Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GAČR 18-05886S
Grantová Agentura České Republiky
RVO 67985939
Institute of Botany of the Czech Academy of Sciences
PubMed
36700963
PubMed Central
PMC9938075
DOI
10.1007/s00572-023-01101-z
PII: 10.1007/s00572-023-01101-z
Knihovny.cz E-zdroje
- Klíčová slova
- Agaricales, Ericoid mycorrhiza, Hyaloscypha, Mycena, Root-associated fungi, Saprobic fungi,
- MeSH
- Agaricales * MeSH
- Basidiomycota * MeSH
- dřevo MeSH
- ekosystém MeSH
- Ericaceae * mikrobiologie MeSH
- kořeny rostlin mikrobiologie MeSH
- mykorhiza * MeSH
- symbióza MeSH
- Vaccinium * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Most of our knowledge on the ericoid mycorrhizal (ErM) symbiosis comes from temperate heathlands characterized by acidic peaty soils and many experiments with a few ascomycetous fungi. However, ericaceous plants thrive in many other ecosystems and in temperate coniferous forests, their seedlings often prosper on decomposing wood. While wood is typically exploited by basidiomycetous ectomycorrhizal (EcM) and saprobic fungi, the role of ErM fungi (ErMF) is much less clear. We explored the cultivable mycobiota of surface sterilized hair roots of Vaccinium spp. growing on decomposing wood in two coniferous forests in Mid-Norway (Scandinavia) and Northern Bohemia (Central Europe). Obtained isolates were identified using molecular tools and their symbiotic potential was tested in vitro. While the detected community lacked the archetypal ErMF Hyaloscypha hepaticicola and the incidence of dark septate endophytes and EcM fungi was negligible, it comprised other frequent asexual ascomycetous ErMF, namely H. variabilis and Oidiodendron maius, together with several isolates displaying affinities to sexual saprobic H. daedaleae and H. fuckelii. Ascomycete-suppressing media revealed representatives of the saprobic basidiomycetous genera Coprinellus, Gymnopilus, Mycena (Agaricales), and Hypochnicium (Polyporales). In the resyntheses, the tested basidiomycetes occasionally penetrated the rhizodermal cells of their hosts but never formed ericoid mycorrhizae and in many cases overgrew and killed the inoculated seedlings. In contrast, a representative of the H. daedaleae/H. fuckelii-related isolates repeatedly formed what morphologically appears as the ErM symbiosis and supported host's growth. In conclusion, while basidiomycetous saprobic fungi have a potential to colonize healthy-looking ericaceous hair roots, the mode(-s) of their functioning remain obscure. For the first time, a lineage in Hyaloscypha s. str. (corresponding to the former Hymenoscyphus ericae aggregate) where sexual saprobes are intermingled with root symbionts has been revealed, shedding new light on the ecology and evolution of these prominent ascomycetous ErMF.
Zobrazit více v PubMed
Allen TR, Millar T, Berch SM, Berbee ML. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol. 2003;160:255–272. doi: 10.1046/j.1469-8137.2003.00885.x. PubMed DOI
Baba T, Hirose D. Slow-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae form hyphal coils in vital ericaceous rhizodermal cells in vitro. Fungal Biol. 2021 doi: 10.1016/j.funbio.2021.07.003. PubMed DOI
Baral H-O, De Sloover J, Huhtinen S, et al (2009) An emendation of the genus Hyaloscypha to include Fuscoscypha (Hyaloscyphaceae, Helotiales, Ascomycotina). Karstenia 49:1–17. 10.29203/ka.2009.430
Baucher M, Monties B, Van MM, Boerjan W. Biosynthesis and genetic engineering of lignin. CRC Crit Rev Plant Sci. 1998;17:125–197. doi: 10.1080/07352689891304203. DOI
Bending GD, Read DJ. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res. 1997;101:1348–1354. doi: 10.1017/S0953756297004140. DOI
Boddy L, Watkinson SC. Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot. 1995;73:1377–1383. doi: 10.1139/b95-400. DOI
Bogale M, Orr M-J, O’Hara MJ, Untereiner WA (2010) Systematics of Catenulifera (anamorphic Hyaloscyphaceae) with an assessment of the phylogenetic position of Phialophora hyalina. Fungal Biol 114:396–409. 10.1016/j.funbio.2010.02.006 PubMed
Bonfante-Fasolo P. Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc. 1980;75:320–325. doi: 10.1016/S0007-1536(80)80097-0. DOI
Bougoure DS, Parkin PI, Cairney JWG, et al. Diversity of fungi in hair roots of Ericaceae varies along a vegetation gradient. Mol Ecol. 2007;16:4624–4636. doi: 10.1111/j.1365-294X.2007.03540.x. PubMed DOI
Bruzone MC, Fontenla SB, Vohník M. Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina. Mycorrhiza. 2015;25:25–40. doi: 10.1007/s00572-014-0586-3. PubMed DOI
Cairney JWG, Burke RM. Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf and Kernan: Their likely roles in decomposition of dead plant tissue in soil. Plant Soil. 1998;205:181–192. doi: 10.1023/A:1004376731209. DOI
Chen C, Verkley GJM, Sun G, et al. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol. 2016;120:1291–1322. doi: 10.1016/j.funbio.2015.09.013. PubMed DOI
Daghino S, Martino E, Voyron S, Perotto S. Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi. Sci Rep. 2022;12:11013. doi: 10.1038/s41598-022-15154-1. PubMed DOI PMC
Duclos JL, Pépin R, Bruchet G. Étude morphologique, anatomique et ultrastructurale d’endomycorhizes synthétiques d’ Erica carnea. Can J Bot. 1983;61:466–475. doi: 10.1139/b83-054. DOI
Fehrer J, Réblová M, Bambasová V, Vohník M. The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence. Stud Mycol. 2019;92:195–225. doi: 10.1016/j.simyco.2018.10.004. PubMed DOI PMC
Fisher PJ, Anson AE, Petrini O. Novel antibiotic activity of an endophytic Cryptosporiopsis sp. isolated from Vaccinium myrtillus. Trans Br Mycol Soc. 1984;83:145–148. doi: 10.1016/S0007-1536(84)80254-5. DOI
Goodell B, Winandy JE, Morrell JJ. Fungal degradation of wood: Emerging data, new insights and changing perceptions. Coatings. 2020;10:1210. doi: 10.3390/coatings10121210. DOI
Gorzelak MA, Hambleton S, Massicotte HB. Community structure of ericoid mycorrhizas and root-associated fungi of Vaccinium membranaceum across an elevation gradient in the Canadian Rocky Mountains. Fungal Ecol. 2012;5:36–45. doi: 10.1016/j.funeco.2011.08.008. DOI
Gouy M, Guindon S, Gascuel O. Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Grelet GA, Ba R, Goeke DF, et al. A plant growth-promoting symbiosis between Mycena galopus and Vaccinium corymbosum seedlings. Mycorrhiza. 2017;27:831–839. doi: 10.1007/s00572-017-0797-5. PubMed DOI
Griffin A, Kernaghan G. Ericoid mycorrhizal colonization and associated fungal communities along a wetland gradient in the Acadian forest of Eastern Canada. Fungal Ecol. 2022;56:101138. doi: 10.1016/j.funeco.2021.101138. DOI
Grunewaldt-Stöcker G, von Alten H. Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus? Mycorrhiza. 2016;26:429–440. doi: 10.1007/s00572-016-0682-7. PubMed DOI
Grünig CR, Queloz V, Sieber TN, Holdenrieder O. Dark septate endophytes (DSE) of the Phialocephala fortinii s. l. – Acephala applanata species complex in tree roots: Classification, population biology, and ecology. Botany. 2008;86:1355–1369. doi: 10.1139/B08-108. DOI
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Hambleton S, Currah RS. Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot. 1997;75:1570–1581. doi: 10.1139/b97-869. DOI
Hambleton S, Sigler L. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (=Hymenoscyphus ericae), Leotiomycetes. Stud Mycol. 2005;53:1–27. doi: 10.3114/sim.53.1.1. DOI
Han JG, Hosoya T, Sung GH, Shin HD (2014) Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biol 118:150–167. 10.1016/j.funbio.2013.11.004 PubMed
Harder CB, Hesling E, Niskanen T, et al. Mycena species can be opportunist-generalist plant root invaders. bioRxiv. 2021 doi: 10.1101/2021.03.23.436563. PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Janusz G, Pawlik A, Sulej J, et al. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41:941–962. doi: 10.1093/femsre/fux049. PubMed DOI PMC
Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kolařík M, Vohník M. When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biol. 2018;122:1–18. doi: 10.1016/j.funbio.2017.09.006. PubMed DOI
Kosonen T, Huhtinen S, Hansen K. Taxonomy and systematics of Hyaloscyphaceae and Arachnopezizaceae. Persoonia - Mol Phylogeny Evol Fungi. 2021;46:26–62. doi: 10.3767/persoonia.2021.46.02. PubMed DOI PMC
Kron KA, Judd WS, Stevens PF, et al. Phylogenetic classification of Ericaceae: Molecular and morphological evidence. Bot Rev. 2002;68:335–423. doi: 10.1663/0006-8101(2002)068[0335:pcoema]2.0.co;2. DOI
Kron KA, Luteyn JL (2005) Origins and biogeographic patterns in Ericaceae: New insights from recent phylogenetic analyses. Biol Skr (Plant Divers Complex patterns local Reg Glob Dimens Proc an Int Symp held R Danish Acad Sci 1:479–500
Leake JR, Read DJ. 20 Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK, editors. Methods in Microbiology 23. London: Academic Press; 1991. pp. 435–459.
Lee Y-I, Yang C-K, Gebauer G. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Ann Bot. 2015;116:423–435. doi: 10.1093/aob/mcv085. PubMed DOI PMC
Leopold DR. Ericoid fungal diversity: Challenges and opportunities for mycorrhizal research. Fungal Ecol. 2016;24:114–123. doi: 10.1016/j.funeco.2016.07.004. DOI
Leopold DR, Peay KG, Vitousek PM, Fukami T. Diversity of putative ericoid mycorrhizal fungi increases with soil age and progressive phosphorus limitation across a 4.1-million-year chronosequence. FEMS Microbiol Ecol. 2021;97:fiab016. doi: 10.1093/femsec/fiab016. PubMed DOI
Lorberau KE, Botnen SS, Mundra S, et al. Does warming by open-top chambers induce change in the root-associated fungal community of the arctic dwarf shrub Cassiope tetragona (Ericaceae)? Mycorrhiza. 2017;27:513–524. doi: 10.1007/s00572-017-0767-y. PubMed DOI
Lukešová T, Kohout P, Větrovský T, Vohník M. The potential of dark septate endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle european forest plants. PLoS ONE. 2015 doi: 10.1371/journal.pone.0124752. PubMed DOI PMC
Martino E, Morin E, Grelet G, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–1229. doi: 10.1111/nph.14974. PubMed DOI
Massicotte HB, Melville LH, Peterson RL. Structural characteristics of root-fungal interactions for five ericaceous species in eastern Canada. Can J Bot. 2005;83:1057–1064. doi: 10.1139/b05-046. DOI
Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza. 2013;23:119–128. doi: 10.1007/s00572-012-0456-9. PubMed DOI
Midgley DJ, Jordan LA, Saleeba JA, McGee PA. Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza. 2006;16:175–182. doi: 10.1007/s00572-005-0029-2. PubMed DOI
Midgley DJ, Rosewarne CP, Greenfield P, et al. Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Mycorrhiza. 2016;26:345–352. doi: 10.1007/s00572-016-0683-6. PubMed DOI
Midgley DJ, Sutcliffe B, Greenfield P, Tran-Dinh N. Gamarada debralockiae gen. nov. sp. nov. – the genome of the most widespread Australian ericoid mycorrhizal fungus. Mycorrhiza. 2018;28:379–389. doi: 10.1007/s00572-018-0835-y. PubMed DOI
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE, pp 1–8
Molina R, Palmer JG. Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St.Paul, Minnesota: The American Phytopathological Society; 1982. pp. 115–129.
Newsham KK. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011;190:783–793. doi: 10.1111/j.1469-8137.2010.03611.x. PubMed DOI
Noble HM, Langley D, Sidebottom PJ, et al. An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycol Res. 1991;95:1439–1440. doi: 10.1016/S0953-7562(09)80401-2. DOI
Nylander JAA (2004) MrModeltest Version 2
Ogura-Tsujita Y, Gebauer G, Hashimoto T, et al. Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc B Biol Sci. 2009;276:761–767. doi: 10.1098/rspb.2008.1225. PubMed DOI PMC
Pearson V, Read DJ. The physiology of the mycorrhizal endophyte of Calluna vulgaris. Trans Br Mycol Soc. 1975;64:1–7. doi: 10.1016/s0007-1536(75)80069-6. DOI
Perotto S, Daghino S, Martino E. Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? New Phytol. 2018;220:1141–1147. doi: 10.1111/nph.15218. PubMed DOI
Perotto S, Girlanda M, Martino E. Ericoid mycorrhizal fungi: Some new perspectives on old acquaintances. Plant Soil. 2002;244:41–53. doi: 10.1023/A:1020289401610. DOI
Read DJ. The structure and function of the ericoid mycorrhizal root. Ann Bot. 1996;77:365–374. doi: 10.1006/anbo.1996.0044. DOI
Read DJ, Kerley S. The status and function of ericoid mycorrhizal systems. Mycorrhiza. 1995 doi: 10.1007/978-3-662-08897-5_22. DOI
Sayers EW, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2019;47:D94–D99. doi: 10.1093/nar/gky989. PubMed DOI PMC
Schulz B, Boyle C. What are endophytes? In: Schulz B, Boyle C, Sieber TN, editors. Microbial Root Endophytes. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2006. pp. 1–13.
Schulz B, Sucker J, Aust HJ, et al. Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res. 1995;99:1007–1015. doi: 10.1016/S0953-7562(09)80766-1. DOI
Selosse MA, Setaro S, Glatard F, et al. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol. 2007;174:864–878. doi: 10.1111/j.1469-8137.2007.02064.x. PubMed DOI
Setaro S, Weiß M, Oberwinkler F, Kottke I. Sebacinales form ectendomycorrhizas with Cavendishia nobilis, a member of the Andean clade of Ericaceae, in the mountain rain forest of southern Ecuador. New Phytol. 2006;169:355–365. doi: 10.1111/j.1469-8137.2005.01583.x. PubMed DOI
Sieber TN. Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev. 2007;21:75–89. doi: 10.1016/j.fbr.2007.05.004. DOI
Sigler L, Allan T, Lim SR, et al. Two new Cryptosporiopsis species from roots of ericaceous hosts in western North America. Stud Mycol. 2005;53:53–62. doi: 10.3114/sim.53.1.53. DOI
Smith SE, Read D (2008) Ericoid mycorrhizas. In: Mycorrhizal Symbiosis. Elsevier, pp 389–418
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Stenroos S, Laukka T, Huhtinen S, et al (2010) Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. Cladistics 26:281–300. 10.1111/j.1096-0031.2009.00284.x PubMed
Stillwell MA, Wood FA, Strunz GM. A broad-spectrum antibiotic produced by a species of Cryptosporiopsis. Can J Microbiol. 1969;15:501–507. doi: 10.1139/m69-087. PubMed DOI
Toju H, Tanabe AS, Ishii HS. Ericaceous plant-fungus network in a harsh alpine-subalpine environment. Mol Ecol. 2016;25:3242–3257. doi: 10.1111/mec.13680. PubMed DOI
Verkley GJM (1999) A monograph of the genus Pezicula and its anamorphs. Stud Mycol 5–180
Verkley GJM, Zijlstra JD, Summerbell RC, Berendse F. Phylogeny and taxonomy of root-inhabiting Cryptosporiopsis species, and C. rhizophila sp. nov., a fungus inhabiting roots of several Ericaceae. Mycol Res. 2003;107:689–698. doi: 10.1017/S0953756203007883. PubMed DOI
Villarreal-Ruiz L, Neri-Luna C, Anderson IC, Alexander IJ. In vitro interactions between ectomycorrhizal fungi and ericaceous plants. Symbiosis. 2012;56:67–75. doi: 10.1007/s13199-012-0161-7. DOI
Vohník M. Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza. 2020;30:671–695. doi: 10.1007/s00572-020-00989-1. PubMed DOI PMC
Vohník M, Albrechtová J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six European Rhododendron species. Folia Geobot. 2011;46:373–386. doi: 10.1007/s12224-011-9098-5. DOI
Vohník M, Albrechtová J, Vosátka M. The inoculation with Oidiodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C: N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis. 2005;40:87–96.
Vohník M, Figura T, Réblová M. Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza. 2022;32:105–122. doi: 10.1007/s00572-021-01064-z. PubMed DOI
Vohník M, Lukančič S, Bahor E, et al. Inoculation of Rhododendron cv. Belle-Heller with two strains of Phialocephala fortinii in two different substrates. Folia Geobot. 2003;38:191–200. doi: 10.1007/BF02803151. DOI
Vohník M, Mrnka L, Lukešová T, et al. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 2013;6:281–292. doi: 10.1016/j.funeco.2013.03.006. DOI
Vohník M, Pánek M, Fehrer J, Selosse M-A. Experimental evidence of ericoid mycorrhizal potential within Serendipitaceae (Sebacinales) Mycorrhiza. 2016;26:831–846. doi: 10.1007/s00572-016-0717-0. PubMed DOI
Vohník M, Sadowsky JJ, Kohout P, et al. Novel root-fungus symbiosis in Ericaceae: Sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS ONE. 2012;7:e39524. doi: 10.1371/journal.pone.0039524. PubMed DOI PMC
Vohník M, Sadowsky JJ, Lukešová T, et al. Inoculation with a ligninolytic basidiomycete, but not root symbiotic ascomycetes, positively affects growth of highbush blueberry (Ericaceae) grown in a pine litter substrate. Plant Soil. 2012;355:341–352. doi: 10.1007/s11104-011-1106-2. DOI
Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata - The ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563. 10.1046/j.1469-8137.2000.00605.x PubMed
Vrålstad T, Myhre E, Schumacher T (2002) Molecular diversity and phylogenetic affinities of symbiotic rootassociated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytol 155:131–148. 10.1046/j.1469-8137.2002.00444.x PubMed
Walker JF, Aldrich-Wolfe L, Riffel A, et al. Diverse helotiales associated with the roots of three species of arctic ericaceae provide no evidence for host specificity. New Phytol. 2011;191:515–527. doi: 10.1111/j.1469-8137.2011.03703.x. PubMed DOI
Wang Z, Binder M, Hibbett DS (2005) Life history and systematics of the aquatic discomycete Mitrula (Helotiales, Ascomycota) based on cultural, morphological, and molecular studies. Am J Bot 92:1565–1574. 10.3732/ajb.92.9.1565 PubMed
Welch D, Scott D, Doyle S. Studies on the paradox of seedling rarity in Vaccinium myrtillus L. in NE Scotland. Bot J Scotl. 2000;52:17–30. doi: 10.1080/03746600008684942. DOI
Yuan Z, Verkley GJM. Pezicula neosporulosa sp. nov. (Helotiales, Ascomycota), an endophytic fungus associated with Abies spp. in China and Europe. Mycoscience. 2015;56:205–213. doi: 10.1016/j.myc.2014.06.004. DOI
Zhang L, Chen J, Lv Y, et al. Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol Prog. 2012;11:395–401. doi: 10.1007/s11557-011-0754-1. DOI
Zhang Z, Schwartz S, Wagner L, Miller W. A Greedy Algorithm for Aligning DNA Sequences. J Comput Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Zijlstra JD, Van’t Hof P, Baar J, et al. Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol. 2005;53:147–162. doi: 10.3114/sim.53.1.147. DOI