Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots

. 2022 Jan ; 32 (1) : 105-122. [epub] 20220114

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35028741

Grantová podpora
GAČR 18-05886S grantová agentura české republiky
RVO 67985939 akademie věd české republiky

Odkazy

PubMed 35028741
DOI 10.1007/s00572-021-01064-z
PII: 10.1007/s00572-021-01064-z
Knihovny.cz E-zdroje

Historically, Hyaloscypha s. lat. (Hyaloscyphaceae, Helotiales) included various saprobes with small apothecia formed on decaying plant matter, usually wood, that were defined by chemical and (ultra)structural aspects. However, recent molecular phylogenetic and resynthesis studies have narrowed the concept of the genus and shown that it contains several widely distributed species with unknown sexual morphs that form ectomycorrhizae, ericoid mycorrhizae, and mycothalli and also grow endophytically in plant roots and hypogeous ectomycorrhizal (EcM) fruitbodies (i.e., the historical Hymenoscyphus ericae aggregate). Hence, some of the sexually reproducing saprobic Hyaloscypha s. lat. and the symbionts belong to the monophyletic Hyaloscypha s. str. Here, we introduce two new root-symbiotic Hyaloscypha s. str. species, i.e., H. gabretae and H. gryndleri spp. nov. While the former was isolated only from ericaceous hosts (Vaccinium myrtillus from Southern Bohemia, Czechia and Calluna vulgaris from England, UK), the latter was obtained from a basidiomycetous EcM root tip of Picea abies (Pinaceae), roots of Pseudorchis albida (Orchidaceae), and hair roots of V. myrtillus from Southern Bohemia and C. vulgaris from England. Hyaloscypha gryndleri comprises two closely related lineages, suggesting ongoing speciation, possibly connected with the root-symbiotic life-style. Fungal isolates from ericaceous roots with sequences similar to H. gabretae and H. gryndleri have been obtained in Japan and in Canada and Norway, respectively, suggesting a wide and scattered distribution across the Northern Hemisphere. In a series of in vitro experiments, both new species failed to form orchid mycorrhizal structures in roots of P. albida and H. gryndleri repeatedly formed what morphologically corresponds to the ericoid mycorrhizal (ErM) symbiosis in hair roots of V. myrtillus, whereas the ErM potential of H. gabretae remained unresolved. Our results highlight the symbiotic plasticity of root-associated hyaloscyphoid mycobionts as well as our limited knowledge of their diversity and distribution, warranting further ecophysiological and taxonomic research of these important and widespread fungi.

Zobrazit více v PubMed

Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272. https://doi.org/10.1046/j.1469-8137.2003.00885.x PubMed DOI

Baral H-O, De Sloover JR, Huhtinen S et al (2009) An emendation of the genus Hyaloscypha to include Fuscoscypha (Hyaloscyphaceae, Helotiales, Ascomycotina). Karstenia 49:1–17. https://doi.org/10.29203/ka.2009.430

Bergero R, Perotto S, Girlanda M et al (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649. https://doi.org/10.1046/j.1365-294X.2000.01059.x PubMed DOI

Bogale M, Orr MJ, O’Hara MJ, Untereiner WA (2010) Systematics of Catenulifera (anamorphic Hyaloscyphaceae) with an assessment of the phylogenetic position of Phialophora hyalina. Fung Biol 114:396–409. https://doi.org/10.1016/j.funbio.2010.02.006 DOI

Brand F, Gronbach E, Taylor AFS (1992) Piceirhiza bicolorata. In: Agerer R (ed.) Colour Atlas of Ectomycorrhizae, Plate 73. Einhorn-Verlag, Schwäbisch Gmünd

Bruzone MC, Fontenla SB, Vohník M (2015) Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza 25:25–40. https://doi.org/10.1007/s00572-014-0586-3 PubMed DOI

Bruzone MC, Fehrer J, Fontenla SB, Vohník M (2017) First record of Rhizoscyphus ericae in Southern Hemisphere’s Ericaceae. Mycorrhiza 27:147–163. https://doi.org/10.1007/s00572-016-0738-8 PubMed DOI

Caisová L, Marin B, Melkonian M (2011) A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). BMC Evol Biol 11:262. https://doi.org/10.1186/1471-2148-11-262 PubMed DOI PMC

Chambers SM, Curlevski NJA, Cairney JWG (2008) Ericoid mycorrhizal fungi are common root inhabitants of non-Ericaceae plants in a south-eastern Australian sclerophyll forest. FEMS Microbiol Ecol 65:263–270. https://doi.org/10.1111/j.1574-6941.2008.00481.x PubMed DOI

Coleman AW (2000) The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151:1–9. https://doi.org/10.1078/1434-4610-00002 PubMed DOI

Coleman AW, Vacquier VD (2002) Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis). J Mol Evol 54:246–257. https://doi.org/10.1007/s00239-001-0006-0 PubMed DOI

Crous PW, Verkley GJM, Groenewald JZ, Houbraken J (2019) Fungal Biodiversity. CBS Laboratory Manual Series 1. CBS‐KNAW Fungal Biodiversity Centre, Utrecht

Darty K, Denise A, Ponty Y (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974–1975. https://doi.org/10.1093/bioinformatics/btp250 PubMed DOI PMC

Davies P, McLean C, Bell T (2003) Root survey and isolation of fungi from alpine epacrids (Ericaceae). Aust Mycol 22:4–10

de Hoog GS, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183–189. https://doi.org/10.1111/j.1439-0507.1998.tb00321.x PubMed DOI

Fehrer J, Réblová M, Bambasová V, Vohník M (2019) The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Stud Mycol 92:195–225. https://doi.org/10.1016/j.simyco.2018.10.004 PubMed DOI

Figura T, Tylová E, Jersáková J et al (2021) Fungal symbionts may modulate nitrate inhibitory effect on orchid seed germination. Mycorrhiza 31:231–241. https://doi.org/10.1007/s00572-021-01021-w PubMed DOI

Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x PubMed DOI

Gorman NR, Starrett MC (2003) Host range of a select isolate of the ericoid mycorrhizal fungus Hymenoscyphus ericae. HortScience 38:1163–1166. https://doi.org/10.21273/HORTSCI.38.6.1163

Grünig CR, Queloz V, Duò A et al (2009) Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark-septate conifer-needle endophyte and its relationships to Phialocephala and Acephala. Mycol Res 113:207–221. https://doi.org/10.1016/j.mycres.2008.10.005 PubMed DOI

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (=Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27. https://doi.org/10.3114/sim.53.1.1 DOI

Han JG, Hosoya T, Sung GH, Shin HD (2014) Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biol 118:150–167. https://doi.org/10.1016/j.funbio.2013.11.004 PubMed DOI

Hopple JS, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent somains, outgroups, and monophyly. Mol Phylogenet Evol 13:1–19. https://doi.org/10.1006/mpev.1999.0634 PubMed DOI

Hosoya T, Han JG, Sung GH et al (2011) Molecular phylogenetic assessment of the genus Hyphodiscus with description of Hyphodiscus hyaloscyphoides sp. nov. Mycol Progress 10:239–248. https://doi.org/10.1007/s11557-010-0693-2 DOI

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. https://doi.org/10.1093/bioinformatics/17.8.754 PubMed DOI

Huhtinen S (1989) A monograph of Hyaloscypha and allied genera. Karstenia 29:45–25. https://doi.org/10.29203/ka.1989.274

Kohout P, Sýkorová Z, Bahram M et al (2011) Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza 21:403–412. https://doi.org/10.1007/s00572-010-0350-2 PubMed DOI

Kohout P, Těšitelová T, Roy M et al (2013) A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecol 6:50–64. https://doi.org/10.1016/j.funeco.2012.08.005 DOI

Koizumi T, Nara K (2017) Communities of putative ericoid mycorrhizal fungi isolated from alpine dwarf shrubs in Japan: Effects of host identity and microhabitat. Microbes Environ 32:147–153. https://doi.org/10.1264/jsme2.ME16180 PubMed DOI PMC

Kolařík M, Vohník M (2018) When the ribosomal DNA does not tell the truth: the case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol 122:1–18. https://doi.org/10.1016/j.funbio.2017.09.006 PubMed DOI

Kosonen T, Huhtinen S, Hansen K (2021) Taxonomy and systematics of Hyaloscyphaceae and Arachnopezizaceae. Persoonia – Mol Phylogeny Evol Fungi 46:26–62. https://doi.org/10.3767/persoonia.2021.46.02

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260 PubMed DOI

Leake JR, Read DJ (1991) Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in Microbiology 23. Acad Press, London, 435–459

Leontis NB (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531. https://doi.org/10.1093/nar/gkf481 PubMed DOI PMC

Lukešová T, Kohout P, Větrovský T, Vohník M (2015) The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle european forest plants. PLoS ONE 10:e0124752. https://doi.org/10.1371/journal.pone.0124752 PubMed DOI PMC

Mai JC, Coleman AW (1997) The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J Mol Evol 44:258–271. https://doi.org/10.1007/PL00006143 PubMed DOI

Malloch D (1981) Moulds: their isolation, cultivation, and identification. University of Toronto Press, Toronto

Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 45:524–545. https://doi.org/10.1093/sysbio/45.4.524 DOI

Mayr E (1985) The growth of biological thought. Harvard University Press, Cambridge, MA

Midgley DJ, Greenfield P, Bissett A, Tran-Dinh N (2017) First evidence of Pezoloma ericae in Australia: using the Biomes of Australia Soil Environments (BASE) to explore the Australian phylogeography of known ericoid mycorrhizal and root-associated fungi. Mycorrhiza 27:587–594. https://doi.org/10.1007/s00572-017-0769-9 PubMed DOI

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE 1–8

Müller T, Philippi N, Dandekar T, Schultz J, Wolf M (2007) Distinguishing species. RNA 13:1469–1472. http://www.rnajournal.org/cgi/ https://doi.org/10.1261/rna.617107

Ponert J, Figura T, Vosolsobě S et al (2013) Asymbiotic germination of mature seeds and protocorm development of Pseudorchis albida (Orchidaceae) are inhibited by nitrates even at extremely low concentrations. Botany 91:662–670. https://doi.org/10.1139/cjb-2013-0082 DOI

Rambaut A (2009) FigTree v. 1.3.1. http://tree.bio.ed.ac.uk/software/figtree/

R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

Read DJ (1974) Pezizella ericae sp. nov., the perfect state of a typical mycorrhizal endophyte of ericaceae. Trans Br Mycol Soc 63:381-IN22. https://doi.org/10.1016/S0007-1536(74)80183-X

Réblová M, Miller AN, Réblová K, Štěpánek V (2018) Phylogenetic classification and generic delineation of Calyptosphaeria gen. nov., Lentomitella, Spadicoides and Torrentispora (Sordariomycetes). Stud Mycol 89:1–62. https://doi.org/10.1016/j.simyco.2017.11.004 PubMed DOI

Réblová M, Untereiner WA, Réblová K (2013) Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLoS One 8:e63547. https://doi.org/10.1371/journal.pone.0063547 PubMed DOI PMC

Sayers EW, Cavanaugh M, Clark K et al (2019) GenBank. Nucleic Acids Res 47:D94–D99. https://doi.org/10.1093/nar/gky989 PubMed DOI

Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/pnas.1117018109 PubMed DOI PMC

Schultz J (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361–364. https://doi.org/10.1261/rna.7204505 PubMed DOI PMC

Sharples JM, Chambers SM, Meharg AA, Cairney JWG (2000) Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162. https://doi.org/10.1046/j.1469-8137.2000.00734.x PubMed DOI

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446 PubMed DOI

Stenroos S, Laukka T, Huhtinen S et al (2010) Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. Cladistics 26:281–300. https://doi.org/10.1111/j.1096-0031.2009.00284.x PubMed DOI

Štorchová H, Hrdličková R, Chrtek J et al (2000) An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon 49:79–84. https://doi.org/10.2307/1223934 DOI

Stoyke G, Currah RS (1993) Resynthesis in pure culture of a common subalpine fungus-root association using Phialocephala fortinii and Menziesia ferruginea (Ericaceae). Arct Alp Res 25:189–193. https://doi.org/10.2307/1551812 DOI

Sükösd Z, Knudsen B, Kjems J, Pedersen CNS (2012) PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics 28:2691–2692. https://doi.org/10.1093/bioinformatics/bts488 PubMed DOI

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673 PubMed DOI PMC

Upson R, Read DJ, Newsham KK (2007) Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. New Phytol 176:460–471. https://doi.org/10.1111/j.1469-8137.2007.02178.x PubMed DOI

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990 PubMed DOI PMC

Vohník M (2020) Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza 30:671–695. https://doi.org/10.1007/s00572-020-00989-1 PubMed DOI

Vohník M, Albrechtová J (2011) The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot 46:373–386. https://doi.org/10.1007/s12224-011-9098-5 DOI

Vohník M, Mrnka L, Lukešová T et al (2013) The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6:281–292. https://doi.org/10.1016/j.funeco.2013.03.006 DOI

Vohník M, Sadowsky JJ, Lukešová T et al (2012) Inoculation with a ligninolytic basidiomycete, but not root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate. Plant Soil 355:341–352. https://doi.org/10.1007/s11104-011-1106-2 DOI

Vrålstad T (2004) Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol 164:7–10. https://doi.org/10.1111/j.1469-8137.2004.01180.x PubMed DOI

Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata – The ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563. https://doi.org/10.1046/j.1469-8137.2000.00605.x PubMed DOI

Vrålstad T, Myhre E, Schumacher T (2002) Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155:131–148. https://doi.org/10.1046/j.1469-8137.2002.00444.x PubMed DOI

Wang Z, Binder M, Hibbett DS (2005) Life history and systematics of the aquatic discomycete Mitrula (Helotiales, Ascomycota) based on cultural, morphological, and molecular studies. Am J Bot 92:1565–1574. https://doi.org/10.3732/ajb.92.9.1565 PubMed DOI

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. Elsevier 315–322

Williams AF, Chambers SM, Davies PW et al (2004) Molecular investigation of sterile root-associated fungi from Epacris microphylla R. Br. (Ericaceae) and other epacrids at alpine, subalpine and coastal heathland sites. Australas Mycol 23:94–104

Zhang Z, Schwartz S, Wagner L et al (2000) A greedy algorithm for aligning DNA sequences. J Compt Biol 7:203–214. https://doi.org/10.1089/10665270050081478 DOI

Zijlstra JD, Van’t Hof P, Baar J et al (2005) Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol 53:147–162. https://doi.org/10.3114/sim.53.1.147 DOI

Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. https://doi.org/10.1093/nar/gkg595 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace