Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential

. 2023 Mar ; 33 (1-2) : 69-86. [epub] 20230126

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36700963

Grantová podpora
GAČR 18-05886S Grantová Agentura České Republiky
RVO 67985939 Institute of Botany of the Czech Academy of Sciences

Odkazy

PubMed 36700963
PubMed Central PMC9938075
DOI 10.1007/s00572-023-01101-z
PII: 10.1007/s00572-023-01101-z
Knihovny.cz E-zdroje

Most of our knowledge on the ericoid mycorrhizal (ErM) symbiosis comes from temperate heathlands characterized by acidic peaty soils and many experiments with a few ascomycetous fungi. However, ericaceous plants thrive in many other ecosystems and in temperate coniferous forests, their seedlings often prosper on decomposing wood. While wood is typically exploited by basidiomycetous ectomycorrhizal (EcM) and saprobic fungi, the role of ErM fungi (ErMF) is much less clear. We explored the cultivable mycobiota of surface sterilized hair roots of Vaccinium spp. growing on decomposing wood in two coniferous forests in Mid-Norway (Scandinavia) and Northern Bohemia (Central Europe). Obtained isolates were identified using molecular tools and their symbiotic potential was tested in vitro. While the detected community lacked the archetypal ErMF Hyaloscypha hepaticicola and the incidence of dark septate endophytes and EcM fungi was negligible, it comprised other frequent asexual ascomycetous ErMF, namely H. variabilis and Oidiodendron maius, together with several isolates displaying affinities to sexual saprobic H. daedaleae and H. fuckelii. Ascomycete-suppressing media revealed representatives of the saprobic basidiomycetous genera Coprinellus, Gymnopilus, Mycena (Agaricales), and Hypochnicium (Polyporales). In the resyntheses, the tested basidiomycetes occasionally penetrated the rhizodermal cells of their hosts but never formed ericoid mycorrhizae and in many cases overgrew and killed the inoculated seedlings. In contrast, a representative of the H. daedaleae/H. fuckelii-related isolates repeatedly formed what morphologically appears as the ErM symbiosis and supported host's growth. In conclusion, while basidiomycetous saprobic fungi have a potential to colonize healthy-looking ericaceous hair roots, the mode(-s) of their functioning remain obscure. For the first time, a lineage in Hyaloscypha s. str. (corresponding to the former Hymenoscyphus ericae aggregate) where sexual saprobes are intermingled with root symbionts has been revealed, shedding new light on the ecology and evolution of these prominent ascomycetous ErMF.

Zobrazit více v PubMed

Allen TR, Millar T, Berch SM, Berbee ML. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol. 2003;160:255–272. doi: 10.1046/j.1469-8137.2003.00885.x. PubMed DOI

Baba T, Hirose D. Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol. 2021 doi: 10.1016/j.funbio.2021.07.003. PubMed DOI

Baral H-O, De Sloover J, Huhtinen S, et al (2009) An emendation of the genus Hyaloscypha to include Fuscoscypha (Hyaloscyphaceae, Helotiales, Ascomycotina). Karstenia 49:1–17. 10.29203/ka.2009.430

Baucher M, Monties B, Van MM, Boerjan W. Biosynthesis and genetic engineering of lignin. CRC Crit Rev Plant Sci. 1998;17:125–197. doi: 10.1080/07352689891304203. DOI

Bending GD, Read DJ. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res. 1997;101:1348–1354. doi: 10.1017/S0953756297004140. DOI

Boddy L, Watkinson SC. Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot. 1995;73:1377–1383. doi: 10.1139/b95-400. DOI

Bogale M, Orr M-J, O’Hara MJ, Untereiner WA (2010) Systematics of Catenulifera (anamorphic Hyaloscyphaceae) with an assessment of the phylogenetic position of Phialophora hyalina. Fungal Biol 114:396–409. 10.1016/j.funbio.2010.02.006 PubMed

Bonfante-Fasolo P. Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc. 1980;75:320–325. doi: 10.1016/S0007-1536(80)80097-0. DOI

Bougoure DS, Parkin PI, Cairney JWG, et al. Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol. 2007;16:4624–4636. doi: 10.1111/j.1365-294X.2007.03540.x. PubMed DOI

Bruzone MC, Fontenla SB, Vohník M. Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza. 2015;25:25–40. doi: 10.1007/s00572-014-0586-3. PubMed DOI

Cairney JWG, Burke RM. Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf and Kernan: Their likely roles in decomposition of dead plant tissue in soil. Plant Soil. 1998;205:181–192. doi: 10.1023/A:1004376731209. DOI

Chen C, Verkley GJM, Sun G, et al. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol. 2016;120:1291–1322. doi: 10.1016/j.funbio.2015.09.013. PubMed DOI

Daghino S, Martino E, Voyron S, Perotto S. Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi. Sci Rep. 2022;12:11013. doi: 10.1038/s41598-022-15154-1. PubMed DOI PMC

Duclos JL, Pépin R, Bruchet G. Étude morphologique, anatomique et ultrastructurale d’endomycorhizes synthétiques d’ Erica carnea. Can J Bot. 1983;61:466–475. doi: 10.1139/b83-054. DOI

Fehrer J, Réblová M, Bambasová V, Vohník M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud Mycol. 2019;92:195–225. doi: 10.1016/j.simyco.2018.10.004. PubMed DOI PMC

Fisher PJ, Anson AE, Petrini O. Novel antibiotic activity of an endophytic Cryptosporiopsis sp. isolated from Vaccinium myrtillus. Trans Br Mycol Soc. 1984;83:145–148. doi: 10.1016/S0007-1536(84)80254-5. DOI

Goodell B, Winandy JE, Morrell JJ. Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings. 2020;10:1210. doi: 10.3390/coatings10121210. DOI

Gorzelak MA, Hambleton S, Massicotte HB. Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol. 2012;5:36–45. doi: 10.1016/j.funeco.2011.08.008. DOI

Gouy M, Guindon S, Gascuel O. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI

Grelet GA, Ba R, Goeke DF, et al. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza. 2017;27:831–839. doi: 10.1007/s00572-017-0797-5. PubMed DOI

Griffin A, Kernaghan G. Ericoid mycorrhizal colonization and associated fungal communities along a wetland gradient in the Acadian forest of Eastern Canada. Fungal Ecol. 2022;56:101138. doi: 10.1016/j.funeco.2021.101138. DOI

Grunewaldt-Stöcker G, von Alten H. Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus? Mycorrhiza. 2016;26:429–440. doi: 10.1007/s00572-016-0682-7. PubMed DOI

Grünig CR, Queloz V, Sieber TN, Holdenrieder O. Dark septate endophytes (DSE) of the Phialocephala fortinii s. l. – Acephala applanata species complex in tree roots: Classification, population biology, and ecology. Botany. 2008;86:1355–1369. doi: 10.1139/B08-108. DOI

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.

Hambleton S, Currah RS. Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot. 1997;75:1570–1581. doi: 10.1139/b97-869. DOI

Hambleton S, Sigler L. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (=Hymenoscyphus ericae), Leotiomycetes. Stud Mycol. 2005;53:1–27. doi: 10.3114/sim.53.1.1. DOI

Han JG, Hosoya T, Sung GH, Shin HD (2014) Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biol 118:150–167. 10.1016/j.funbio.2013.11.004 PubMed

Harder CB, Hesling E, Niskanen T, et al. Mycena species can be opportunist-generalist plant root invaders. bioRxiv. 2021 doi: 10.1101/2021.03.23.436563. PubMed DOI

Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Janusz G, Pawlik A, Sulej J, et al. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41:941–962. doi: 10.1093/femsre/fux049. PubMed DOI PMC

Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Kolařík M, Vohník M. When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol. 2018;122:1–18. doi: 10.1016/j.funbio.2017.09.006. PubMed DOI

Kosonen T, Huhtinen S, Hansen K. Taxonomy and systematics of Hyaloscyphaceae and Arachnopezizaceae. Persoonia - Mol Phylogeny Evol Fungi. 2021;46:26–62. doi: 10.3767/persoonia.2021.46.02. PubMed DOI PMC

Kron KA, Judd WS, Stevens PF, et al. Phylogenetic classification of Ericaceae: Molecular and morphological evidence. Bot Rev. 2002;68:335–423. doi: 10.1663/0006-8101(2002)068[0335:pcoema]2.0.co;2. DOI

Kron KA, Luteyn JL (2005) Origins and biogeographic patterns in Ericaceae: New insights from recent phylogenetic analyses. Biol Skr (Plant Divers Complex patterns local Reg Glob Dimens Proc an Int Symp held R Danish Acad Sci 1:479–500

Leake JR, Read DJ. 20 Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK, editors. Methods in Microbiology 23. London: Academic Press; 1991. pp. 435–459.

Lee Y-I, Yang C-K, Gebauer G. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Ann Bot. 2015;116:423–435. doi: 10.1093/aob/mcv085. PubMed DOI PMC

Leopold DR. Ericoid fungal diversity: Challenges and opportunities for mycorrhizal research. Fungal Ecol. 2016;24:114–123. doi: 10.1016/j.funeco.2016.07.004. DOI

Leopold DR, Peay KG, Vitousek PM, Fukami T. Diversity of putative ericoid mycorrhizal fungi increases with soil age and progressive phosphorus limitation across a 4.1-million-year chronosequence. FEMS Microbiol Ecol. 2021;97:fiab016. doi: 10.1093/femsec/fiab016. PubMed DOI

Lorberau KE, Botnen SS, Mundra S, et al. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Mycorrhiza. 2017;27:513–524. doi: 10.1007/s00572-017-0767-y. PubMed DOI

Lukešová T, Kohout P, Větrovský T, Vohník M. The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle european forest plants. PLoS ONE. 2015 doi: 10.1371/journal.pone.0124752. PubMed DOI PMC

Martino E, Morin E, Grelet G, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–1229. doi: 10.1111/nph.14974. PubMed DOI

Massicotte HB, Melville LH, Peterson RL. Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot. 2005;83:1057–1064. doi: 10.1139/b05-046. DOI

Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza. 2013;23:119–128. doi: 10.1007/s00572-012-0456-9. PubMed DOI

Midgley DJ, Jordan LA, Saleeba JA, McGee PA. Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza. 2006;16:175–182. doi: 10.1007/s00572-005-0029-2. PubMed DOI

Midgley DJ, Rosewarne CP, Greenfield P, et al. Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Mycorrhiza. 2016;26:345–352. doi: 10.1007/s00572-016-0683-6. PubMed DOI

Midgley DJ, Sutcliffe B, Greenfield P, Tran-Dinh N. Gamarada debralockiae gen. nov. sp. nov. – the genome of the most widespread Australian ericoid mycorrhizal fungus. Mycorrhiza. 2018;28:379–389. doi: 10.1007/s00572-018-0835-y. PubMed DOI

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE, pp 1–8

Molina R, Palmer JG. Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St.Paul, Minnesota: The American Phytopathological Society; 1982. pp. 115–129.

Newsham KK. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011;190:783–793. doi: 10.1111/j.1469-8137.2010.03611.x. PubMed DOI

Noble HM, Langley D, Sidebottom PJ, et al. An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycol Res. 1991;95:1439–1440. doi: 10.1016/S0953-7562(09)80401-2. DOI

Nylander JAA (2004) MrModeltest Version 2

Ogura-Tsujita Y, Gebauer G, Hashimoto T, et al. Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc B Biol Sci. 2009;276:761–767. doi: 10.1098/rspb.2008.1225. PubMed DOI PMC

Pearson V, Read DJ. The physiology of the mycorrhizal endophyte of Calluna vulgaris. Trans Br Mycol Soc. 1975;64:1–7. doi: 10.1016/s0007-1536(75)80069-6. DOI

Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 2018;220:1141–1147. doi: 10.1111/nph.15218. PubMed DOI

Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: Some new perspectives on old acquaintances. Plant Soil. 2002;244:41–53. doi: 10.1023/A:1020289401610. DOI

Read DJ. The structure and function of the ericoid mycorrhizal root. Ann Bot. 1996;77:365–374. doi: 10.1006/anbo.1996.0044. DOI

Read DJ, Kerley S. The status and function of ericoid mycorrhizal systems. Mycorrhiza. 1995 doi: 10.1007/978-3-662-08897-5_22. DOI

Sayers EW, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2019;47:D94–D99. doi: 10.1093/nar/gky989. PubMed DOI PMC

Schulz B, Boyle C. What are endophytes? In: Schulz B, Boyle C, Sieber TN, editors. Microbial Root Endophytes. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2006. pp. 1–13.

Schulz B, Sucker J, Aust HJ, et al. Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res. 1995;99:1007–1015. doi: 10.1016/S0953-7562(09)80766-1. DOI

Selosse MA, Setaro S, Glatard F, et al. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol. 2007;174:864–878. doi: 10.1111/j.1469-8137.2007.02064.x. PubMed DOI

Setaro S, Weiß M, Oberwinkler F, Kottke I. Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol. 2006;169:355–365. doi: 10.1111/j.1469-8137.2005.01583.x. PubMed DOI

Sieber TN. Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev. 2007;21:75–89. doi: 10.1016/j.fbr.2007.05.004. DOI

Sigler L, Allan T, Lim SR, et al. Two new Cryptosporiopsis species from roots of ericaceous hosts in western North America. Stud Mycol. 2005;53:53–62. doi: 10.3114/sim.53.1.53. DOI

Smith SE, Read D (2008) Ericoid mycorrhizas. In: Mycorrhizal Symbiosis. Elsevier, pp 389–418

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Stenroos S, Laukka T, Huhtinen S, et al (2010) Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. Cladistics 26:281–300. 10.1111/j.1096-0031.2009.00284.x PubMed

Stillwell MA, Wood FA, Strunz GM. A broad-spectrum antibiotic produced by a species of Cryptosporiopsis. Can J Microbiol. 1969;15:501–507. doi: 10.1139/m69-087. PubMed DOI

Toju H, Tanabe AS, Ishii HS. Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol Ecol. 2016;25:3242–3257. doi: 10.1111/mec.13680. PubMed DOI

Verkley GJM (1999) A monograph of the genus Pezicula and its anamorphs. Stud Mycol 5–180

Verkley GJM, Zijlstra JD, Summerbell RC, Berendse F. Phylogeny and taxonomy of root-inhabiting Cryptosporiopsis species, and C. rhizophila sp. nov., a fungus inhabiting roots of several Ericaceae. Mycol Res. 2003;107:689–698. doi: 10.1017/S0953756203007883. PubMed DOI

Villarreal-Ruiz L, Neri-Luna C, Anderson IC, Alexander IJ. In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis. 2012;56:67–75. doi: 10.1007/s13199-012-0161-7. DOI

Vohník M. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza. 2020;30:671–695. doi: 10.1007/s00572-020-00989-1. PubMed DOI PMC

Vohník M, Albrechtová J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot. 2011;46:373–386. doi: 10.1007/s12224-011-9098-5. DOI

Vohník M, Albrechtová J, Vosátka M. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis. 2005;40:87–96.

Vohník M, Figura T, Réblová M. Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza. 2022;32:105–122. doi: 10.1007/s00572-021-01064-z. PubMed DOI

Vohník M, Lukančič S, Bahor E, et al. Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot. 2003;38:191–200. doi: 10.1007/BF02803151. DOI

Vohník M, Mrnka L, Lukešová T, et al. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 2013;6:281–292. doi: 10.1016/j.funeco.2013.03.006. DOI

Vohník M, Pánek M, Fehrer J, Selosse M-A. Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales) Mycorrhiza. 2016;26:831–846. doi: 10.1007/s00572-016-0717-0. PubMed DOI

Vohník M, Sadowsky JJ, Kohout P, et al. Novel root-fungus symbiosis in Ericaceae: Sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS ONE. 2012;7:e39524. doi: 10.1371/journal.pone.0039524. PubMed DOI PMC

Vohník M, Sadowsky JJ, Lukešová T, et al. Inoculation with a ligninolytic basidiomycete, but not root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate. Plant Soil. 2012;355:341–352. doi: 10.1007/s11104-011-1106-2. DOI

Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata - The ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563. 10.1046/j.1469-8137.2000.00605.x PubMed

Vrålstad T, Myhre E, Schumacher T (2002) Molecular diversity and phylogenetic affinities of symbiotic rootassociated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155:131–148. 10.1046/j.1469-8137.2002.00444.x PubMed

Walker JF, Aldrich-Wolfe L, Riffel A, et al. Diverse helotiales associated with the roots of three species of arctic ericaceae provide no evidence for host specificity. New Phytol. 2011;191:515–527. doi: 10.1111/j.1469-8137.2011.03703.x. PubMed DOI

Wang Z, Binder M, Hibbett DS (2005) Life history and systematics of the aquatic discomycete Mitrula (Helotiales, Ascomycota) based on cultural, morphological, and molecular studies. Am J Bot 92:1565–1574. 10.3732/ajb.92.9.1565 PubMed

Welch D, Scott D, Doyle S. Studies on the paradox of seedling rarity in Vaccinium myrtillus L. in NE Scotland. Bot J Scotl. 2000;52:17–30. doi: 10.1080/03746600008684942. DOI

Yuan Z, Verkley GJM. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience. 2015;56:205–213. doi: 10.1016/j.myc.2014.06.004. DOI

Zhang L, Chen J, Lv Y, et al. Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol Prog. 2012;11:395–401. doi: 10.1007/s11557-011-0754-1. DOI

Zhang Z, Schwartz S, Wagner L, Miller W. A Greedy Algorithm for Aligning DNA Sequences. J Comput Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI

Zijlstra JD, Van’t Hof P, Baar J, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol. 2005;53:147–162. doi: 10.3114/sim.53.1.147. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...