First record of Rhizoscyphus ericae in Southern Hemisphere's Ericaceae

. 2017 Feb ; 27 (2) : 147-163. [epub] 20161025

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27778093
Odkazy

PubMed 27778093
DOI 10.1007/s00572-016-0738-8
PII: 10.1007/s00572-016-0738-8
Knihovny.cz E-zdroje

Ericoid mycorrhiza is arguably the least investigated mycorrhizal type, particularly when related to the number of potential hosts and the ecosystems they inhabit. Little is known about the global distribution of ericoid mycorrhizal (ErM) fungi, and this holds true even for the prominent ErM mycobiont Rhizoscyphus ericae. Earlier studies suggested R. ericae might be low in abundance or absent in the roots of Southern Hemisphere's Ericaceae, and our previous investigations in two Argentine Patagonian forests supported this view. Here, we revisited the formerly investigated area, albeit at a higher altitude, and screened fungi inhabiting hair roots of Gaultheria caespitosa and Gaultheria pumila at a treeless alpine site using the same methods as previously. We obtained 234 isolates, most of them belonging to Ascomycota. In contrast to previous findings, however, among 37 detected operational taxonomic units (OTUs), OTU 1 (=R. ericae s. str.) comprised the highest number of isolates (87, ∼37 %). Most of the OTUs and isolates belonged to the Helotiales, and 82.5 % of isolates belonged to OTUs shared between both Gaultheria species. At the alpine site, ericoid mycorrhizal fungi dominated, followed by dark septate endophytes and aquatic hyphomycetes probably acting as root endophytes. Our results suggest that the distribution of R. ericae is influenced, among others, by factors related to altitude such as soil type and presence/absence and type of the neighboring vegetation. Our study is the first report on R. ericae colonizing Ericaceae roots in the Southern Hemisphere and extends the known range of this prominent ErM species to NW Patagonia.

Zobrazit více v PubMed

Folia Microbiol (Praha). 2007;52(4):407-14 PubMed

Microb Ecol. 2016 Feb;71(2):442-51 PubMed

Mycorrhiza. 2002 Aug;12(4):175-80 PubMed

New Phytol. 2011 Jul;191(2):515-27 PubMed

New Phytol. 2007;176(2):460-71 PubMed

Mycorrhiza. 2016 Nov;26(8):831-846 PubMed

PLoS One. 2012;7(8):e42865 PubMed

New Phytol. 2008;178(1):3-7 PubMed

Bioinformatics. 2003 Aug 12;19(12):1572-4 PubMed

Mycorrhiza. 2015 Jan;25(1):25-40 PubMed

Environ Microbiol. 2005 Nov;7(11):1743-54 PubMed

Sci Rep. 2016 Mar 01;6:22399 PubMed

Mycorrhiza. 2009 Aug;19(6):417-23 PubMed

New Phytol. 2013 Jun;198(4):1239-49 PubMed

PLoS One. 2012;7(11):e49867 PubMed

Mol Ecol. 2016 Jul;25(13):3242-57 PubMed

Environ Microbiol. 2005 Jun;7(6):819-27 PubMed

PLoS One. 2012;7(6):e39524 PubMed

FEMS Microbiol Ecol. 2000 Mar 1;31(3):185-194 PubMed

New Phytol. 2016 Jul;211(1):20-40 PubMed

FEMS Microbiol Ecol. 2014 Mar;87(3):586-600 PubMed

Ecol Evol. 2012 Jan;2(1):65-79 PubMed

New Phytol. 2009;182(2):359-66 PubMed

Biochim Biophys Acta. 1995 Apr 4;1261(2):275-8 PubMed

Mol Ecol. 2007 Nov;16(21):4624-36 PubMed

New Phytol. 2007;174(4):864-78 PubMed

Mycorrhiza. 2011 Jul;21(5):403-12 PubMed

Syst Biol. 2000 Jun;49(2):369-81 PubMed

PLoS Curr. 2011 Mar 03;3:RRN1227 PubMed

Mycorrhiza. 2014 Nov;24(8):635-44 PubMed

New Phytol. 2006;169(2):355-65 PubMed

New Phytol. 2015 Mar;205(4):1454-63 PubMed

PLoS One. 2015 Oct 20;10(10):e0140833 PubMed

Microbes Environ. 2016 Jun 25;31(2):186-9 PubMed

Mol Ecol. 1993 Apr;2(2):113-8 PubMed

Mycorrhiza. 2016 May;26(4):345-52 PubMed

Mycorrhiza. 2002 Apr;12(2):89-92 PubMed

FEMS Microbiol Ecol. 2009 Mar;67(3):411-20 PubMed

New Phytol. 2015 Mar;205(4):1406-23 PubMed

Mycologia. 2011 Jul-Aug;103(4):703-9 PubMed

Plant Physiol. 2000 Nov;124(3):1327-34 PubMed

Syst Biol. 2010 May;59(3):307-21 PubMed

Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed

PLoS One. 2015 Apr 23;10(4):e0124752 PubMed

ISME J. 2015 Aug;9(8):1870-9 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exploring structural and molecular diversity of Ericaceae hair root mycobionts: a comparison between Northern Bohemia and Argentine Patagonia

. 2023 Nov ; 33 (5-6) : 425-447. [epub] 20231004

Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots

. 2022 Jan ; 32 (1) : 105-122. [epub] 20220114

Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation

. 2020 Nov ; 30 (6) : 671-695. [epub] 20201012

Extensive sampling and high-throughput sequencing reveal Posidoniomycesatricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidoniaoceanica

. 2019 ; 55 () : 59-86. [epub] 20190626

The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence

. 2019 Mar ; 92 () : 195-225. [epub] 20181011

Ontogenetic transition from specialized root hairs to specific root-fungus symbiosis in the dominant Mediterranean seagrass Posidonia oceanica

. 2018 Jul 17 ; 8 (1) : 10773. [epub] 20180717

Effect of soil moisture on root-associated fungal communities of Erica dominans in Drakensberg mountains in South Africa

. 2017 May ; 27 (4) : 397-406. [epub] 20170112

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...