Tumoral and paratumoral NK cells and CD8+ T cells of esophageal carcinoma patients express high levels of CD47
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32811852
PubMed Central
PMC7435266
DOI
10.1038/s41598-020-70771-y
PII: 10.1038/s41598-020-70771-y
Knihovny.cz E-zdroje
- MeSH
- antigeny CD47 genetika metabolismus MeSH
- buňky NK metabolismus MeSH
- CD8-pozitivní T-lymfocyty metabolismus MeSH
- karcinom metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory jícnu imunologie metabolismus MeSH
- regulace genové exprese u nádorů genetika MeSH
- senioři MeSH
- skvamózní karcinom jícnu MeSH
- tumor infiltrující lymfocyty imunologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD47 MeSH
- CD47 protein, human MeSH Prohlížeč
In a limited number of human malignancies, anti-CD47 therapy leads to the rapid clearance of tumor cells by macrophages. In esophageal squamous cell carcinoma, anti-CD47 treatment has shown promising results in vitro. However, the CD47 expression pattern in tumor-infiltrating lymphocytes (TILs), which are associated with prolonged overall survival and serve as a positive prognostic factor, is largely unknown. In this study, a total of 36 tissue samples from the tumor, peritumoral tissue, and adjacent healthy esophageal tissue was obtained from 12 esophageal carcinoma (EC) patients, and the surface expression of CD47 was evaluated in natural killer (NK) cells, CD8+ T cells, and the nonlymphocyte cell fraction. We found that the proportions of the evaluated cells and their CD47-expressing populations were comparable across the analyzed tissue compartments. However, the proportions of CD47-expressing populations in the analyzed tissue compartments were significantly higher in NK cells and CD8+ T cells than in the nonlymphocyte cell fraction. Importantly, the intensity of CD47 staining was also significantly higher in the tested immune cells than in the nonlymphocyte cell fraction. High expression of CD47 in tissue-infiltrating NK cells and CD8+ T cells in EC patients can, therefore, affect the efficacy of anti-CD47 therapy in EC.
Zobrazit více v PubMed
Barclay AN, Van den Berg TK. The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu. Rev. Immunol. 2014;32:25–50. doi: 10.1146/annurev-immunol-032713-120142. PubMed DOI
Yu XY, Qiu WY, Long F, Yang XP, Zhang C, Xu L, Chang HY, Du P, Hou XJ, Yu YZ, Zeng DD, Wang S, Sun ZW. A novel fully human anti-CD47 antibody as a potential therapy for human neoplasms with good safety. Biochimie. 2018;151:54–66. doi: 10.1016/j.biochi.2018.05.019. PubMed DOI
Kong F, Gao F, Li H, Liu H, Zhang Y, Zheng R, Zhang Y, Chen J, Li X, Liu G, Jia Y. CD47: a potential immunotherapy target for eliminating cancer cells. Clin. Transl. Oncol. 2016;18(11):1051–1055. doi: 10.1007/s12094-016-1489-x. PubMed DOI
Seiffert M, Cant C, Chen Z, Rappold I, Brugger W, Kanz L, Brown EJ, Ullrich A, Buhring HJ. Human signal-regulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving its counterreceptor CD47. Blood. 1999;94(11):3633–3643. doi: 10.1182/blood.V94.11.3633. PubMed DOI
Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J, Jr, Chang HY, van de Rijn M, Shortliffe L, Weissman IL. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl. Acad. Sci. U.S.A. 2009;106(33):14016–14021. doi: 10.1073/pnas.0906549106. PubMed DOI PMC
Yuan J, Shi X, Chen C, He H, Liu L, Wu J, Yan H. High expression of CD47 in triple negative breast cancer is associated with epithelial-mesenchymal transition and poor prognosis. Oncol. Lett. 2019;18(3):3249–3255. doi: 10.3892/ol.2019.10618. PubMed DOI PMC
Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD, Jr, van Rooijen N, Weissman IL. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138(2):286–299. doi: 10.1016/j.cell.2009.05.045. PubMed DOI PMC
Uger R, Johnson L. Blockade of the CD47-SIRPalpha axis: a promising approach for cancer immunotherapy. Expert Opin. Biol. Ther. 2020;20(1):5–8. doi: 10.1080/14712598.2020.1685976. PubMed DOI
Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, Colevas AD, O'Rourke T, Narayanan S, Papadopoulos K, Fisher GA, Villalobos V, Prohaska SS, Howard M, Beeram M, Chao MP, Agoram B, Chen JY, Huang J, Axt M, Liu J, Volkmer JP, Majeti R, Weissman IL, Takimoto CH, Supan D, Wakelee HA, Aoki R, Pegram MD, Padda SK. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 2019;37(12):946–953. doi: 10.1200/JCO.18.02018. PubMed DOI PMC
Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D, Anwer F. Blocking "don't eat me" signal of CD47-SIRPalpha in hematological malignancies, an in-depth review. Blood Rev. 2018;32(6):480–489. doi: 10.1016/j.blre.2018.04.005. PubMed DOI PMC
Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, Seita J, Inlay MA, Weiskopf K, Miyanishi M, Weissman IL. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl. Acad. Sci. U.S.A. 2013;110(27):11103–11108. doi: 10.1073/pnas.1305569110. PubMed DOI PMC
Short MW, Burgers KG, Fry VT. Esophageal cancer. Am. Fam. Physician. 2017;95(1):22–28. PubMed
Zhao CL, Yu S, Wang SH, Li SG, Wang ZJ, Han SN. Characterization of cluster of differentiation 47 expression and its potential as a therapeutic target in esophageal squamous cell cancer. Oncol. Lett. 2018;15(2):2017–2023. doi: 10.3892/ol.2017.7447. PubMed DOI PMC
Wang JH, Huang ST, Zhang L, Liu ZG, Liang RX, Jiang SW, Jiang YN, Yu XJ, Jiang YC, Li XZ, Zhang PF, Wen ZS, Zheng M. Combined prognostic value of the cancer stem cell markers CD47 and CD133 in esophageal squamous cell carcinoma. Cancer Med. 2019;8(3):1315–1325. doi: 10.1002/cam4.1894. PubMed DOI PMC
Sudo T, Nishida R, Kawahara A, Saisho K, Mimori K, Yamada A, Mizoguchi A, Kadoya K, Matono S, Mori N, Tanaka T, Akagi Y. Clinical impact of tumor-infiltrating lymphocytes in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2017;24(12):3763–3770. doi: 10.1245/s10434-017-5796-4. PubMed DOI
Zheng X, Song X, Shao Y, Xu B, Hu W, Zhou Q, Chen L, Zhang D, Wu C, Jiang J. Prognostic role of tumor-infiltrating lymphocytes in esophagus cancer: a meta-analysis. Cell. Physiol. Biochem. 2018;45(2):720–732. doi: 10.1159/000487164. PubMed DOI
Badalamenti G, Fanale D, Incorvaia L, Barraco N, Listi A, Maragliano R, Vincenzi B, Calo V, Iovanna JL, Bazan V, Russo A. Role of tumor-infiltrating lymphocytes in patients with solid tumors: can a drop dig a stone? Cell. Immunol. 2019;343:103753. doi: 10.1016/j.cellimm.2018.01.013. PubMed DOI
Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA, Berzofsky JA, Roberts DD. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res. 2014;74(23):6771–6783. doi: 10.1158/0008-5472.CAN-14-0037-T. PubMed DOI PMC
Kim MJ, Lee JC, Lee JJ, Kim S, Lee SG, Park SW, Sung MW, Heo DS. Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol. 2008;29(1):28–34. doi: 10.1159/000132568. PubMed DOI
Schwartz AL, Nath PR, Allgauer M, Lessey-Morillon EC, Sipes JM, Ridnour LA, Morillon Ii YM, Yu Z, Restifo NP, Roberts DD. Antisense targeting of CD47 enhances human cytotoxic T-cell activity and increases survival of mice bearing B16 melanoma when combined with anti-CTLA4 and tumor irradiation. Cancer Immunol. 2019;68(11):1805–1817. doi: 10.1007/s00262-019-02397-7. PubMed DOI PMC
Metayer LE, Vilalta A, Burke GAA, Brown GC. Anti-CD47 antibodies induce phagocytosis of live, malignant B cells by macrophages via the Fc domain, resulting in cell death by phagoptosis. Oncotarget. 2017;8(37):60892–60903. doi: 10.18632/oncotarget.18492. PubMed DOI PMC
Leclair P, Liu CC, Monajemi M, Reid GS, Sly LM, Lim CJ. CD47-ligation induced cell death in T-acute lymphoblastic leukemia. Cell Death Dis. 2018;9(5):544. doi: 10.1038/s41419-018-0601-2. PubMed DOI PMC
Yoshida K, Tsujimoto H, Matsumura K, Kinoshita M, Takahata R, Matsumoto Y, Hiraki S, Ono S, Seki S, Yamamoto J, Hase K. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med. 2015;4(9):1322–1333. doi: 10.1002/cam4.478. PubMed DOI PMC
Johansson U, Higginbottom K, Londei M. CD47 ligation induces a rapid caspase-independent apoptosis-like cell death in human monocytes and dendritic cells. Scand. J. Immunol. 2004;59(1):40–49. doi: 10.1111/j.0300-9475.2004.01355.x. PubMed DOI
Nath PR, Pal-Nath D, Mandal A, Cam MC, Schwartz AL, Roberts DD. Natural killer cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment. Cancer Immunol. Res. 2019;7(9):1547–1561. doi: 10.1158/2326-6066.CIR-18-0367. PubMed DOI PMC
Gu S, Ni T, Wang J, Liu Y, Fan Q, Wang Y, Huang T, Chu Y, Sun X, Wang Y. CD47 blockade inhibits tumor progression through promoting phagocytosis of tumor cells by M2 polarized macrophages in endometrial cancer. J. Immunol. Res. 2018;2018:6156757. doi: 10.1155/2018/6156757. PubMed DOI PMC
Manna PP, Dimitry J, Oldenborg PA, Frazier WA. CD47 augments Fas/CD95-mediated apoptosis. J. Biol. Chem. 2005;280(33):29637–29644. doi: 10.1074/jbc.M500922200. PubMed DOI
Zhu J, Powis de Tenbossche CG, Cane S, Colau D, van Baren N, Lurquin C, Schmitt-Verhulst AM, Liljestrom P, Uyttenhove C, Van den Eynde BJ. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat. Commun. 2017;8(1):1404. doi: 10.1038/s41467-017-00784-1. PubMed DOI PMC
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, Vonderheide RH, Pittet MJ, Jain RK, Zou W, Howcroft TK, Woodhouse EC, Weinberg RA, Krummel MF. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24(5):541–550. doi: 10.1038/s41591-018-0014-x. PubMed DOI PMC
Strizova Z, Taborska P, Stakheev D, Partlova S, Havlova K, Vesely S, Bartunkova J, Smrz D. NK and T cells with a cytotoxic/migratory phenotype accumulate in peritumoral tissue of patients with clear cell renal carcinoma. Urol. Oncol. 2019;37(7):503–509. doi: 10.1016/j.urolonc.2019.03.014. PubMed DOI
Taborska P, Bartunkova J, Smrz D. Simultaneous in vitro generation of human CD34(+)-derived dendritic cells and mast cells from non-mobilized peripheral blood mononuclear cells. J. Immunol. Methods. 2018;458:63–73. doi: 10.1016/j.jim.2018.04.005. PubMed DOI
Stakheev D, Taborska P, Strizova Z, Podrazil M, Bartunkova J, Smrz D. The WNT/beta-catenin signaling inhibitor XAV939 enhances the elimination of LNCaP and PC-3 prostate cancer cells by prostate cancer patient lymphocytes in vitro. Sci. Rep. 2019;9(1):4761. doi: 10.1038/s41598-019-41182-5. PubMed DOI PMC
Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G. Relationship between CD107a expression and cytotoxic activity. Cell. Immunol. 2009;254(2):149–154. doi: 10.1016/j.cellimm.2008.08.007. PubMed DOI