000;130:1085–1088. PubMed
Klaassen C.D., Liu J., Diwan B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 2009;238:215–220. PubMed PMC
Templeton D.M., Cherian M.G. Toxicological significance of metallothionein. Methods Enzymol. 1991;205:11–24. PubMed
Kagi J.H.R. Overview of metallothionein. Methods Enzymol. 1991;205:613–626. PubMed
Shaw C.F., Savas M.M., Petering D.H. Ligand substitution and sulfhydryl reactivity of metallothionein. Methods Enzymol. 1991;205:401–414. PubMed
Karin M., Cathala G., Nguyenhuu M.C. Expression and regulation of a human metallothionein gene carried on an autonomously replicating shuttle vector. Proc. Natl. Acad. Sci. USA. 1983;80:4040–4044. PubMed PMC
Enger M.D., Tesmer J.G., Travis G.L., Barham S.S. Clonal variation of cadmium response in human-tumor cell-lines. Am. J. Phys. 1986;250:C256–C263. PubMed
Liu Y.P., Liu J., Iszard M.B., Andrews G.K., Palmiter R.D., Klaassen C.D. Transgenic mice that overexpress metallothionein-I are protected from cadmium lethality and hepatotoxicity. Toxicol. Appl. Pharmacol. 1995;135:222–228. PubMed
Masters B.A., Kelly E.J., Quaife C.J., Brinster R.L., Palmiter R.D. Targeted disruption of metallothionein-I and metallothionein-II genes increases sensitivity to cadmium. Proc. Natl. Acad. Sci. USA. 1994;91:584–588. PubMed PMC
Petrlova J., Potesil D., Mikelova R., Blastik O., Adam V., Trnkova L., Jelen F., Prusa R., Kukacka J., Kizek R. Attomole voltammetric determination of metallothionein. Electrochim. Acta. 2006;51:5112–5119.
Simpkins C.O. Metallothionein in human disease. Cell. Mol. Biol. 2000;46:465–488. PubMed
Hamer D.H. Metallothionein—An Overview. Mar. Environ. Res. 1988;24:171–171.
Masters B.A., Quaife C.J., Erickson J.C., Kelly E.J., Froelick G.J., Zambrowicz B.P., Brinster R.L., Palmiter R.D. Metallothionein-III is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci. 1994;14:5844–5857. PubMed PMC
Moffatt P., Denizeau F. Metallothionein in physiological and physiopathological processes. Drug Metab. Rev. 1997;29:261–307. PubMed
Searle P.F., Davison B.L., Stuart G.W., Wilkie T.M., Norstedt G., Palmiter R.D. Regulation, linkage, and sequence of mouse metallothionein-I and metallothionein-II genes. Mol. Cell. Biol. 1984;4:1221–1230. PubMed PMC
Moffatt P., Seguin C. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell. Biol. 1998;17:501–510. PubMed
Uchida Y., Takio K., Titani K., Ihara Y., Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimers-disease brain is a 68-amino acid metallothionein-like protein. Neuron. 1991;7:337–347. PubMed
Quaife C.J., Findley S.D., Erickson J.C., Froelick G.J., Kelly E.J., Zambrowicz B.P., Palmiter R.D. Induction of a new metallothionein isoform (Mt-Iv) occurs during differentiation of stratified squamous epithelia. Biochemistry. 1994;33:7250–7259. PubMed
Moleirinho A., Carneiro J., Matthiesen R., Silva R.M., Amorim A., Azevedo L. Gains, losses and changes of function after gene duplication: Study of the metallothionein family. PLoS One. 2011;6:e18487. PubMed PMC
Vallee B.L. The function of metallothionein. Neurochem. Int. 1995;27:23–33. PubMed
Wong C.P., Ho E. Zinc and its role in age-related inflammation and immune dysfunction. Mol. Nutr. Food Res. 2012;56:77–87. PubMed
Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E. Zinc and human health: An update. Arch. Toxicol. 2012;86:521–534. PubMed
Plum L.M., Rink L., Haase H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health. 2010;7:1342–1365. PubMed PMC
Biswas S.K., Rahman I. Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Mol. Aspects Med. 2009;30:60–76. PubMed PMC
Franklin R.B., Costello L.C. The important role of the apoptotic effects of zinc in the development of cancers. J. Cell. Biochem. 2009;106:750–757. PubMed PMC
MacDonald R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000;130:1500S–1508S. PubMed
Prasad A.S. Zinc—An overview. Nutrition. 1995;11:93–99. PubMed
Oteiza P.I. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med. 2012;53:1748–1759. PubMed PMC
Costello L.C., Franklin R.B. Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: An enigma and an opportunity. Expert Rev. Anticancer Ther. 2012;12:121–128. PubMed PMC
Carraway R.E., Dobner P.R. Zinc pyrithione induces ERK- and PKC-dependent necrosis distinct from TPEN-induced apoptosis in prostate cancer cells. Biochim. Biophys. Acta. 2012;1823:544–557. PubMed
Guo B.L., Yang M.W., Liang D., Yang L., Cao J.J., Zhang L. Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Mol. Cell. Biochem. 2012;361:209–216. PubMed
Kambe T., Yamaguchi-Iwai Y., Sasaki R., Nagao M. Overview of mammalian zinc transporters. Cell. Mol. Life Sci. 2004;61:49–68. PubMed PMC
Hogstrand C., Kille P., Nicholson R.I., Taylor K.M. Zinc transporters and cancer: A potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol. Med. 2009;15:101–111. PubMed
Hathout Y., Fabris D., Fenselau C. Stoichiometry in zinc ion transfer from metallothionein to zinc finger peptides. Int. J. Mass Spectrom. 2001;204:1–6.
Costello L.C., Liu Y.Y., Franklin R.B., Kennedy M.C. Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J. Biol. Chem. 1997;272:28875–28881. PubMed
Coffey R.N.T., Watson R.W.G., Hegarty N.J., O'Neill A., Gibbons N., Brady H.R., Fitzpatrick J.M. Thiol-Mediated apoptosis in prostate carcinoma cells. Cancer. 2000;88:2092–2104. PubMed
Feng P., Liang J.Y., Li T.L., Guan Z.X., Zou J., Franklin R.B., Costello L.C. Zinc induces mitochondria apoptogenesis in prostate cells. Mol. Urol. 2000;4:31–36. PubMed
Costello L.C., Fenselau C.C., Franklin R.B. Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J. Inorg. Biochem. 2011;105:589–599. PubMed PMC
Vallee B.L., Falchuk K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993;73:79–118. PubMed
Gumulec J., Masarik M., Krizkova S., Adam V., Hubalek J., Hrabeta J., Eckschlager T., Stiborova M., Kizek R. Insight to Physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr. Med. Chem. 2011;18:5041–5051. PubMed
Aimo L., Cherr G.N., Oteiza P.I. Low extracellular zinc increases neuronal oxidant production through nadph oxidase and nitric oxide synthase activation. Free Radic. Biol. Med. 2010;48:1577–1587. PubMed PMC
Kojima-Yuasa A., Umeda K., Olikita T., Kennedy D.O., Nishiguchi S., Matsui-Yuasa I. Role of reactive oxygen species in zinc deficiency-induced hepatic stellate cell activation. Free Radic. Biol. Med. 2005;39:631–640. PubMed
Kraus A., Roth H.P., Kirchgessner M. Supplementation with vitamin C, vitamin E or beta-carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats. J. Nutr. 1997;127:1290–1296. PubMed
Oteiza P.I., Olin K.L., Fraga C.G., Keen C.L. Zinc-Deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J. Nutr. 1995;125:823–829. PubMed
Wang M.H., Yang F., Zhang X.Z., Zhao H.B., Wang Q.S., Pan Y.C. Comparative analysis of MTF-1 binding sites between human and mouse. Mamm. Genome. 2010;21:287–298. PubMed
Andrews G.K. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol. 2000;59:95–104. PubMed
Soltaninassab S.R., Sekhar K.R., Meredith M.J., Freeman M.L. Multi-faceted regulation of gamma-glutamylcysteine synthetase. J. Cell. Physiol. 2000;182:163–170. PubMed
Cortese M.M., Suschek C.V., Wetzel W., Kroncke K.D., Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic. Biol. Med. 2008;44:2002–2012. PubMed
Westbrook G.L., Mayer M.L. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal-neurons. Nature. 1987;328:640–643. PubMed
Maret W., Li Y. Coordination dynamics of zinc in proteins. Chem. Rev. 2009;109:4682–4707. PubMed
Zitka O., Kukacka J., Krizkova S., Huska D., Adam V., Masarik M., Prusa R., Kizek R. Matrix metalloproteinases. Curr. Med. Chem. 2010;17:3751–3768. PubMed
Yan W., Imanishi M., Futaki S., Sugiura Y. Alpha-Helical linker of an artificial 6-zinc finger peptide contributes to selective DNA binding to a discontinuous recognition sequence. Biochemistry. 2007;46:8517–8524. PubMed
Krishna S.S., Majumdar I., Grishin N.V. Structural classification of zinc fingers. Nucleic Acids Res. 2003;31:532–550. PubMed PMC
Posewitz M.C., Wilcox D.E. Properties of the SP1 zinc-finger-3 peptide-coordination chemistry, redox reactions, and metal-binding competition with metallothionein. Chem. Res. Toxicol. 1995;8:1020–1028. PubMed
Huang M., Shaw C.F., Petering D.H. Interprotein metal exchange between transcription factor IIIa and apo-metallothionein. J. Inorg. Biochem. 2004;98:639–648. PubMed PMC
CanoGauci D.F., Sarkar B. Reversible zinc exchange between metallothionein and the estrogen receptor zinc finger. FEBS Lett. 1996;386:1–4. PubMed
Zeng J., Heuchel R., Schaffner W., Kagi J.H.R. Thionein (apometallothionein) can modulate DNA-binding and transcriptional activation by zinc finger containing factor-SP1. FEBS Lett. 1991;279:310–312. PubMed
Zeng J., Vallee B.L., Kagi J.H.R. Zinc transfer from transcription factor-IIIA fingers to thionein clusters. Proc. Natl. Acad. Sci. USA. 1991;88:9984–9988. PubMed PMC
Maret W., Larsen K.S., Vallee B.L. Coordination dynamics of biological zinc “clusters” in metallothioneins and in the DNA-binding domain of the transcription factor Gal4. Proc. Natl. Acad. Sci. USA. 1997;94:2233–2237. PubMed PMC
Roesijadi G., Bogumil R., Vasak M., Kagi J.H.R. Modulation of DNA binding of a tramtrack zinc finger peptide by the metallothionein-thionein conjugate pair. J. Biol. Chem. 1998;273:17425–17432. PubMed
Kroncke K.D., Klotz L.O. Zinc fingers as biologic redox switches? Antioxid. Redox Signal. 2009;11:1015–1027. PubMed
Maret W. Metallothionein disulfide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem. Int. 1995;27:111–117. PubMed
Jacob C., Maret W., Vallee B.L. Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc. Natl. Acad. Sci. USA. 1998;95:3489–3494. PubMed PMC
Jiang L.J., Maret W., Vallee B.L. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc. Natl. Acad. Sci. USA. 1998;95:3483–3488. PubMed PMC
Maret W. Oxidative metal release from metallothionein via zinc thiol-disulfide interchange. Proc. Natl. Acad. Sci. USA. 1994;91:237–241. PubMed PMC
Kroncke K.D., Fehsel K., Schmidt T., Zenke F.T., Dasting I., Wesener J.R., Bettermann H., Breunig K.D., Kolbbachofen V. Nitric-oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem. Biophys. Res. Commun. 1994;200:1105–1110. PubMed
St Croix C.M., Wasserloos K.J., Dineley K.E., Reynolds I.J., Levitan E.S., Pitt B.R. Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am. J. Physiol. 2002;282:L185–L192. PubMed
Spahl D.U., Berendji-Grun D., Suschek C.V., Kolb-Bachofen V., Kroncke K.D. Regulation of zinc homeostasis by inducible NO synthase-derived NO: Nuclear translocation and intranuclear metallothionein Zn2+ release. Proc. Natl. Acad. Sci. USA. 2003;100:13952–13957. PubMed PMC
Malaiyandi L.M., Dineley K.E., Reynolds I.J. Divergent consequences arise from metallothionein overexpression in astrocytes: Zinc buffering and oxidant-induced zinc release. Glia. 2004;45:346–353. PubMed
Pearce L.L., Gandley R.E., Han W.P., Wasserloos K., Stitt M., Kanai A.J., McLaughlin M.K., Pitt B.R., Levitan E.S. Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc. Natl. Acad. Sci. USA. 2000;97:477–482. PubMed PMC
Maret W. Zinc and sulfur: A critical biological partnership. Biochemistry. 2004;43:3301–3309. PubMed
Maret W., Vallee B.L. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc. Natl. Acad. Sci. USA. 1998;95:3478–3482. PubMed PMC
Maret W. Redox biochemistry of mammalian metallothioneins. J. Biol. Inorg. Chem. 2011;16:1079–1086. PubMed
Cherian M.G., Jayasurya A., Bay B.H. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat. Res. 2003;533:201–209. PubMed
Ebadi M., Leuschen M.P., ElRefaey H., Hamada F.M., Rojas P. The antioxidant properties of zinc and metallothionein. Neurochem. Int. 1996;29:159–166. PubMed
Kang Y.J. Metallothionein redox cycle and function. Exp. Biol. Med. 2006;231:1459–1467. PubMed
Sato M., Bremner I. Oxygen free-radicals and metallothionein. Free Radic. Biol. Med. 1993;14:325–337. PubMed
Iszard M.B., Liu J., Klassen C.D. Effect of several metallothionein inducers on oxidative stress defense mechanisms in rats. Toxicology. 1995;104:25–33. PubMed
Aschner M., Conklin D.R., Yao C.P., Allen J.W., Tan K.H. Induction of astrocyte metallothioneins (MTs) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release. Brain Res. 1998;813:254–261. PubMed
Namdarghanbari M., Wobig W., Krezoski S., Tabatabai N.M., Petering D.H. Mammalian metallothionein in toxicology, cancer, and cancer chemotherapy. J. Biol. Inorg. Chem. 2011;16:1087–1101. PubMed
Cai L., Koropatnick J., Cherian M.G. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro. Chem. Biol. Interact. 1995;96:143–155. PubMed
Shibuya K., Nishimura N., Suzuki J.S., Tohyama C., Naganuma A., Satoh M. Role of metallothionein as a protective factor against radiation carcinogenesis. J. Toxicol. Sci. 2008;33:651–655. PubMed
Schwarz M.A., Lazo J.S., Yalowich J.C., Allen W.P., Whitmore M., Bergonia H.A., Tzeng E., Billiar T.R., Robbins P.D., Lancaster J.R., et al. Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric-oxide. Proc. Natl. Acad. Sci. USA. 1995;92:4452–4456. PubMed PMC
Kondo Y., Rusnak J.M., Hoyt D.G., Settineri C.E., Pitt B.R., Lazo J.S. Enhanced apoptosis in metallothionein null cells. Mol. Pharmacol. 1997;52:195–201. PubMed
Tao X., Zheng J.M., Xu A.M., Chen X.F., Zhang S.H. Downregulated expression of metallothionein and its clinicopathological significance in hepatocellular carcinoma. Hepatol. Res. 2007;37:820–827. PubMed
Fraker P.J., King L.E. A distinct role for apoptosis in the changes in lymphopoiesis and myelopoiesis created by deficiencies in zinc. FASEB J. 2001;15:2572–2578. PubMed
Mao J., Yu H.X., Wang C.J., Sun L.H., Jiang W., Zhang P.Z., Xiao Q.Y., Han D.B., Saiyin H., Zhu J.D., et al. Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis. 2012;33:2568–2577. PubMed
Yan D.W., Fan J.W., Yu Z.H., Li M.X., Wen Y.G., Li D.W., Zhou C.Z., Wang X.L., Wang Q., Tang H.M., et al. Downregulation of Metallothionein 1F, a putative oncosuppressor, by loss of heterozygosity in colon cancer tissue. Biochim. Biophys. Acta. 2012;1822:918–926. PubMed
Faller W.J., Rafferty M., Hegarty S., Gremel G., Ryan D., Fraga M.F., Esteller M., Dervan P.A., Gallagher W.M. Metallothionein 1E is methylated in malignant melanoma and increases sensitivity to cisplatin-induced apoptosis. Melanoma Res. 2010;20:392–400. PubMed
Takahashi S. Molecular functions of metallothionein and its role in hematological malignancies. J. Hematol. Oncol. 2012;5:1–8. PubMed PMC
Dutsch-Wicherek M., Sikora J., Tomaszewska R. The possible biological role of metallothionein in apoptosis. Front. Biosci. 2008;13:4029–4038. PubMed
McGee H.M., Woods G.M., Bennett B., Chung R.S. The two faces of metallothionein in carcinogenesis: Photoprotection against UVR-induced cancer and promotion of tumour survival. Photochem. Photobiol. Sci. 2010;9:586–596. PubMed
Chaabane W., User S.D., El-Gazzah M., Jaksik R., Sajjadi E., Rzeszowska-Wolny J., Los M.J. Autophagy, apoptosis, mitoptosis and necrosis: Interdependence between those pathways and effects on cancer. Arch. Immunol. Ther. Exp. 2013;61:43–58. PubMed
Ouyang L., Shi Z., Zhao S., Wang F.T., Zhou T.T., Liu B., Bao J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell. Prolif. 2012;45:487–498. PubMed PMC
Nath R., Kumar D., Li T.M., Singal P.K. Metallothioneins, oxidative stress and the cardiovascular system. Toxicology. 2000;155:17–26. PubMed
Wyllie A.H. Apoptosis: An overview. Br. Med. Bull. 1997;53:451–465. PubMed
Thornberry N.A., Lazebnik Y. Caspases: Enemies within. Science. 1998;281:1312–1316. PubMed
Wyllie A.H., Bellamy C.O.C., Bubb V.J., Clarke A.R., Corbet S., Curtis L., Harrison D.J., Hooper M.L., Toft N., Webb S., et al. Apoptosis and carcinogenesis. Br. J. Cancer. 1999;80:34–37. PubMed
Dhawan D.K., Chadha V.D. Zinc: A promising agent in dietary chemoprevention of cancer. Indian J. Med. Res. 2010;132:676–682. PubMed PMC
Telford W.G., Fraker P.J. Preferential induction of apoptosis in mouse CD4(+)CD8(+)alphabeta- tcr(lo)CD3-epsilon(lo) thymocytes by zinc. J. Cell. Physiol. 1995;164:259–270. PubMed
Perry D.K., Smyth M.J., Stennicke H.R., Salvesen G.S., Duriez P., Poirier G.G., Hannun Y.A. Zinc is a potent inhibitor of the apoptotic protease, caspase-3—A novel target for zinc in the inhibition of apoptosis. J. Biol. Chem. 1997;272:18530–18533. PubMed
Stefanidou M., Maravelias C., Dona A., Spiliopoulou C. Zinc: A multipurpose trace element. Arch. Toxicol. 2006;80:1–9. PubMed
Seve M., Chimienti F., Favier A. Role of intracellular zinc in programmed cell death. Pathol. Biol. 2002;50:212–221. PubMed
Fan L.Z., Cherian M.G. Potential role of p53 on metallothionein induction in human epithelial breast cancer cells. Br. J. Cancer. 2002;87:1019–1026. PubMed PMC
Meplan C., Verhaegh G., Richard M.J., Hainaut P. Metal ions as regulators of the conformation and function of the tumour suppressor protein p53: Implications for carcinogenesis. Proc. Nutr. Soc. 1999;58:565–571. PubMed
Meplan C., Richard M.J., Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000;19:5227–5236. PubMed
Maret W., Jacob C., Vallee B.L., Fischer E.H. Inhibitory sites in enzymes: Zinc removal and reactivation by thionein. Proc. Natl. Acad. Sci. USA. 1999;96:1936–1940. PubMed PMC
Woo E.S., Kondo Y., Watkins S.C., Hoyt D.G., Lazo J.S. Nucleophilic distribution of metallothionein in human tumor cells. Exp. Cell. Res. 1996;224:365–371. PubMed
Sliwinska-Mosson M., Milnerowicz H., Rabczynski J., Milnerowicz S. Immunohistochemical localization of metallothionein and p53 protein in pancreatic serous cystadenomas. Arch. Immunol. Ther. Exp. 2009;57:295–301. PubMed
Cardoso S.V., Silveira J.B., Machado V.D., De-Paula A.M.B., Loyola A.M., de Aguiar M.C.F. Expression of metallothionein and p53 antigens are correlated in oral squamous cell carcinoma. Anticancer Res. 2009;29:1189–1193. PubMed
Baldwin A.S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappa B. J. Clin. Invest. 2001;107:241–246. PubMed PMC
Karin M., Cao Y.X., Greten F.R., Li Z.W. NF-Kappa B in cancer: From innocent bystander to major culprit. Nat. Rev. Cancer. 2002;2:301–310. PubMed
Wang C.Y., Mayo M.W., Korneluk R.G., Goeddel D.V., Baldwin A.S. NF-kappa B antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680–1683. PubMed
Wang C.Y., Guttridge D.C., Mayo M.W., Baldwin A.S. NF-kappa B induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol. Cell. Biol. 1999;19:5923–5929. PubMed PMC
Wu M.X., Ao Z.H., Prasad K.V.S., Wu R.L., Schlossman S.F. IEX-1L, an apoptosis inhibitor involved in NF-kappa B-mediated cell survival. Science. 1998;281:998–1001. PubMed
Butcher H.L., Kennette W.A., Collins O., Zalups R.K., Koropatnick J. Metallothionein mediates the level and activity of nuclear factor kappa B in murine fibroblasts. J. Pharmacol. Exp. Therapeutics. 2004;310:589–598. PubMed
Kim C.H., Kim J.H., Lee J., Ahn Y.S. Zinc-Induced NF-kappa B inhibition can be modulated by changes in the intracellular metallothionein level. Toxicol. Appl. Pharmacol. 2003;190:189–196. PubMed
Abdel-Mageed A.B., Agrawal K.C. Activation of nuclear factor kappa B: Potential role in metallothionein-mediated mitogenic response. Cancer Res. 1998;58:2335–2338. PubMed
Wang C.Y., Cusack J.C., Liu R., Baldwin A.S. Control of inducible chemoresistance: Enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappa B. Nat. Med. 1999;5:412–417. PubMed
Kanekiyo M., Itoh N., Kawasaki A., Tanaka J., Nakanishi T., Tanaka K. Zinc-induced activation of the human cytomegalovirus major immediate-early promoter is mediated by metallothionein and nuclear factor-kappa B. Toxicol. Appl. Pharmacol. 2001;173:146–153. PubMed
Thornalley P.J., Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress—Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta. 1985;827:36–44. PubMed
Abel J., Deruiter N. Inhibition of hydroxyl-radical-generated DNA-degradation by metallothionein. Toxicol. Lett. 1989;47:191–196. PubMed
Cai L., Klein J.B., Kang Y.J. Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J. Biol. Chem. 2000;275:38957–38960. PubMed
Schwarz M.A., Lazo J.S., Yalowich J.C., Reynolds I., Kagan V.E., Tyurin V., Kim Y.M., Watkins S.C., Pitt B.R. Cytoplasmic metallothionein overexpression protects NIH 3T3 cells from tert-butyl hydroperoxide toxicity. J. Biol. Chem. 1994;269:15238–15243. PubMed
Du X.H., Yang C.L. Mechanism of gentamicin-nephrotoxicity in rats and the protective effect of zinc-induced metallothionein synthesis. Nephrol. Dial. Transplant. 1994;9:135–140. PubMed
Yang C.L., Du X.H., Zhao J.H., Chen W., Han Y.X. Zinc-Induced metallothionein synthesis could protect from gentamicin-nephrotoxicity in suspended proximal tubules of rats. Renal Fail. 1994;16:61–69. PubMed
Hart B.A., Eneman J.D., Gong Q., DurieuxLu C.C. Increased oxidant resistance of alveolar epithelial type II cells. Isolated from rats following repeated exposure to cadmium aerosols. Toxicol. Lett. 1995;81:131–139. PubMed
Satoh M., Kondo Y., Mita M., Nakagawa I., Naganuma A., Imura N. Prevention of carcinogenicity of anticancer drugs by metallothionein induction. Cancer Res. 1993;53:4767–4768. PubMed
Satoh M., Naganuma A., Imura N. Effect of preinduction of metallothionein on paraquat toxicity in mice. Arch. Toxicol. 1992;66:145–148. PubMed
Quesada A.R., Byrnes R.W., Krezoski S.O., Petering D.H. Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: Zinc-metallothionein and other sites. Arch. Biochem. Biophys. 1996;334:241–250. PubMed
Chubatsu L.S., Meneghini R. Metallothionein protects DNA from oxidative damage. Biochem. J. 1993;291:193–198. PubMed PMC
Banerjee D., Onosaka S., Cherian M.G. Immunohistochemical localization of metallothionein in cell-nucleus and cytoplasm of rat-liver and kidney. Toxicology. 1982;24:95–105. PubMed
Nagel W.W., Vallee B.L. Cell-Cycle regulation of metallothionein in human colonic-cancer cells. Proc. Natl. Acad. Sci. USA. 1995;92:579–583. PubMed PMC
Ghoshal K., Jacob S.T. Regulation of metallothionein gene expression. Prog. Nucl. Res. Mol. Biol. 2001;66:357–384. PubMed
Tsujikawa K., Imai T., Kakutani M., Kayamori Y., Mimura T., Otaki N., Kimura M., Fukuyama R., Shimizu N. Localization of metallothionein in nuclei of growing primary cultured adult-rat hepatocytes. FEBS Lett. 1991;283:239–242. PubMed
Takahashi Y., Ogra Y., Ibata K., Suzuki K.T. Role of metallothionein in the cell cycle: Protection against the retardation of cell proliferation by endogenous reactive oxygen species. J. Health Sci. 2004;50:154–158.
Takahashi Y., Ogra Y., Suzuki K.T. Synchronized generation of reactive oxygen species with the cell cycle. Life Sci. 2004;75:301–311. PubMed
Takahashi Y., Ogra Y., Suzuki K.T. Nuclear trafficking of metallothionein requires oxidation of a cytosolic partner. J. Cell. Physiol. 2005;202:563–569. PubMed
Ogra Y., Onishi S., Kajiwara A., Hara A., Suzuki K.T. Enhancement of nuclear localization of metallothionein by nitric oxide. J. Health Sci. 2008;54:339–342.
Eckschlager T., Adam V., Hrabeta J., Figova K., Kizek R. Metallothioneins and cancer. Curr. Protein Peptide Sci. 2009;10:360–375. PubMed
Sato M. Dose-Dependent increases in metallothionein synthesis in the lung and liver of paraquat-treated rats. Toxicol. Appl. Pharmacol. 1991;107:98–105. PubMed
Sato M., Sasaki M., Hojo H. Antioxidative roles of metallothionein and manganese superoxide-dismutase induced by tumor-necrosis-factor-alpha and interleukin-6. Arch. Biochem. Biophys. 1995;316:738–744. PubMed
Shiraishi N., Yamamoto H., Takeda Y., Kondoh S., Hayashi H., Hashimoto K., Aono K. Increased metallothionein content in rat-liver and kidney following X-irradiation. Toxicol. Appl. Pharmacol. 1986;85:128–134. PubMed
Koropatnick J., Leibbrandt M., Cherian M.G. Organ-specific metallothionein induction in mice by X-irradiation. Radiat. Res. 1989;119:356–365. PubMed
Shibuya K., Satoh M., Muraoka M., Watanabe Y., Oida M., Shimizu H. Induction of metallothionein synthesis in transplanted murine tumors by X-irradiation. Radiat. Res. 1995;143:54–57. PubMed
Matsubara J., Tajima Y., Karasawa M. Promotion of radioresistance by metallothionein induction prior to irradiation. Environ. Res. 1987;43:66–74. PubMed
Matsubara J. Metallothionein induction—A measure of radioprotective action. Health Phys. 1988;55:433–436. PubMed
Liu J., Kimler B.F., Liu Y.P., Klaassen C.D. Metallothionein-I transgenic mice are not protected from gamma-radiation. Toxicol. Lett. 1999;104:183–187. PubMed
Sun X.H., Zhou Z.X., Kang Y.J. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res. 2001;61:3382–3387. PubMed
Kang Y.J., Li Y., Sun X.C., Sun X.H. Antiapoptotic effect and inhibition of ischemia/reperfusion-induced myocardial injury in metallothionein-overexpressing transigenic mice. Am. J. Pathol. 2003;163:1579–1586. PubMed PMC
Cai L., Wang J.X., Li Y., Sun X.H., Wang L.P., Zhou Z.X., Kang Y.J. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes. 2005;54:1829–1837. PubMed
Wang L.P., Zhou Z.X., Saari J.T., Kang Y.J. Alcohol-Induced myocardial fibrosis in metallothionein-null mice—Prevention by zinc supplementation. Am. J. Pathol. 2005;167:337–344. PubMed PMC
Merten K.E., Feng W.K., Zhang L., Pierce W., Cai J., Klein J.B., Kang Y.J. Modulation of cytochrome c oxidase-Va is possibly involved in metallothionein protection from doxorubicin cardiotoxicity. J. Pharmacol. Exp. Ther. 2005;315:1314–1319. PubMed
Zhou G.H., Li X.K., Hein D.W., Xiang X.L., Marshall J.P., Prabhu S.D., Cai L. Metallothionein suppresses angiotensin II-Induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J. Am. Coll. Cardiol. 2008;52:655–666. PubMed
Egli D., Yepiskoposyan H., Selvaraj A., Balamurugan K., Rajaram R., Simons A., Multhaup G., Mettler S., Vardanyan A., Georgiev O., et al. A family knockout of all four Drosophila metallothioneins reveals a central role in copper homeostasis and detoxification. Mol. Cell. Biol. 2006;26:2286–2296. PubMed PMC
Krizkova S., Ryvolova M., Hrabeta J., Adam V., Stiborova M., Eckschlager T., Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab. Rev. 2012;44:287–301. PubMed
New insights into the role of metallothioneins in obesity and diabetes
Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease
Navigating the redox landscape: reactive oxygen species in regulation of cell cycle
Prognostic significance of the tumour-adjacent tissue in head and neck cancers
Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique
Jacks of metal/metalloid chelation trade in plants-an overview