Ericoid mycorrhizal growth response is influenced by host plant phylogeny
Status In-Process Language English Country Germany Media electronic
Document type Journal Article
PubMed
40801964
PubMed Central
PMC12350526
DOI
10.1007/s00572-025-01223-6
PII: 10.1007/s00572-025-01223-6
Knihovny.cz E-resources
- Keywords
- Ericaceae, Ericoid mycorrhizal fungi, Heathland, Mycorrhizal growth response, Wetland,
- Publication type
- Journal Article MeSH
Ericoid mycorrhizal (ErM) fungi (ErMF) are crucial for the establishment of thousands of ericaceous species in heathlands and wetlands by increasing their tolerance to harsh conditions and improving nutrient uptake. However, ErM research has largely focused on a limited number of host species and four ErMF species (especially Hyaloscypha hepaticicola and Oidiodendron maius, to a lesser extent H. bicolor/H. finlandica and H. variabilis). Therefore, the degree to which other ericaceous plants and ErMF form functional associations, and corresponding benefits for plant growth, are not well understood. As such, we lack a clear understanding of how changes in fungal partners may influence plant fitness. To address this gap, we conducted a greenhouse experiment with nine ericaceous plant species and eight ErMF isolates to expand baseline knowledge regarding the effects of the ErM symbiosis on host plant growth. By analyzing ErM root colonization and host plant growth response, we observed that the mycorrhizal growth response (MGR) was variable and depended on plant and fungal identity. Moreover, overall inoculation effects on plant growth were independent from colonization levels. Finally, we found evidence that MGR was influenced by plant phylogeny. These results expand our basic understanding of the ErM symbiosis and provide valuable information for future restoration and conservation efforts.
See more in PubMed
Barron GL (1962) New species and new records of oidiodendron. Can J Bot 40(4):589–607. 10.1139/b62-055
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear Mixed-Effects models using lme4. J Stat Softw 67:1–48. 10.18637/jss.v067.i01
Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745. 10.1111/j.0014-3820.2003.tb00285.x PubMed
Botnen SS, Thoen E, Eidesen PB, Krabberød AK, Kauserud H (2020) Community composition of Arctic root-associated fungi mirrors host plant phylogeny. FEMS Microbiol Ecol 96(11):fiaa185. 10.1093/femsec/fiaa185 PubMed PMC
Bradley R, Burt A, Read D (1981) Mycorrhizal infection and resistance to heavy-metal tixicity in Calluna-Vulgaris. Nature 292(5821):335–337. 10.1038/292335a0
Bresadola G (1898) Fungi Tridentini 2(11–13):47–81
Brooks M, Kristensen E, Benthem K, van Magnusson KJ, Berg A, Nielsen CW, Skaug A, Mächler HJ, M., Bolker B, M (2017) GlmmTMB balances speed and flexibility among packages for Zero-inflated generalized linear mixed modeling. R J 9(2):378. 10.32614/RJ-2017-066
Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154(2):275–304. 10.1046/j.1469-8137.2002.00397.x PubMed
Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: A partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54(4):735–740. 10.1046/j.1351-0754.2003.0555.x
Carriconde F, Gardes M, Bellanger J-M, Letellier K, Gigante S, Gourmelon V, Ibanez T, McCoy S, Goxe J, Read J, Maggia L (2019) Host effect and high ectomycorrhizal diversity in tropical rainforests on ultramafic soils in new Caledonia. Fungal Ecol. 10.1016/j.funeco.2019.02.006
Casarrubia S, Martino E, Daghino S, Kohler A, Morin E, Khouja H-R, Murat C, Barry KW, Lindquist EA, Martin FM, Perotto S (2020) Modulation of plant and fungal gene expression upon cd exposure and symbiosis in ericoid mycorrhizal PubMed PMC
Chen D, Burford WB, Pham G, Zhang L, Alto LT, Ertelt JM, Winter MG, Winter SE, Way SS, Alto NM (2021) Systematic reconstruction of an effector-gene network reveals determinants of Salmonella cellular and tissue tropism. Cell Host Microbe 29(10):1531–1544e9. 10.1016/j.chom.2021.08.012 PubMed PMC
Clayton DH, Bush SE, Johnson KP (2004) Ecology of congruence: past Meets present. Syst Biol 53(1):165–173. 10.1080/10635150490265102 PubMed
Delavaux CS, Bever JD (2022) Evidence for the evolution of native plant response to mycorrhizal fungi in post-agricultural grasslands. Ecol Evol 12(7):e9097. 10.1002/ece3.9097 PubMed PMC
Dickie IA, Bufford JL, Cobb RC, Desprez-Loustau M-L, Grelet G, Hulme PE, Klironomos J, Makiola A, Nuñez MA, Pringle A, Thrall PH, Tourtellot SG, Waller L, Williams NM (2017) The emerging science of linked plant–fungal invasions. New Phytol 215(4):1314–1332. 10.1111/nph.14657 PubMed
Fagúndez J (2013) Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios. Ann Botany 111(2):151–172. 10.1093/aob/mcs257 PubMed PMC
Fehrer J, Réblová M, Bambasová V, Vohník M (2019) The root-symbiotic rhizoscyphus Ericae aggregate and hyaloscypha (Leotiomycetes) are congeneric: phylogenetic and experimental evidence. Stud Mycol 92(1):195–225. 10.1016/j.simyco.2018.10.004 PubMed PMC
Grelet G-A, Johnson D, Paterson E, Anderson IC, Alexander IJ (2009) Reciprocal carbon and nitrogen transfer between an ericaceous Dwarf shrub and fungi isolated from PubMed
Grelet G-A, Johnson D, Vrålstad T, Alexander IJ, Anderson IC (2010) New insights into the mycorrhizal rhizoscyphus Ericae aggregate: Spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188(1):210–222. 10.1111/j.1469-8137.2010.03353.x PubMed
Grelet G, Martino E, Dickie IA, Tajuddin R, Artz R (2016) Ecology of ericoid mycorrhizal fungi. Molecular mycorrhizal symbiosis. John Wiley & Sons, Ltd, pp 405–419. 10.1002/9781118951446.ch22
Guo X, Wang P, Wang X, Li Y, Ji B (2022) Specific plant mycorrhizal responses are linked to mycorrhizal fungal species interactions. Front Plant Sci 13. 10.3389/fpls.2022.930069 PubMed PMC
Hart MM, Klironomos JN (2003) Diversity of Arbuscular Mycorrhizal Fungi and Ecosystem Functioning. In M. G. A. van der Heijden & I. R. Sanders (Eds.),
Hartley IP, Hill TC, Chadburn SE, Hugelius G (2021) Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nat Commun 12(1). 10.1038/s41467-021-27101-1 PubMed PMC
Hoeksema JD, Bever JD, Chakraborty S, Chaudhary VB, Gardes M, Gehring CA, Hart MM, Housworth EA, Kaonongbua W, Klironomos JN, Lajeunesse MJ, Meadow J, Milligan BG, Piculell BJ, Pringle A, Rúa MA, Umbanhowar J, Viechtbauer W, Wang Y-W, Zee PC (2018) Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun Biology 1(1):116. 10.1038/s42003-018-0120-9 PubMed PMC
INVAM (2024a) International Culture Collection of VA Mycorrhizal Fungi. https://invam.ku.edu/staining-roots
INVAM (2024b) International Culture Collection of VA Mycorrhizal Fungi. https://invam.ku.edu/recipes
Jevon FV, Lang AK (2022) Tree biomass allocation differs by mycorrhizal association. Ecology 103(6):e3688. 10.1002/ecy.3688 PubMed
Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the Mutualism-Parasitism continuum. New Phytol 135(4):575–586. https://www.jstor.org/stable/2558989
Johnson D, IJdo M, Genney DR, Anderson IC, Alexander IJ (2005) How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? J Exp Bot 56(417):1751–1760. 10.1093/jxb/eri192 PubMed
Kingsford RT, Basset A, Jackson L (2016) Wetlands: conservation’s poor cousins. Aquat Conservation: Mar Freshw Ecosyst 26(5):892–916. 10.1002/aqc.2709
Köhl L, Lukasiewicz CE, van der Heijden MGA (2016) Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant Cell Environ 39(1):136–146. 10.1111/pce.12600 PubMed
Koziol L, Schultz PA, House GL, Bauer JT, Middleton EL, Bever JD (2018) The plant Microbiome and native plant restoration: the example of native mycorrhizal Fungi. Bioscience 68(12):996–1006. 10.1093/biosci/biy125
Lenth R (2024) Emmeans: estimated marginal means, aka Least-Squares means. 1103. 10.32614/CRAN.package.emmeans. [Dataset]
Leopold DR (2016) Ericoid fungal diversity: challenges and opportunities for mycorrhizal research. Fungal Ecol 24:114–123. 10.1016/j.funeco.2016.07.004
Lofgren L, Nguyen NH, Kennedy PG (2018) Ectomycorrhizal host specificity in a changing world: can legacy effects explain anomalous current associations? New Phytol 220(4):1273–1284. 10.1111/nph.15008 PubMed
Lutz S, Bodenhausen N, Hess J, Valzano-Held A, Waelchli J, Deslandes-Hérold G, Schlaeppi K, van der Heijden MGA (2023) Soil Microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi. Nat Microbiol 8(12). 10.1038/s41564-023-01520-w PubMed PMC
Ma Y, Gao G, Wang S, Ren H, Liu Z, Chen Y, Guo Q, Gu J (2024) Divergent arbuscular mycorrhizal growth responses in Woody and herbaceous plants across inoculum richness. Environ Exp Bot 224:105811. 10.1016/j.envexpbot.2024.105811
Malloch D (1981) Moulds: their isolation, cultivation, and identification. Univerisity of Toronto
Martin FM, van der Heijden MGA (2024) The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol 242(4):1486–1506. 10.1111/nph.19541 PubMed
Martino E, Morin E, Grelet G-A, Kuo A, Kohler A, Daghino S, Barry KW, Cichocki N, Clum A, Dockter RB, Hainaut M, Kuo RC, LaButti K, Lindahl BD, Lindquist EA, Lipzen A, Khouja H-R, Magnuson J, Murat C, Perotto S (2018) Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol 217(3):1213–1229. 10.1111/nph.14974 PubMed
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol 115(3):495–501. 10.1111/j.1469-8137.1990.tb00476.x PubMed
Meharg AA, Cairney JWG (1999) Co-evolution of Mycorrhizal Symbionts and their Hosts to Metal-contaminated Environments. In A. H. Fitter & D. G. Raffaelli (Eds.), Advances in Ecological Research (Vol. 30, pp. 69–112). Academic Press. 10.1016/S0065-2504(08)60017-3
Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35(1):25–33. 10.1016/S0921-8009(00)00165-8
Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landscape Ecol 28(4):583–597. 10.1007/s10980-012-9758-8
Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884. 10.1038/44766 PubMed
Paradis E, Schliep K (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses. Bioinf (Oxford England) 35(3):526–528. 10.1093/bioinformatics/bty633 PubMed
Pearse WD, Cadotte MW, Cavender-Bares J, Ives AR, Tucker CM, Walker SC, Helmus MR (2015) Pez: phylogenetics for the environmental sciences. Bioinf (Oxford England) 31(17):2888–2890. 10.1093/bioinformatics/btv277 PubMed
Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244(1):41–53. 10.1023/A:1020289401610
Perotto S, Martino E, Abbà S, Vallino M (2012) Genetic Diversity and Functional Aspects of Ericoid Mycorrhizal Fungi. In B. Hock (Ed.), Fungal Associations (pp. 255–285). Springer. 10.1007/978-3-642-30826-0_14
Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang P-H, Matsuda Y, Naadel T, Kennedy PG, Kõljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with Alders (lnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198(4):1239–1249. 10.1111/nph.12170 PubMed
Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, Oja J, Öpik M, Pecoraro L, Tedersoo L (2018) Host preference and network properties in biotrophic plant-fungal associations. New Phytol 217(3):1230–1239. 10.1111/nph.14895 PubMed
POWO (2024) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet
R Core Team (2023) R: A Language and Environment for Statistical Computing [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/
Read DJ (1974)
Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391. 10.1007/BF01972080
Read DJ, Kerley S (1999) The Status and Function of Ericoid Mycorrhizal Systems. In A. Varma & B. Hock (Eds.), Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology (pp. 499–520). Springer. 10.1007/978-3-662-03779-9_21
Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82(8):1243–1263. 10.1139/b04-123
Reinhart KO, Wilson GWT, Rinella MJ (2012) Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol Lett 15(7):689–695. 10.1111/j.1461-0248.2012.01786.x PubMed
Revell LJ (2024) Phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12:e16505. 10.7717/peerj.16505 PubMed PMC
Sharples JM, Meharg AA, Chambers SM, Cairney JW (2000) Symbiotic solution to arsenic contamination. Nature 404(6781):951–952. 10.1038/35010193 PubMed
Smith SA, Brown JW (2018) Constructing a broadly inclusive seed plant phylogeny. Am J Bot 105(3):302–314. 10.1002/ajb2.1019 PubMed
Smith SE, Read DJ (2008)
Straker CJ (1996) Ericoid mycorrhiza: ecological and host specificity. Mycorrhiza 6(4):215–225. 10.1007/s005720050129
Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180(2):479–490. 10.1111/j.1469-8137.2008.02561.x PubMed
Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199(3):822–831. 10.1111/nph.12328 PubMed
Thirkell TJ, Grimmer M, James L, Pastok D, Allary T, Elliott A, Paveley N, Daniell T, Field KJ (2022) Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit. Food Energy Secur 11(2):e370. 10.1002/fes3.370 PubMed PMC
Thomsen CN, Hart MM (2018) Using invasion theory to predict the fate of arbuscular mycorrhizal fungal inoculants. Biol Invasions 20(10):2695–2706. 10.1007/s10530-018-1746-8
Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371(1):1–13. 10.1007/s11104-013-1681-5
van Galen LG, Orlovich DA, Lord JM, Nilsen AR, Dutoit L, Larcombe MJ (2023) Correlated evolution in an ectomycorrhizal host–symbiont system. New Phytol 238(3):1215–1229. 10.1111/nph.18802 PubMed
Van Geel M, Jacquemyn H, Peeters G, van Acker K, Honnay O, Ceulemans T (2020) Diversity and community structure of ericoid mycorrhizal fungi in European bogs and heathlands across a gradient of nitrogen deposition. New Phytol 228(5):1640–1651. 10.1111/nph.16789 PubMed
Vohník M (2020) Ericoid mycorrhizal symbiosis: theoretical background and methods for its comprehensive investigation. Mycorrhiza 30(6):671–695. 10.1007/s00572-020-00989-1 PubMed PMC
Vohník M, Réblová M (2023) Fungi in hair roots of Vaccinium spp. (Ericaceae) growing on decomposing wood: colonization patterns, identity, and in vitro symbiotic potential. Mycorrhiza 33(1):69–86. 10.1007/s00572-023-01101-z PubMed PMC
Vohník M, Sadowsky JJ, Kohout P, Lhotáková Z, Nestby R, Kolařík M (2012) Novel Root-Fungus symbiosis in ericaceae: sheathed ericoid mycorrhiza formed by a hitherto undescribed basidiomycete with affinities to Trechisporales. PLoS ONE 7(6):e39524. 10.1371/journal.pone.0039524 PubMed PMC
Vohník M, Pánek M, Fehrer J, Selosse M-A (2016) Experimental evidence of ericoid mycorrhizal potential within serendipitaceae (Sebacinales). Mycorrhiza 26(8):831–846. 10.1007/s00572-016-0717-0 PubMed
Vohník M, Figura T, Réblová M (2022) PubMed
Vohník M, Bruzone MC, Knoblochová T, Fernández NV, Kolaříková Z, Větrovský T, Fontenla SB (2023) Exploring structural and molecular diversity of Ericaceae hair root mycobionts: A comparison between Northern Bohemia and Argentine patagonia. Mycorrhiza 33(5–6):425–447. 10.1007/s00572-023-01125-5 PubMed
Ważny R, Jędrzejczyk RJ, Rozpądek P, Domka A, Turnau K (2022) Biotization of highbush blueberry with ericoid mycorrhizal and endophytic fungi improves plant growth and vitality. Appl Microbiol Biotechnol 106(12):4775–4786. 10.1007/s00253-022-12019-5 PubMed
Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35(6):987–990. 10.1111/j.1365-2664.1998.tb00020.x
Wei X, Zhang W, Zulfiqar F, Zhang C, Chen J (2022) Ericoid mycorrhizal fungi as biostimulants for improving propagation and production of ericaceous plants. Front Plant Sci 13:1027390. 10.3389/fpls.2022.1027390 PubMed PMC
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-. 10.1007/978-3-319-24277-4
Yurgel SN, Douglas GM, Dusault A, Percival D, Langille MGI (2018) Dissecting community structure in wild blueberry root and soil Microbiome. Front Microbiol 9. 10.3389/fmicb.2018.01187 PubMed PMC
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506(7486):89–92. 10.1038/nature12872 PubMed
Zedler JB, Kercher S (2005) WETLAND RESOURCES: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30(1):39–74. 10.1146/annurev.energy.30.050504.144248