Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
825575
EJP RD - European Joint Programme on Rare Diseases
2017-02255
Swedish Research Council
2019-00284
Swedish Research Council
2020-01148
Swedish Research Council
LCF/PR/HR21/52410002
'la Caixa' Foundation
146051
Avtal om Läkarutbildning och Forskning (ALF) Gothenburg
965939
Avtal om Läkarutbildning och Forskning (ALF) Gothenburg
Amlöv's Foundation
PID2021-126827OB-I00
E. Jacobson's Donation Fund
RVO 86652036
Institutional support (Czech Republic)
24-11364S
Czech Science Foundation
24-12028S
Czech Science Foundation
Petrus och Augusta Hedlunds stiftelse
FO02021-0082
Hjärnfonden
PID2021-126827OB-I00
MCIN/AEI/10.13039/501100011033/ERDF
SM23-0033
Swedish Foundation for Strategic Research
184.034.019
X-Omics initiative
Swedish Society for Medical Research
Söderberg's Foundations
Hagströmer's Foundation Millennium
463002004
ZonMw - Netherlands
PubMed
39308436
PubMed Central
PMC11660530
DOI
10.1002/glia.24618
Knihovny.cz E-zdroje
- Klíčová slova
- Alexander disease, GFAP, iPS cells, neural organoids,
- MeSH
- Alexanderova nemoc * genetika patologie metabolismus MeSH
- astrocyty * metabolismus patologie MeSH
- buněčná diferenciace * fyziologie MeSH
- gliový fibrilární kyselý protein * metabolismus genetika MeSH
- indukované pluripotentní kmenové buňky * metabolismus MeSH
- kokultivační techniky MeSH
- kultivované buňky MeSH
- lidé MeSH
- mutace MeSH
- nervové kmenové buňky metabolismus MeSH
- neurony metabolismus patologie MeSH
- organoidy metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GFAP protein, human MeSH Prohlížeč
- gliový fibrilární kyselý protein * MeSH
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
Centro de Investigaciones Biológicas Margarita Salas Madrid Spain
Division of Metabolism University Children's Hospital Zurich University of Zurich Zurich Switzerland
Faculty of Science Charles University Prague Czechia
Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
Institute of Biomedicine University of Gothenburg Gothenburg Sweden
Zobrazit více v PubMed
Alkailani, M. I. , Aittaleb, M. , & Tissir, F. (2022). WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Frontiers in Molecular Neuroscience, 15, 1017568. 10.3389/fnmol.2022.1017568 PubMed DOI PMC
Baloghova, N. , Lidak, T. , & Cermak, L. (2019). Ubiquitin ligases involved in the regulation of Wnt, TGF‐beta, and Notch signaling pathways and their roles in mouse development and homeostasis. Genes (Basel), 10(10), 815. 10.3390/genes10100815 PubMed DOI PMC
Basak, M. , Sengar, A. S. , Das, K. , Mahata, T. , Kumar, M. , Kumar, D. , Biswas, S. , Sarkar, S. , Kumar, P. , Das, P. , Stewart, A. , & Maity, B. (2023). A RGS7‐CaMKII complex drives myocyte‐intrinsic and myocyte‐extrinsic mechanisms of chemotherapy‐induced cardiotoxicity. Proceedings of the National Academy of Sciences, 120(1), e2213537120. 10.1073/pnas.2213537120 PubMed DOI PMC
Battaglia, R. A. , Beltran, A. S. , Delic, S. , Dumitru, R. , Robinson, J. A. , Kabiraj, P. , Herring, L. E. , Madden, V. J. , Ravinder, N. , Willems, E. , Newman, R. A. , Quinlan, R. A. , Goldman, J. E. , Perng, M. D. , Inagaki, M. , & Snider, N. T. (2019). Site‐specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. eLife, 8, e47789. 10.7554/eLife.47789 PubMed DOI PMC
Belvindrah, R. , Graus‐Porta, D. , Goebbels, S. , Nave, K. A. , & Muller, U. (2007). Beta1 integrins in radial glia but not in migrating neurons are essential for the formation of cell layers in the cerebral cortex. The Journal of Neuroscience, 27(50), 13854–13865. 10.1523/JNEUROSCI.4494-07.2007 PubMed DOI PMC
Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bonfante, S. , Della Giustina, A. , Danielski, L. G. , Denicol, T. , Joaquim, L. , Biehl, E. , Scopel, G. , de Carli, R. J. , Hubner, M. , Cardoso, T. , Tuon, T. , Generoso, J. , Barichello, T. , Terra, S. , & Petronilho, F. (2020). Stanniocalcin‐1 ameliorates cerebral ischemia by decrease oxidative stress and blood brain barrier permeability. Microvascular Research, 128, 103956. 10.1016/j.mvr.2019.103956 PubMed DOI
Braccioli, L. , Vervoort, S. J. , Puma, G. , Nijboer, C. H. , & Coffer, P. J. (2018). SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression. Stem Cell Research, 33, 110–119. 10.1016/j.scr.2018.10.005 PubMed DOI
van Bruggen, D. , Pohl, F. , Langseth, C. M. , Kukanja, P. , Lee, H. , Albiach, A. M. , Kabbe, M. , Meijer, M. , Linnarsson, S. , Hilscher, M. M. , Nilsson, M. , Sundström, E. , & Castelo‐Branco, G. (2022). Developmental landscape of human forebrain at a single‐cell level identifies early waves of oligodendrogenesis. Developmental Cell, 57(11), 1421–1436.e5. 10.1016/j.devcel.2022.04.016 PubMed DOI
Canals, I. , Ginisty, A. , Quist, E. , Timmerman, R. , Fritze, J. , Miskinyte, G. , Monni, E. , Hansen, M. G. , Hidalgo, I. , Bryder, D. , Bengzon, J. , & Ahlenius, H. (2018). Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nature Methods, 15(9), 693–696. 10.1038/s41592-018-0103-2 PubMed DOI
Cappellano, G. , Vecchio, D. , Magistrelli, L. , Clemente, N. , Raineri, D. , Barbero, M. C. , Virgilio, E. , Dianzani, U. , Chiocchetti, A. , & Comi, C. (2021). The Yin‐Yang of osteopontin in nervous system diseases: Damage versus repair. Neural Regeneration Research, 16(6), 1131–1137. 10.4103/1673-5374.300328 PubMed DOI PMC
Chaboub, L. S. , Manalo, J. M. , Lee, H. K. , Glasgow, S. M. , Chen, F. , Kawasaki, Y. , Akiyama, T. , Kuo, C. T. , Creighton, C. J. , Mohila, C. A. , & Deneen, B. (2016). Temporal profiling of astrocyte precursors reveals parallel roles for Asef during development and after injury. The Journal of Neuroscience, 36(47), 11904–11917. 10.1523/JNEUROSCI.1658-16.2016 PubMed DOI PMC
Cho, W. , & Messing, A. (2009). Properties of astrocytes cultured from GFAP over‐expressing and GFAP mutant mice. Experimental Cell Research, 315(7), 1260–1272. 10.1016/j.yexcr.2008.12.012 PubMed DOI PMC
Cox, J. , & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nature Biotechnology, 26(12), 1367–1372. 10.1038/nbt.1511 PubMed DOI
Cuevas‐Diaz Duran, R. , González‐Orozco, J. C. , Velasco, I. , & Wu, J. Q. (2022). Single‐cell and single‐nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Frontiers in Cell and Development Biology, 10, 884748. 10.3389/fcell.2022.884748 PubMed DOI PMC
Dimou, L. , & Götz, M. (2014). Glial cells as progenitors and stem cells: New roles in the healthy and diseased brain. Physiological Reviews, 94(3), 709–737. 10.1152/physrev.00036.2013 PubMed DOI
Ding, M. , Eliasson, C. , Betsholtz, C. , Hamberger, A. , & Pekny, M. (1998). Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Molecular Brain Research, 62(1), 77–81. 10.1016/s0169-328x(98)00240-x PubMed DOI
Dobin, A. , Davis, C. A. , Schlesinger, F. , Drenkow, J. , Zaleski, C. , Jha, S. , Batut, P. , Chaisson, M. , & Gingeras, T. R. (2013). STAR: ultrafast universal RNA‐seq aligner. Bioinformatics, 29(1), 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Dong, J. , Hu, Y. , Fan, X. , Wu, X. , Mao, Y. , Hu, B. , Guo, H. , Wen, L. , & Tang, F. (2018). Single‐cell RNA‐seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis. Genome Biology, 19(1), 31. 10.1186/s13059-018-1416-2 PubMed DOI PMC
Dulabon, L. , Olson, E. C. , Taglienti, M. G. , Eisenhuth, S. , McGrath, B. , Walsh, C. A. , Kreidberg, J. A. , & Anton, E. S. (2000). Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron, 27(1), 33–44. 10.1016/s0896-6273(00)00007-6 PubMed DOI
Dutta, D. , Sharma, V. , Mutsuddi, M. , & Mukherjee, A. (2022). Regulation of Notch signaling by E3 ubiquitin ligases. The FEBS Journal, 289(4), 937–954. 10.1111/febs.15792 PubMed DOI
Edgar, R. , Domrachev, M. , & Lash, A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. 10.1093/nar/30.1.207 PubMed DOI PMC
Fischer‐Colbrie, R. , Laslop, A. , & Kirchmair, R. (1995). Secretogranin II: Molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Progress in Neurobiology, 46(1), 49–70. 10.1016/0301-0082(94)00060-u PubMed DOI
Freed, W. J. , Chen, J. , Backman, C. M. , Schwartz, C. M. , Vazin, T. , Cai, J. , Spivak, C. E. , Lupica, C. R. , Rao, M. S. , & Zeng, X. (2008). Gene expression profile of neuronal progenitor cells derived from hESCs: Activation of chromosome 11p15.5 and comparison to human dopaminergic neurons. PLoS One, 3(1), e1422. 10.1371/journal.pone.0001422 PubMed DOI PMC
Fu, Y. , Yang, M. , Yu, H. , Wang, Y. , Wu, X. , Yong, J. , Mao, Y. , Cui, Y. , Fan, X. , Wen, L. , Qiao, J. , & Tang, F. (2021). Heterogeneity of glial progenitor cells during the neurogenesis‐to‐gliogenesis switch in the developing human cerebral cortex. Cell Reports, 34(9), 108788. 10.1016/j.celrep.2021.108788 PubMed DOI
Gao, C. , Xiao, G. , & Hu, J. (2014). Regulation of Wnt/beta‐catenin signaling by posttranslational modifications. Cell & Bioscience, 4(1), 13. 10.1186/2045-3701-4-13 PubMed DOI PMC
Gao, L. , Zhang, Z. , Lu, J. , & Pei, G. (2019). Mitochondria are dynamically transferring between human neural cells and Alexander disease‐associated GFAP mutations impair the astrocytic transfer. Frontiers in Cellular Neuroscience, 13, 316. 10.3389/fncel.2019.00316 PubMed DOI PMC
Gene Ontology Consortium . (2021). The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Research, 49(D1), D325–D334. 10.1093/nar/gkaa1113 PubMed DOI PMC
Gonçalves, C. A. , Larsen, M. , Jung, S. , Stratmann, J. , Nakamura, A. , Leuschner, M. , Hersemann, L. , Keshara, R. , Perlman, S. , Lundvall, L. , Thuesen, L. L. , Hare, K. J. , Amit, I. , Jørgensen, A. , Kim, Y. H. , del Sol, A. , & Grapin‐Botton, A. (2021). A 3D system to model human pancreas development and its reference single‐cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nature Communications, 12(1), 3144. 10.1038/s41467-021-23295-6 PubMed DOI PMC
Haan, E. A. , Boss, B. D. , & Cowan, W. M. (1982). Production and characterization of monoclonal antibodies against the "brain‐specific" proteins 14‐3‐2 and S‐100. Proceedings of the National Academy of Sciences, 79(23), 7585–7589. 10.1073/pnas.79.23.7585 PubMed DOI PMC
Haas, T. L. , Sciuto, M. R. , Brunetto, L. , Valvo, C. , Signore, M. , Fiori, M. E. , Martino, D. I. , Giannetti, S. , Morgante, L. , Boe, A. , Patrizii, M. , Warnken, U. , Schnölzer, M. , Ciolfi, A. , DI Stefano, C. , Biffoni, M. , RICCI‐Vitiani, L. , Pallini, R. , & DE Maria, R. (2017). Integrin alpha7 is a functional marker and potential therapeutic target in glioblastoma. Cell Stem Cell, 21(1), 35–50.e9. 10.1016/j.stem.2017.04.009 PubMed DOI
Hagemann, T. L. (2022). Alexander disease: Models, mechanisms, and medicine. Current Opinion in Neurobiology, 72, 140–147. 10.1016/j.conb.2021.10.002 PubMed DOI PMC
Hagemann, T. L. , Connor, J. X. , & Messing, A. (2006). Alexander disease‐associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. The Journal of Neuroscience, 26(43), 11162–11173. 10.1523/JNEUROSCI.3260-06.2006 PubMed DOI PMC
Hagemann, T. L. , Gaeta, S. A. , Smith, M. A. , Johnson, D. A. , Johnson, J. A. , & Messing, A. (2005). Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Human Molecular Genetics, 14(16), 2443–2458. 10.1093/hmg/ddi248 PubMed DOI
Hagemann, T. L. , Paylor, R. , & Messing, A. (2013). Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease. The Journal of Neuroscience, 33(47), 18698–18706. 10.1523/JNEUROSCI.3693-13.2013 PubMed DOI PMC
Hagemann, T. L. , Powers, B. , Lin, N. H. , Mohamed, A. F. , Dague, K. L. , Hannah, S. C. , Bachmann, G. , Mazur, C. , Rigo, F. , Olsen, A. L. , Feany, M. B. , Perng, M. D. , Berman, R. F. , & Messing, A. (2021). Antisense therapy in a rat model of Alexander disease reverses GFAP pathology, white matter deficits, and motor impairment. Science Translational Medicine, 13(620), eabg4711. 10.1126/scitranslmed.abg4711 PubMed DOI PMC
Hao, Y. , Hao, S. , Andersen‐Nissen, E. , Mauck, W. M., 3rd , Zheng, S. , Butler, A. , Lee, M. J. , Wilk, A. J. , Darby, C. , Zager, M. , Hoffman, P. , Stoeckius, M. , Papalexi, E. , Mimitou, E. P. , Jain, J. , Srivastava, A. , Stuart, T. , Fleming, L. M. , Yeung, B. , Rogers, A. J., McElrath, J. M., Blish, C. A., Gottardo, R., Smibert, P., & Satija, R. (2021). Integrated analysis of multimodal single‐cell data. Cell, 184(13), 3573–3587. 10.1016/j.cell.2021.04.048 PubMed DOI PMC
Heaven, M. R. , Herren, A. W. , Flint, D. L. , Pacheco, N. L. , Li, J. , Tang, A. , Khan, F. , Goldman, J. E. , Phinney, B. S. , & Olsen, M. L. (2022). Metabolic enzyme alterations and astrocyte dysfunction in a murine model of Alexander disease with severe reactive gliosis. Molecular & Cellular Proteomics, 21(1), 100180. 10.1016/j.mcpro.2021.100180 PubMed DOI PMC
Heck, N. , Garwood, J. , Schütte, K. , Fawcett, J. , & Faissner, A. (2003). Astrocytes in culture express fibrillar collagen. Glia, 41(4), 382–392. 10.1002/glia.10184 PubMed DOI
Hou, P. S. , Ó hAilín, D. , Vogel, T. , & Hanashima, C. (2020). Transcription and beyond: Delineating FOXG1 function in cortical development and disorders. Frontiers in Cellular Neuroscience, 14, 35. 10.3389/fncel.2020.00035 PubMed DOI PMC
Hsia, E. Y. , Gui, Y. , & Zheng, X. (2015). Regulation of hedgehog signaling by ubiquitination. Frontiers in Biology (Beijing), 10(3), 203–220. 10.1007/s11515-015-1343-5 PubMed DOI PMC
Imamura, T. , Oshima, Y. , & Hikita, A. (2013). Regulation of TGF‐beta family signalling by ubiquitination and deubiquitination. Journal of Biochemistry, 154(6), 481–489. 10.1093/jb/mvt097 PubMed DOI
Imura, T. , Kornblum, H. I. , & Sofroniew, M. V. (2003). The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. The Journal of Neuroscience, 23(7), 2824–2832. 10.1523/JNEUROSCI.23-07-02824.2003 PubMed DOI PMC
Jacquet, B. V. , Salinas‐Mondragon, R. , Liang, H. , Therit, B. , Buie, J. D. , Dykstra, M. , Campbell, K. , Ostrowski, L. E. , Brody, S. L. , & Ghashghaei, H. T. (2009). FoxJ1‐dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development, 136(23), 4021–4031. 10.1242/dev.041129 PubMed DOI PMC
Jin, S. , Guerrero‐Juarez, C. F. , Zhang, L. , Chang, I. , Ramos, R. , Kuan, C. H. , Myung, P. , Plikus, M. V. , & Nie, Q. (2021). Inference and analysis of cell–cell communication using CellChat. Nature Communications, 12, 1088. 10.1038/s41467-021-21246-9 PubMed DOI PMC
Jones, J. R. , Kong, L. , Hanna, M. G. T. , Hoffman, B. , Krencik, R. , Bradley, R. , Hagemann, T. , Choi, J. , Doers, M. , Dubovis, M. , Sherafat, M. A. , Bhattacharyya, A. , Kendziorski, C. , Audhya, A. , Messing, A. , & Zhang, S. C. (2018). Mutations in GFAP disrupt the distribution and function of organelles in human astrocytes. Cell Reports, 25(4), 947–958.e4. 10.1016/j.celrep.2018.09.083 PubMed DOI PMC
Juárez‐Rebollar, D. , Rios, C. , Nava‐Ruíz, C. , & Méndez‐Armenta, M. (2017). Metallothionein in brain disorders. Oxidative Medicine and Cellular Longevity, 2017, 5828056. 10.1155/2017/5828056 PubMed DOI PMC
Kanamori‐Katayama, M. , Kaiho, A. , Ishizu, Y. , Okamura‐Oho, Y. , Hino, O. , Abe, M. , Kishimoto, T. , Sekihara, H. , Nakamura, Y. , Suzuki, H. , Forrest, A. R. , & Hayashizaki, Y. (2011). LRRN4 and UPK3B are markers of primary mesothelial cells. PLoS One, 6(10), e25391. 10.1371/journal.pone.0025391 PubMed DOI PMC
Kanton, S. , Boyle, M. J. , He, Z. , Santel, M. , Weigert, A. , Sanchís‐Calleja, F. , Guijarro, P. , Sidow, L. , Fleck, J. S. , Han, D. , Qian, Z. , Heide, M. , Huttner, W. B. , Khaitovich, P. , Pääbo, S. , Treutlein, B. , & Camp, J. G. (2019). Organoid single‐cell genomic atlas uncovers human‐specific features of brain development. Nature, 574(7778), 418–422. 10.1038/s41586-019-1654-9 PubMed DOI
Kirkcaldie, M. T. K. , & Dwyer, S. T. (2017). The third wave: Intermediate filaments in the maturing nervous system. Molecular and Cellular Neurosciences, 84, 68–76. 10.1016/j.mcn.2017.05.010 PubMed DOI
Kobayashi, M. , Oshima, S. , Maeyashiki, C. , Nibe, Y. , Otsubo, K. , Matsuzawa, Y. , Nemoto, Y. , Nagaishi, T. , Okamoto, R. , Tsuchiya, K. , Nakamura, T. , & Watanabe, M. (2016). The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribosome and sustains embryonic development. Scientific Reports, 6, 36780. 10.1038/srep36780 PubMed DOI PMC
Kondo, T. , Funayama, M. , Miyake, M. , Tsukita, K. , Era, T. , Osaka, H. , Ayaki, T. , Takahashi, R. , & Inoue, H. (2016). Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes. Acta Neuropathologica Communications, 4(1), 69. 10.1186/s40478-016-0337-0 PubMed DOI PMC
Lafzi, A. , Moutinho, C. , Picelli, S. , & Heyn, H. (2018). Tutorial: Guidelines for the experimental design of single‐cell RNA sequencing studies. Nature Protocols, 13(12), 2742–2757. 10.1038/s41596-018-0073-y PubMed DOI
Lampada, A. , & Taylor, V. (2023). Notch signaling as a master regulator of adult neurogenesis. Frontiers in Neuroscience, 17, 1179011. 10.3389/fnins.2023.1179011 PubMed DOI PMC
Lancaster, M. A. , & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(6194), 1247125. 10.1126/science.1247125 PubMed DOI
Lancaster, M. A. , Renner, M. , Martin, C. A. , Wenzel, D. , Bicknell, L. S. , Hurles, M. E. , Homfray, T. , Penninger, J. M. , Jackson, A. P. , & Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379. 10.1038/nature12517 PubMed DOI PMC
Lee, S. H. , Nam, T. S. , Kim, K. H. , Kim, J. H. , Yoon, W. , Heo, S. H. , Kim, M. J. , Shin, B. A. , Perng, M. D. , Choy, H. E. , Jo, J. , Kim, M. K. , & Choi, S. Y. (2017). Aggregation‐prone GFAP mutation in Alexander disease validated using a zebrafish model. BMC Neurology, 17(1), 175. 10.1186/s12883-017-0938-7 PubMed DOI PMC
Li, L. , Lundkvist, A. , Andersson, D. , Wilhelmsson, U. , Nagai, N. , Pardo, A. C. , Nodin, C. , Ståhlberg, A. , Aprico, K. , Larsson, K. , Yabe, T. , Moons, L. , Fotheringham, A. , Davies, I. , Carmeliet, P. , Schwartz, J. P. , Pekna, M. , Kubista, M. , Blomstrand, F. , Maragakis, N., Nilsson, M., & Pekny, M. (2008). Protective role of reactive astrocytes in brain ischemia. Journal of Cerebral Blood Flow and Metabolism, 28(3), 468–481. 10.1038/sj.jcbfm.9600546 PubMed DOI
Li, L. , Tian, E. , Chen, X. , Chao, J. , Klein, J. , Qu, Q. , Sun, G. , Sun, G. , Huang, Y. , Warden, C. D. , Ye, P. , Feng, L. , Li, X. , Cui, Q. , Sultan, A. , Douvaras, P. , Fossati, V. , Sanjana, N. E. , Riggs, A. D. , & Shi, Y. (2018). GFAP mutations in astrocytes impair oligodendrocyte progenitor proliferation and myelination in an hiPSC model of Alexander disease. Cell Stem Cell, 23(2), 239–251. 10.1016/j.stem.2018.07.009 PubMed DOI PMC
Li, X. , Floriddia, E. M. , Toskas, K. , Chalfouh, C. , Honore, A. , Aumont, A. , Vallières, N. , Lacroix, S. , Fernandes, K. J. L. , Guérout, N. , & Barnabé‐Heider, F. (2018). FoxJ1 regulates spinal cord development and is required for the maintenance of spinal cord stem cell potential. Experimental Cell Research, 368(1), 84–100. 10.1016/j.yexcr.2018.04.017 PubMed DOI
Li, X. Y. , Zhai, W. J. , & Teng, C. B. (2015). Notch signaling in pancreatic development. International Journal of Molecular Sciences, 17(1), 48. 10.3390/ijms17010048 PubMed DOI PMC
Lin, H. C. , He, Z. , Ebert, S. , Schornig, M. , Santel, M. , Nikolova, M. T. , Weigert, A. , Hevers, W. , Kasri, N. N. , Taverna, E. , Camp, J. G. , & Treutlein, B. (2021). NGN2 induces diverse neuron types from human pluripotency. Stem Cell Reports, 16(9), 2118–2127. 10.1016/j.stemcr.2021.07.006 PubMed DOI PMC
Liour, S. S. , & Yu, R. K. (2003). Differentiation of radial glia‐like cells from embryonic stem cells. Glia, 42(2), 109–117. 10.1002/glia.10202 PubMed DOI
Liu, Q. C. , Zha, X. H. , Faralli, H. , Yin, H. , Louis‐Jeune, C. , Perdiguero, E. , Pranckeviciene, E. , Muñoz‐Cànoves, P. , Rudnicki, M. A. , Brand, M. , Perez‐Iratxeta, C. , & Dilworth, F. J. (2012). Comparative expression profiling identifies differential roles for myogenin and p38alpha MAPK signaling in myogenesis. Journal of Molecular Cell Biology, 4(6), 386–397. 10.1093/jmcb/mjs045 PubMed DOI PMC
Lun, A. T. L. , Riesenfeld, S. , Andrews, T. , Dao, T. P. , Gomes, T. , Participants in the 1ST Human Cell Atlas , & Marioni, J. C. (2019). EmptyDrops: Distinguishing cells from empty droplets in droplet‐based single‐cell RNA sequencing data. Genome Biology, 20(1), 63. 10.1186/s13059-019-1662-y PubMed DOI PMC
Lundkvist, A. , Reichenbach, A. , Betsholtz, C. , Carmeliet, P. , Wolburg, H. , & Pekny, M. (2004). Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. Journal of Cell Science, 117(16), 3481–3488. 10.1242/jcs.01221 PubMed DOI
Ma, Z. , Zhang, X. , Zhong, W. , Yi, H. , Chen, X. , Zhao, Y. , Ma, Y. , Song, E. , & Xu, T. (2023). Deciphering early human pancreas development at the single‐cell level. Nature Communications, 14(1), 5354. 10.1038/s41467-023-40893-8 PubMed DOI PMC
McGinnis, C. S. , Murrow, L. M. , & Gartner, Z. J. (2019). DoubletFinder: Doublet detection in single‐cell RNA sequencing data using artificial nearest neighbors. Cell Systems, 8(4), 329–337.e4. 10.1016/j.cels.2019.03.003 PubMed DOI PMC
Meisingset, T. W. , Risa, O. , Brenner, M. , Messing, A. , & Sonnewald, U. (2010). Alteration of glial‐neuronal metabolic interactions in a mouse model of Alexander disease. Glia, 58(10), 1228–1234. 10.1002/glia.21003 PubMed DOI PMC
Miyata, T. , Toho, T. , Nonoguchi, N. , Furuse, M. , Kuwabara, H. , Yoritsune, E. , Kawabata, S. , Kuroiwa, T. , & Miyatake, S. (2014). The roles of platelet‐derived growth factors and their receptors in brain radiation necrosis. Radiation Oncology, 9, 51. 10.1186/1748-717X-9-51 PubMed DOI PMC
Motohashi, N. , & Asakura, A. (2014). Muscle satellite cell heterogeneity and self‐renewal. Frontiers in Cell and Development Biology, 2, 1. 10.3389/fcell.2014.00001 PubMed DOI PMC
Napolitano, T. , Silvano, S. , Ayachi, C. , Plaisant, M. , SousaDa‐Veiga, A. , Fofo, H. , Charles, B. , & Collombat, P. (2023). Wnt pathway in pancreatic development and pathophysiology. Cells, 12(4), 565. 10.3390/cells12040565 PubMed DOI PMC
Nawashiro, H. , Messing, A. , Azzam, N. , & Brenner, M. (1998). Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury. Neuroreport, 9(8), 1691–1696. 10.1097/00001756-199806010-00004 PubMed DOI
Olabarria, M. , Putilina, M. , Riemer, E. C. , & Goldman, J. E. (2015). Astrocyte pathology in Alexander disease causes a marked inflammatory environment. Acta Neuropathologica, 130(4), 469–486. 10.1007/s00401-015-1469-1 PubMed DOI
Ormel, P. R. , Vieira de Sá, R., van Bodegraven, E. J. , Karst, H. , Harschnitz, O. , Sneeboer, M. A. M. , Johansen, L. E. , van Dijk, R. E. , Scheefhals, N. , Berdenis van Berlekom, A. , Ribes Martínez, E. , Kling, S. , MacGillavry, H. D. , v an den Berg, L. H. , Kahn, R. S. , Hol, E. M. , de Witte, L. D. , & Pasterkamp, R. J. (2018). Microglia innately develop within cerebral organoids. Nature Communications, 9, 4167. 10.1038/s41467-018-06684-2 PubMed DOI PMC
de Pablo, Y. , Nilsson, M. , Pekna, M. , & Pekny, M. (2013). Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen‐glucose deprivation and reperfusion. Histochemistry and Cell Biology, 140(1), 81–91. 10.1007/s00418-013-1110-0 PubMed DOI
Pajares, M. A. , Hernández‐Gerez, E. , Pekny, M. , & Pérez‐Sala, D. (2023). Alexander disease: The road ahead. Neural Regeneration Research, 18(10), 2156–2160. 10.4103/1673-5374.369097 PubMed DOI PMC
Peek, S. L. , Mah, K. M. , & Weiner, J. A. (2017). Regulation of neural circuit formation by protocadherins. Cellular and Molecular Life Sciences, 74(22), 4133–4157. 10.1007/s00018-017-2572-3 PubMed DOI PMC
Pekny, M. , & Lane, E. B. (2007). Intermediate filaments and stress. Experimental Cell Research, 313(10), 2244–2254. 10.1016/j.yexcr.2007.04.023 PubMed DOI
Pekny, M. , Pekna, M. , Messing, A. , Steinhauser, C. , Lee, J. M. , Parpura, V. , Hol, E. M. , Sofroniew, M. V. , & Verkhratsky, A. (2016). Astrocytes: a central element in neurological diseases. Acta Neuropathologica, 131(3), 323–345. 10.1007/s00401-015-1513-1 PubMed DOI
Pellegrini, L. , Bonfio, C. , Chadwick, J. , Begum, F. , Skehel, M. , & Lancaster, M. A. (2020). Human CNS barrier‐forming organoids with cerebrospinal fluid production. Science, 369(6500), eaaz5626. 10.1126/science.aaz5626 PubMed DOI PMC
Pfau, S. J. , Langen, U. H., Fisher, T. M., Prakash, I., Nagpurwala, F., Lozoya, R. A., Lee, W.‐C. A., Wu, Z., & Gu, C. (2024). Characteristics of blood–brain barrier heterogeneity between brain regions revealed by profiling vascular and perivascular cells. Nature Neuroscience, Epub ahead of print. 10.1038/s41593-024-01743-y PubMed DOI PMC
Pitale, P. M. , Howse, W. , & Gorbatyuk, M. (2017). Neuronatin protein in health and disease. Journal of Cellular Physiology, 232(3), 477–481. 10.1002/jcp.25498 PubMed DOI
Podergajs, N. , Motaln, H. , Rajcevic, U. , Verbovsek, U. , Korsic, M. , Obad, N. , Espedal, H. , Vittori, M. , Herold‐Mende, C. , Miletic, H. , Bjerkvig, R. , & Turnsek, T. L. (2016). Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget, 7(1), 593–609. 10.18632/oncotarget.5477 PubMed DOI PMC
R Core Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org
Ridge, K. M. , Eriksson, J. E. , Pekny, M. , & Goldman, R. D. (2022). Roles of vimentin in health and disease. Genes & Development, 36(7–8), 391–407. 10.1101/gad.349358.122 PubMed DOI PMC
Röber, R. A. , Weber, K. , & Osborn, M. (1989). Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: A developmental study. Development, 105(2), 365–378. 10.1242/dev.105.2.365 PubMed DOI
Ruttkay‐Nedecky, B. , Nejdl, L. , Gumulec, J. , Zitka, O. , Masarik, M. , Eckschlager, T. , Stiborova, M. , Adam, V. , & Kizek, R. (2013). The role of metallothionein in oxidative stress. International Journal of Molecular Sciences, 14(3), 6044–6066. 10.3390/ijms14036044 PubMed DOI PMC
Sarnat, H. B. (2015). Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology. Cell and Tissue Research, 359(1), 279–294. 10.1007/s00441-014-1988-4 PubMed DOI
Schindelin, J. , Arganda‐Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. , Preibisch, S. , Rueden, C. , Saalfeld, S. , Schmid, B. , Tinevez, J. Y. , White, D. J. , Hartenstein, V. , Eliceiri, K. , Tomancak, P. , & Cardona, A. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9(7), 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schmid, R. S. , McGrath, B. , Berechid, B. E. , Boyles, B. , Marchionni, M. , Sestan, N. , & Anton, E. S. (2003). Neuregulin 1‐erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proceedings of the National Academy of Sciences, 100(7), 4251–4256. 10.1073/pnas.0630496100 PubMed DOI PMC
Schramm, F. , Schaefer, L. , & Wygrecka, M. (2022). EGFR signaling in lung fibrosis. Cells, 11(6), 986. 10.3390/cells11060986 PubMed DOI PMC
Seo, J. S. , & Svenningsson, P. (2020). Modulation of ion channels and receptors by p11 (S100A10). Trends in Pharmacological Sciences, 41(7), 487–497. 10.1016/j.tips.2020.04.004 PubMed DOI
Shen, F. , Song, C. , Liu, Y. , Zhang, J. , & Song, S. W. (2019). IGFBP2 promotes neural stem cell maintenance and proliferation differentially associated with glioblastoma subtypes. Brain Research, 1704, 174–186. 10.1016/j.brainres.2018.10.018 PubMed DOI
Sosunov, A. , Olabarria, M. , & Goldman, J. E. (2018). Alexander disease: An astrocytopathy that produces a leukodystrophy. Brain Pathology, 28(3), 388–398. 10.1111/bpa.12601 PubMed DOI PMC
Sosunov, A. A. , Guilfoyle, E. , Wu, X. , McKhann, G. M. , & Goldman, J. E. (2013). Phenotypic conversions of "protoplasmic" to "reactive" astrocytes in Alexander disease. The Journal of Neuroscience, 33(17), 7439–7450. 10.1523/JNEUROSCI.4506-12.2013 PubMed DOI PMC
Sosunov, A. A. , McKhann, G. M. , & Goldman, J. E. (2017). The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathologica Communications, 5(1), 27. 10.1186/s40478-017-0425-9 PubMed DOI PMC
Stroo, E. , Janssen, L. , Sin, O. , Hogewerf, W. , Koster, M. , Harkema, L. , Youssef, S. A. , Beschorner, N. , Wolters, A. H. , Bakker, B. , Becker, L. , Garrett, L. , Marschall, S. , Hoelter, S. M. , Wurst, W. , Fuchs, H. , Gailus‐Durner, V. , Hrabe de Angelis, M. , Thathiah, A. , Foijer, F., van de Sluis, B., van Deursen, J., Jucker, M., de Bruin, A., & Nollen, E. A. (2023). Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain. Life Science Alliance, 6(7), e202201730. 10.26508/lsa.202201730 PubMed DOI PMC
Sun, W. , Cornwell, A. , Li, J. , Peng, S. , Osorio, M. J. , Aalling, N. , Wang, S. , Benraiss, A. , Lou, N. , Goldman, S. A. , & Nedergaard, M. (2017). SOX9 is an astrocyte‐specific nuclear marker in the adult brain outside the neurogenic regions. The Journal of Neuroscience, 37(17), 4493–4507. 10.1523/JNEUROSCI.3199-16.2017 PubMed DOI PMC
Suthon, S. , Perkins, R. S. , Bryja, V. , Miranda‐Carboni, G. A. , & Krum, S. A. (2021). WNT5B in physiology and disease. Frontiers in Cell and Development Biology, 9, 667581. 10.3389/fcell.2021.667581 PubMed DOI PMC
Tanaka, K. F. , Takebayashi, H. , Yamazaki, Y. , Ono, K. , Naruse, M. , Iwasato, T. , Itohara, S. , Kato, H. , & Ikenaka, K. (2007). Murine model of Alexander disease: Analysis of GFAP aggregate formation and its pathological significance. Glia, 55(6), 617–631. 10.1002/glia.20486 PubMed DOI
Tang, G. , Perng, M. D. , Wilk, S. , Quinlan, R. , & Goldman, J. E. (2010). Oligomers of mutant glial fibrillary acidic protein (GFAP) inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB‐crystallin reverses the inhibition. The Journal of Biological Chemistry, 285(14), 10527–10537. 10.1074/jbc.M109.067975 PubMed DOI PMC
Tomé, D. , Dias, M. S. , Correia, J. , & Almeida, R. D. (2023). Fibroblast growth factor signaling in axons: From development to disease. Cell Communication and Signaling: CCS, 21(1), 290. 10.1186/s12964-023-01284-0 PubMed DOI PMC
Tyanova, S. , Temu, T. , Sinitcyn, P. , Carlson, A. , Hein, M. Y. , Geiger, T. , Mann, M. , & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–740. 10.1038/nmeth.3901 PubMed DOI
Verardo, M. R. , Lewis, G. P. , Takeda, M. , Linberg, K. A. , Byun, J. , Luna, G. , Wilhelmsson, U. , Pekny, M. , Chen, D. F. , & Fisher, S. K. (2008). Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin. Investigative Ophthalmology & Visual Science, 49(8), 3659–3665. 10.1167/iovs.07-1474 PubMed DOI PMC
Verkerke, M. , Berdenis van Berlekom, A. , Donega, V. , Vonk, D. , Sluijs, J. A. , Butt, N. F. , Kistemaker, L. , de Witte, L. D. , Pasterkamp, R. J. , Middeldorp, J. , & Hol, E. M. (2024). Transcriptomic and morphological maturation of human astrocytes in cerebral organoids. Glia, 72(2), 362–374. 10.1002/glia.24479 PubMed DOI
Vértesy, A. , Eichmüller, O. L. , Naas, J. , Novatchkova, M. , Esk, C. , Balmaña, M. , Ladstaetter, S. , Bock, C. , von Haeseler, A. , & Knoblich, J. A. (2022). Gruffi: An algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. The EMBO Journal, 41(17), e111118. 10.15252/embj.2022111118 PubMed DOI PMC
Viedma‐Poyatos, A. , González‐Jiménez, P. , Pajares, M. A. , & Pérez‐Sala, D. (2022). Alexander disease GFAP R239C mutant shows increased susceptibility to lipoxidation and elicits mitochondrial dysfunction and oxidative stress. Redox Biology, 55, 102415. 10.1016/j.redox.2022.102415 PubMed DOI PMC
Voss, A. J. , Lanjewar, S. N. , Sampson, M. M. , King, A. , Hill, E. J. , Sing, A. , Sojka, C. , Bhatia, T. N. , Spangle, J. M. , & Sloan, S. A. (2023). Identification of ligand‐receptor pairs that drive human astrocyte development. Nature Neuroscience, 26(8), 1339–1351. 10.1038/s41593-023-01375-8 PubMed DOI PMC
Walker, A. K. , Daniels, C. M. , Goldman, J. E. , Trojanowski, J. Q. , Lee, V. M. , & Messing, A. (2014). Astrocytic TDP‐43 pathology in Alexander disease. The Journal of Neuroscience, 34(19), 6448–6458. 10.1523/JNEUROSCI.0248-14.2014 PubMed DOI PMC
Wang, L. , Colodner, K. J. , & Feany, M. B. (2011). Protein misfolding and oxidative stress promote glial‐mediated neurodegeneration in an Alexander disease model. The Journal of Neuroscience, 31(8), 2868–2877. 10.1523/JNEUROSCI.3410-10.2011 PubMed DOI PMC
Wang, L. , Sui, L. , Panigrahi, S. K. , Meece, K. , Xin, Y. , Kim, J. , Gromada, J. , Doege, C. A. , Wardlaw, S. L. , Egli, D. , & Leibel, R. L. (2017). PC1/3 deficiency impacts pro‐opiomelanocortin processing in human embryonic stem cell‐derived hypothalamic neurons. Stem Cell Reports, 8(2), 264–277. 10.1016/j.stemcr.2016.12.021 PubMed DOI PMC
Wang, L. , Xia, J. , Li, J. , Hagemann, T. L. , Jones, J. R. , Fraenkel, E. , Weitz, D. A. , Zhang, S. C. , Messing, A. , & Feany, M. B. (2018). Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nature Communications, 9(1), 1899. 10.1038/s41467-018-04269-7 PubMed DOI PMC
Wei, B. , & Jin, J. P. (2016). TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure‐function relationships. Gene, 582(1), 1–13. 10.1016/j.gene.2016.01.006 PubMed DOI PMC
Wilhelmsson, U. , Faiz, M. , de Pablo, Y. , Sjöqvist, M. , Andersson, D. , Widestrand, A. , Potokar, M. , Stenovec, M. , Smith, P. L. , Shinjyo, N. , Pekny, T. , Zorec, R. , Ståhlberg, A. , Pekna, M. , Sahlgren, C. , & Pekny, M. (2012). Astrocytes negatively regulate neurogenesis through the Jagged1‐mediated Notch pathway. Stem Cells, 30(10), 2320–2329. 10.1002/stem.1196 PubMed DOI
Wingett, S. W. , & Andrews, S. (2018). FastQ screen: A tool for multi‐genome mapping and quality control. F1000Res, 7, 1338. 10.12688/f1000research.15931.2 PubMed DOI PMC
Wu, T. , Hu, E. , Xu, S. , Chen, M. , Guo, P. , Dai, Z. , Feng, T. , Zhou, L. , Tang, W. , Zhan, L. , Fu, X. , Liu, S. , Bo, X. , & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation (Cambridge), 2(3), 100141. 10.1016/j.xinn.2021.100141 PubMed DOI PMC
Wunderlich, K. A. , Tanimoto, N. , Grosche, A. , Zrenner, E. , Pekny, M. , Reichenbach, A. , Seeliger, M. W. , Pannicke, T. , & Perez, M. T. (2015). Retinal functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic protein and vimentin. The FASEB Journal, 29(12), 4815–4828. 10.1096/fj.15-272963 PubMed DOI
Yang, A. W. , Lin, N. H. , Yeh, T. H. , Snider, N. , & Perng, M. D. (2022). Effects of Alexander disease‐associated mutations on the assembly and organization of GFAP intermediate filaments. Molecular Biology of the Cell, 33(8), ar69. 10.1091/mbc.E22-01-0013 PubMed DOI PMC
Yoon, S. J. , Elahi, L. S. , Pasca, A. M. , Marton, R. M. , Gordon, A. , Revah, O. , Miura, Y. , Walczak, E. M. , Holdgate, G. M. , Fan, H. C. , Huguenard, J. R. , Geschwind, D. H. , & Pasca, S. P. (2019). Reliability of human cortical organoid generation. Nature Methods, 16(1), 75–78. 10.1038/s41592-018-0255-0 PubMed DOI PMC
Young, M. D. , & Behjati, S. (2020). SoupX removes ambient RNA contamination from droplet‐based single‐cell RNA sequencing data. GigaScience, 9(12), giaa151. 10.1093/gigascience/giaa151 PubMed DOI PMC
Zarei‐Kheirabadi, M. , Vaccaro, A. R. , Rahimi‐Movaghar, V. , Kiani, S. , & Baharvand, H. (2020). An overview of extrinsic and intrinsic mechanisms involved in astrocyte development in the central nervous system. Stem Cells and Development, 29(5), 266–280. 10.1089/scd.2019.0189 PubMed DOI
Zeng, B. , Liu, Z. , Lu, Y. , Zhong, S. , Qin, S. , Huang, L. , Zeng, Y. , Li, Z. , Dong, H. , Shi, Y. , Yang, J. , Dai, Y. , Ma, Q. , Sun, L. , Bian, L. , Han, D. , Chen, Y. , Qiu, X. , Wang, W. , Marín, O., Wu, Q., Wang, Y., & Wang, X. (2023). The single‐cell and spatial transcriptional landscape of human gastrulation and early brain development. Cell Stem Cell, 30(6), 851–866 .e7. 10.1016/j.stem.2023.04.016 PubMed DOI PMC
Zhang, X. , Xiao, G. , Johnson, C. , Cai, Y. , Horowitz, Z. K. , Mennicke, C. , Coffey, R. , Haider, M. , Threadgill, D. , Eliscu, R. , Oldham, M. C. , Greenbaum, A. , & Ghashghaei, H. T. (2023). Bulk and mosaic deletions of Egfr reveal regionally defined gliogenesis in the developing mouse forebrain. iScience, 26(3), 106242. 10.1016/j.isci.2023.106242 PubMed DOI PMC
Zhang, Y. , Pak, C. , Han, Y. , Ahlenius, H. , Zhang, Z. , Chanda, S. , Marro, S. , Patzke, C. , Acuna, C. , Covy, J. , Xu, W. , Yang, N. , Danko, T. , Chen, L. , Wernig, M. , & Südhof, T. C. (2013). Rapid single‐step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798. 10.1016/j.neuron.2013.05.029 PubMed DOI PMC
Zhang, Z. , Bhalla, A. , Dean, C. , Chapman, E. R. , & Jackson, M. B. (2009). Synaptotagmin IV: A multifunctional regulator of peptidergic nerve terminals. Nature Neuroscience, 12(2), 163–171. 10.1038/nn.2252 PubMed DOI PMC