Extensive sampling and high-throughput sequencing reveal Posidoniomycesatricolor gen. et sp. nov. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidoniaoceanica
Status PubMed-not-MEDLINE Language English Country Bulgaria Media electronic-ecollection
Document type Journal Article
PubMed
31303813
PubMed Central
PMC6609996
DOI
10.3897/mycokeys.55.35682
PII: 35682
Knihovny.cz E-resources
- Keywords
- Dothideomycetes, dark septate endophytes, marine fungi, root endophytes, seagrasses,
- Publication type
- Journal Article MeSH
Seagrasses provide invaluable ecosystem services yet very little is known about their root mycobiont diversity and distribution. Here we focused on the dominant Mediterranean seagrass Posidoniaoceanica and assessed its root mycobiome at 32 localities covering most of the ecoregions in the NW Mediterranean Sea using light and scanning electron microscopy and tag-encoded 454-pyrosequencing. Microscopy revealed that the recently discovered dark septate endophytic association specific for P.oceanica is present at all localities and pyrosequencing confirmed that the P.oceanica root mycobiome is dominated by a single undescribed pleosporalean fungus, hitherto unknown from other hosts and ecosystems. Its numerous slow-growing isolates were obtained from surface-sterilised root segments at one locality and after prolonged cultivation, several of them produced viable sterile mycelium. To infer their phylogenetic relationships we sequenced and analysed the large (LSU) and small (SSU) subunit nrDNA, the ITS nrDNA and the DNA-directed RNA polymerase II (RPB2). The fungus represents an independent marine biotrophic lineage in the Aigialaceae (Pleosporales) and is introduced here as Posidoniomycesatricolor gen. et sp. nov. Its closest relatives are typically plant-associated saprobes from marine, terrestrial and freshwater habitats in Southeast Asia and Central America. This study expands our knowledge and diversity of the Aigialaceae, adds a new symbiotic lifestyle to this family and provides a formal name for the dominant root mycobiont of the dominant Mediterranean seagrass.
See more in PubMed
Altschul SF, Madden TL, Schäffer AA, Zhang Z, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Alva P, Mckenzire EHC, Pointing SP, Pena-Murala R, Hyde KD. (2002) Do seagrasses harbour endophytes? In: Hyde KD. (Ed.) Fungi in Marine Environments.Fungal Diversity Research Series. Hong Kong University Press, Hong Kong, 167–178.
Arnaud-Haond S, Duarte CM, Diaz-Almela E, Marbà N, Sintes T, Serrão EA. (2012) Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass Posidoniaoceanica PLOS ONE 7: e30454. 10.1371/journal.pone.0030454 PubMed DOI PMC
Bao D, Luo Z, Jeewon R, Nalumpang S, Su H, Hyde KD. (2019) Neoastrosphaeriellaaquatica sp. nov. (Aigialaceae), a new species from freshwater habitat in southern Thailand. Phytotaxa 391: 197–206. 10.11646/phytotaxa.391.3.3 DOI
Borovec O, Vohník M. (2018) Ontogenetic transition from specialized root hairs to specific root-fungus symbiosis in the dominant Mediterranean seagrass Posidoniaoceanica Scientific Reports 8: 10773. 10.1038/s41598-018-28989-4 PubMed DOI PMC
Bruzone MC, Fehrer J, Fontenla SB, Vohník M. (2017) First record of Rhizoscyphusericae in Southern Hemisphere´s Ericaceae. Mycorrhiza 27: 147–163. 10.1007/s00572-016-0738-8 PubMed DOI
Crous PW, Wood AR, Okada G, Groenewald JZ. (2008) Foliicolous microfungi occurring on Encephalartos. Persoonia 21: 135–146. 10.3767/003158508X380612 PubMed DOI PMC
Cuomo V, Vanzanella F, Fresi E, Cinelli F, Mazzella L. (1985) Fungal flora of Posidoniaoceanica and its ecological significance. Transactions of the British Mycological Society 84: 35–40. 10.1016/S0007-1536(85)80217-5 DOI
De Falco G, Molinaroli E, Conforti A, Simeone S, Tonielli R. (2017) Biogenic sediments from coastal ecosystems to beach-dune systems: implications for the adaptation of mixed and carbonate beaches to future sea level rise. Biogeosciences 14: 3191–3205. 10.5194/bg-14-3191-2017 DOI
den Hartog C. (1970) Seagrasses of the world. North-Holland Publishing, the Netherlands.
Edgar RC. (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10: 996−998. 10.1038/nmeth.2604 PubMed DOI
Fehrer J, Réblová M, Bambasová V, Vohník M. (2019) The root-symbiotic Rhizoscyphusericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Studies in Mycology 92: 195–225. 10.1016/j.simyco.2018.10.004 PubMed DOI PMC
Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O. (2012) Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505–509. 10.1038/ngeo1477 DOI
Gardes M, Bruns TD. (1993) ITS primers with enhanced specificity for Basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. 10.1111/j.1365-294X.1993.tb00005.x PubMed DOI
Gargas A, Taylor JW. (1992) Polymerase chain reaction (PCR) primers for amplifying and sequencing nuclear 18S rDNA from lichenized fungi. Mycologia 84: 589–592. 10.1080/00275514.1992.12026182 DOI
Gessner RV, Kohlmeyer J. (1976) Geographical distribution and taxonomy of fungi from salt marsh Spartina. Canadian Journal of Botany 54: 2023–2037. 10.1139/b76-216 DOI
Giakoumi S, Sini M, Gerovasileiou V, Mazor T, Beher J, Possingham HP, Abdulla A, Çinar ME, Dendrinos P, Gucu AC, Karamanlidis AA. (2013) Ecoregion-based conservation planning in the Mediterranean: dealing with large-scale heterogeneity. PLOS ONE 8: e76449. 10.1371/journal.pone.0076449 PubMed DOI PMC
Gnavi G, Ercole E, Panno L, Vizzini A, Varese GC. (2014) Dothideomycetes and Leotiomycetes sterile mycelia isolated from the Italian seagrass Posidoniaoceanica based on rDNA data. SpringerPlus 3: 508. 10.1186/2193-1801-3-508 PubMed DOI PMC
Green EP, Short FT. (2003) World atlas of seagrasses. University of California Press, USA.
Hall TA. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Hemminga MA, Duarte CM. (2000) Seagrass Ecology. Cambridge University Press, UK. 10.1017/CBO9780511525551 DOI
Huelsenbeck JP, Ronquist F. (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. 10.1093/bioinformatics/17.8.754 PubMed DOI
Jones EBG. (1963) Marine fungi: II. Ascomycetes and deuteromycetes from submerged wood and drift Spartina. Transactions of the British Mycological Society 46: 135–144. 10.1016/S0007-1536(63)80015-7 DOI
Jones EBG, Pang KL. (2012) Marine fungi and fungal-like organisms. de Gruyter, Germany. 10.1515/9783110264067 DOI
Jumpponen A, Trappe JM. (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist 140: 295–310. 10.1046/j.1469-8137.1998.00265.x PubMed DOI
Katoh K, Asimenos G, Toh H. (2009) Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology 537: 39–64. 10.1007/978-1-59745-251-9_3 PubMed DOI
Kauff F, Lutzoni F. (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution 25: 138–156. 10.1016/S1055-7903(02)00214-2 PubMed DOI
Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, Kuo A, Lim JH, Lipzen A, Nolan M, Ohm RA. (2018) Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports 8: 6321. 10.1038/s41598-018-24686-4 PubMed DOI PMC
Kohlmeyer J. (1963) Zwei neuen Ascomycetes Gattungen auf Posidonia rhizomen. Nova Hedwigia 6: 5–13.
Kohlmeyer J, Kohlmeyer E. (1971) Marine fungi from tropical America and Africa. Mycologia 63: 831–861. 10.1080/00275514.1971.12019172 PubMed DOI
Kohlmeyer J, Kohlmeyer E. (1979) Marine Mycology. The higher fungi. Academic Press, USA.
Kohlmeyer J, Volkmann-Kohlmeyer B. (1991) Illustrated key to the filamentous marine fungi. Botanica Marina 34: 1–61. 10.1515/botm.1991.34.1.1 DOI
Kohlmeyer J, Volkmann-Kohlmeyer B. (2001) The biodiversity of fungi on Juncusroemerianus. Mycological Research 105: 1411–1412. 10.1017/S095375620124547X DOI
Kohlmeyer J, Volkmann-Kohlmeyer B. (2002) Fungi on Juncus and Spartina: new marine species of Anthostomella, with a list of marine fungi known from Spartina. Mycological Research 106: 365–374. 10.1017/S0953756201005469 DOI
Kohout P, Sýkorová Z, Čtvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R. (2012) Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiology Ecology 80: 216–235. 10.1111/j.1574-6941.2011.01291.x PubMed DOI
Kohout P, Malinová T, Roy M, Vohník M, Jersáková J. (2013) A diverse fungal community associated with Pseudorchisalbida (Orchideaceae) roots. Fungal Ecology 6: 50–64. 10.1016/j.funeco.2012.08.005 DOI
Kolařík M, Vohník M. (2018) When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtiaargillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biology 122: 1–18. 10.1016/j.funbio.2017.09.006 PubMed DOI
Kolátková V, Vohník M. (2019) Adaptive traits in the seagrass Posidoniaoceanica: Root hairs with spiral cell walls, not spiral root hairs. Aquatic Botany 155: 52–53. 10.1016/j.aquabot.2018.11.013 DOI
Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson‐Palme J, Callaghan TM, Douglas B. (2013) Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22: 5271−5277. 10.1111/mec.12481 PubMed DOI
Linderman RG. (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78: 366–371.
Liu JK, Phookamsak R, Jones EG, Zhang Y, Ko-Ko TW, Hu HL, Boonmee S, Doilom M, Chukeatirote E, Bahkali AH, Wang Y. (2011) Astrosphaeriella is polyphyletic with species in Fissuroma gen. nov., and Neoastrosphaeriella gen. nov. Fungal Diversity 51: 135–154. 10.1007/s13225-011-0142-9 DOI
Liu YJ, Whelen S, Hall BD. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. 10.1093/oxfordjournals.molbev.a026092 PubMed DOI
Lukešová T, Kohout P, Větrovský T, Vohník M. (2015) The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants. PLOS ONE 10: e0124752. 10.1371/journal.pone.0124752 PubMed DOI PMC
Martino E, Morin E, Grelet GA, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB, Hainaut M. (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist 217: 1213–1229. 10.1111/nph.14974 PubMed DOI
Marx DH. (1969) Influence of ectotrophic mycorrhizal fungi on resistance of pine roots to pathogenic infections I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153–163. PubMed
Mason-Gamer RJ, Kellogg EA. (1996) Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Systematic Biology 45: 524–545. 10.1093/sysbio/45.4.524 DOI
Mayerhofer MS, Kernaghan G, Harper KA. (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23: 119–128. 10.1007/s00572-012-0456-9 PubMed DOI
Miller MA, Pfeiffer W, Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, USA. 10.1109/GCE.2010.5676129 DOI
Newsham KK. (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytologist 10: 783–793. 10.1111/j.1469-8137.2010.03611.x PubMed DOI
Nielsen SL, Thingstrup I, Wigand C. (1999) Apparent lack of vesicular-arbuscular mycorrhiza (VAM) in the seagrasses Zosteramarina L. and Thalassiatestudinum Banks ex Konig. Aquatic Botany 63: 261–266. 10.1016/S0304-3770(98)00123-5 DOI
Notarbartolo di Sciara G, Agardy T. (2010) Overview of scientific findings and criteria relevant to identifying SPAMIs in the Mediterranean open seas, including the deep sea. UNEP-MAP, Tunis.
Nylander JAA. (2008) MrModeltest2 v. 2.3 (Program for selecting DNA substitution models using PAUP*). Evolutionary Biology Centre, Sweden.
Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G, Miserere L, Varese GC. (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidoniaoceanica. New Biotechnology 30: 685–694. 10.1016/j.nbt.2013.01.010 PubMed DOI
Phookamsak R, Norphanphoun C, Tanaka K, Dai DQ, Luo ZL, Liu JK, Su HY, Bhat DJ, Bahkali AH, Mortimer PE, Xu JC. (2015) Towards a natural classification of Astrosphaeriella-like species; introducing Astrosphaeriellaceae and Pseudoastrosphaeriellaceae fam. nov. and Astrosphaeriellopsis, gen. nov. Fungal Diversity 74: 143–197. 10.1007/s13225-015-0352-7 DOI
Read DJ. (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391. 10.1007/BF01972080 DOI
Reeb V, Lutzoni F, Roux C. (2004) Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molecular Phylogenetics and Evolution 32: 1036–1060. 10.1016/j.ympev.2004.04.012 PubMed DOI
Saikkonen K, Wäli PR, Helander M, Faeth SH. (2004) Evolution of endophyte-plant symbioses. Trends in Plant Science 9: 275–280. 10.1016/j.tplants.2004.04.005 PubMed DOI
Saikkonen K, Wäli PR, Helander M. (2010) Genetic compatibility determines endophyte-grass combinations. PLOS ONE 5: e11395. 10.1371/journal.pone.0011395 PubMed DOI PMC
Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. (2019) GenBank. Nucleic Acids Research 47: D94–D99. 10.1093/nar/gky989 PubMed DOI PMC
Schlegel M, Münsterkötter M, Güldener U, Bruggmann R, Duò A, Hainaut M, Henrissat B, Sieber CM, Hoffmeister D, Grünig CR. (2016) Globally distributed root endophyte Phialocephalasubalpina links pathogenic and saprophytic lifestyles. BMC Genomics 17: 1015. 10.1186/s12864-016-3369-8 PubMed DOI PMC
Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, De Hoog GS, Groenewald JZ. (2009a) A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64: 1–15. 10.3114/sim.2009.64.02 PubMed DOI PMC
Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C. (2009b) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58: 224–239. 10.1093/sysbio/syp020 PubMed DOI
Serrano O, Mateo MA, Renom P, Julià R. (2012) Characterization of soils beneath a Posidoniaoceanica meadow. Geoderma 185−186: 26−36. 10.1016/j.geoderma.2012.03.020 DOI
Sieber TN. (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi (Eds) Plant roots – the hidden half, 3rd edn. Marcel Dekker, USA. 10.1201/9780203909423.ch49 DOI
Slippers B, Boissin E, Phillips AJ, Groenewald JZ, Lombard L, Wingfield MJ, Postma A, Burgess T, Crous PW. (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Studies in Mycology 76: 31–49. 10.3114/sim0020 PubMed DOI PMC
Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaichit S, Tanaka K, Hirayama K, Jones EB. (2009) Molecular systematics of the marine Dothideomycetes. Studies in Mycology 64: 145–154. 10.3114/sim.2009.64.09 PubMed DOI PMC
Tanaka K, Harada Y. (2005) Bambusicolous fungi in Japan (4): a new combination, Astrosphaeriellaaggregata. Mycoscience 46: 114–118. 10.1007/S10267-004-0223-7 DOI
Tanaka K, Hirayama K, Yonezawa H, Hatakeyama S, Harada Y, Sano T, Shirouzu T, Hosoya T. (2009) Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs, and notes on the phylogeny of selected species from bamboo. Studies in Mycology 64: 175–209. 10.3114/sim.2009.64.10 PubMed DOI PMC
Tennakoon DS, Phookamsak R, Kuo CH, Goh TK, Jeewon R, Hyde KD. (2018) Morphological and phylogenetic evidence reveal Fissuromataiwanense sp. nov. (Aigialaceae, Pleosporales) from Hedychiumcoronarium. Phytotaxa 338: 265–275. 10.11646/phytotaxa.338.3.4 DOI
Tsuneda A, Hambleton S, Currah RS. (2011) The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Botany 89: 523–536. 10.1139/b11-041 DOI
Větrovský T, Baldrian P. (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biology and Fertility of Soils 49: 1027−1037. 10.1007/s00374-013-0801-y DOI
Vilgalys R, Hester M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. 10.1128/jb.172.8.4238-4246.1990 PubMed DOI PMC
Vohník M, Albrechtová J. (2011) The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobotanica 46: 373–386. 10.1007/s12224-011-9098-5 DOI
Vohník M, Sadowsky JJ, Kohout P, Lhotáková Z, Nestby R, Kolařík M. (2012) Novel root-fungus symbiosis in Ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales PLOS ONE 7: e39524. 10.1371/journal.pone.0039524 PubMed DOI PMC
Vohník M, Borovec O, Župan I, Vondrášek D, Petrtýl M, Sudová R. (2015) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidoniaoceanica. Mycorrhiza 25: 663–672. 10.1007/s00572-015-0642-7 PubMed DOI
Vohník M, Borovec O, Kolařík M. (2016) Communities of cultivable root mycobionts of the seagrass Posidoniaoceanica in the northwest Mediterranean Sea are dominated by a hitherto undescribed pleosporalean dark septate endophyte. Microbial Ecology 71: 442–451. 10.1007/s00248-015-0640-5 PubMed DOI
Vohník M, Borovec O, Župan I, Kolařík M, Sudová R. (2017) Fungal root symbionts of the seagrass Posidoniaoceanica in the central Adriatic Sea revealed by microscopy, culturing and 454-pyrosequencing. Marine Ecology Progress Series 583: 107–120. 10.3354/meps12337 DOI
Wanasinghe DN, Jeewon R, Jones EG, Boonmee S, Kaewchai S, Manawasinghe IS, Lumyong S, Hyde KD. (2018) Novel palmicolous taxa within Pleosporales: multigene phylogeny and taxonomic circumscription. Mycological Progress 17: 571–590. 10.1007/s11557-018-1379-4 DOI
White TJ, Bruns TD, Lee SB, Taylor JW. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (Eds) PCR - protocols and applications – a laboratory manual. Academic Press, USA. 10.1016/B978-0-12-372180-8.50042-1 DOI
Yang T, Groenewald JZ, Cheewangkoon R, Jami F, Abdollahzadeh J, Lombard L, Crous PW. (2017) Families, genera, and species of Botryosphaeriales. Fungal Biology 121: 322–346. 10.1016/j.funbio.2016.11.001 PubMed DOI