Navigating the redox landscape: reactive oxygen species in regulation of cell cycle
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38972297
PubMed Central
PMC11637001
DOI
10.1080/13510002.2024.2371173
Knihovny.cz E-zdroje
- Klíčová slova
- Cell cycle, cell cycle signaling, oxidative stress, proliferation, reactive oxygen species, redox state, redox-sensitive targets,
- MeSH
- buněčný cyklus * MeSH
- lidé MeSH
- oxidace-redukce * MeSH
- poškození DNA MeSH
- proliferace buněk MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku * MeSH
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
Department of Pathological Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Pathophysiology 1st Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Janssen-Heininger YMW, Mossman BT, Heintz NH, et al. . Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008;45(1):1–17. doi:10.1016/j.freeradbiomed.2008.03.011 PubMed DOI PMC
Laurent A, Nicco C, Chéreau C, et al. . Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65(3):948–956. doi:10.1158/0008-5472.948.65.3 PubMed DOI
Sarsour EH, Kumar MG, Chaudhuri L, et al. . Redox control of the cell cycle in health and disease. Antioxid Redox Signal. 2009;11(12):2985–3011. doi:10.1089/ars.2009.2513 PubMed DOI PMC
Zhang Y, Qian D, Li Z, et al. . Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2. Cell Stress Chaperones. 2016;21(4):687–696. doi:10.1007/s12192-016-0693-5 PubMed DOI PMC
Martínez Munõz C, Post JA, Verkleij AJ, et al. . The effect of hydrogen peroxide on the cyclin D expression in fiborblasts. Cell Mol Life Sci CMLS. 2001;58(7):990–996. doi:10.1007/PL00013204 PubMed DOI PMC
Chang TS, Jeong W, Lee DY, et al. . The RING-H2–finger protein APC11 as a target of hydrogen peroxide. Free Radic Biol Med. 2004;37(4):521–530. doi:10.1016/j.freeradbiomed.2004.05.006 PubMed DOI
Carballo M, Conde M, El Bekay R, et al. . Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J Biol Chem. 1999;274(25):17580–17586. doi:10.1074/jbc.274.25.17580 PubMed DOI
Ransy C, Vaz C, Lombès A, et al. . Use of H2O2 to cause oxidative stress, the catalase issue. Int J Mol Sci. 2020;21(23):9149. doi:10.3390/ijms21239149 PubMed DOI PMC
Lin KY, Chung CH, Ciou JS, et al. . Molecular damage and responses of oral keratinocyte to hydrogen peroxide. BMC Oral Health. 2019;19(1):10. doi:10.1186/s12903-018-0694-0 PubMed DOI PMC
Tan J, Li P, Xue H, et al. . Cyanidin-3-glucoside prevents hydrogen peroxide (H2O2)-induced oxidative damage in HepG2 cells. Biotechnol Lett. 2020;42(11):2453–2466. doi:10.1007/s10529-020-02982-2 PubMed DOI
Chen QM, Liu J, Merrett JB.. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J. 2000;347(Pt 2):543–551. doi:10.1042/bj3470543 PubMed DOI PMC
Wang F, Nguyen M, Qin FXF, et al. . SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell. 2007;6(4):505–514. doi:10.1111/j.1474-9726.2007.00304.x PubMed DOI
Wu M, Bian Q, Liu Y, et al. . Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome. Free Radic Biol Med. 2009;46(1):62–69. doi:10.1016/j.freeradbiomed.2008.09.021 PubMed DOI PMC
Kamata H, Honda SI, Maeda S, et al. . Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120(5):649–661. doi:10.1016/j.cell.2004.12.041 PubMed DOI
Le Belle JE, Orozco NM, Paucar AA, et al. . Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3 K/Akt-dependant manner. Cell Stem Cell. 2011;8(1):59–71. doi:10.1016/j.stem.2010.11.028 PubMed DOI PMC
Kundu N, Zhang S, Fulton AM.. Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma. Clin Exp Metastasis. 1995;13(1):16–22. doi:10.1007/BF00144014 PubMed DOI
Coyle CH, Martinez LJ, Coleman MC, et al. . Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radic Biol Med. 2006;40(12):2206–2213. doi:10.1016/j.freeradbiomed.2006.02.017 PubMed DOI
Zhang X, Liang S, Gao X, et al. . Protective effect of chitosan oligosaccharide against hydrogen peroxide-mediated oxidative damage and cell apoptosis via activating Nrf2/ARE signaling pathway. Neurotox Res. 2021;39(6):1708–1720. doi:10.1007/s12640-021-00419-w PubMed DOI
Deshpande NN, Sorescu D, Seshiah P, et al. . Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal. 2002;4(5):845–854. doi:10.1089/152308602760599007 PubMed DOI
Reynaert NL, van der Vliet A, Guala AS, et al. . Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinase β. Proc Natl Acad Sci. 2006;103(35):13086–13091. doi:10.1073/pnas.0603290103 PubMed DOI PMC
Guo S, Fei HD, Chen JF, et al. . Activation of Nrf2 by MIND4-17 protects osteoblasts from hydrogen peroxide-induced oxidative stress. Oncotarget. 2017;8(62):105662–105672. doi:10.18632/oncotarget.22360 PubMed DOI PMC
Wang GF, Dong Q, Bai Y, et al. . Oxidative stress induces mitotic arrest by inhibiting Aurora A-involved mitotic spindle formation. Free Radic Biol Med. 2017;103:177–187. doi:10.1016/j.freeradbiomed.2016.12.031 PubMed DOI
Cosar MY, Erdogan MA, Yilmaz O.. Epigallocatechin-3-gallate and resveratrol attenuate hydrogen peroxide induced damage in neuronal cells. Bratisl Lek Listy. 2023;124(3):205–211. doi:10.4149/BLL_2023_033 PubMed DOI
Byrne DP, Shrestha S, Galler M, et al. . Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity. Sci Signal. 2020;13(639):eaax2713. doi:10.1126/scisignal.aax2713 PubMed DOI
Pyo CW, Choi JH, Oh SM, et al. . Oxidative stress-induced cyclin D1 depletion and its role in cell cycle processing. Biochim Biophys Acta BBA – Gen Subj. 2013;1830(11):5316–5325. doi:10.1016/j.bbagen.2013.07.030 PubMed DOI
Saijo H, Hirohashi Y, Torigoe T, et al. . Plasticity of lung cancer stem-like cells is regulated by the transcription factor HOXA5 that is induced by oxidative stress. Oncotarget. 2016;7(31):50043–50056. doi:10.18632/oncotarget.10571 PubMed DOI PMC
Giannoni E, Taddei ML, Chiarugi P.. Src redox regulation: again in the front line. Free Radic Biol Med. 2010;49(4):516–527. doi:10.1016/j.freeradbiomed.2010.04.025 PubMed DOI
Loschen G, Azzi A, Richter C, et al. . Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 1974;42(1):68–72. doi:10.1016/0014-5793(74)80281-4 PubMed DOI
Radzinski M, Oppenheim T, Metanis N, et al. . The cys sense: thiol redox switches mediate life cycles of cellular proteins. Biomolecules. 2021;11(3):469. doi:10.3390/biom11030469 PubMed DOI PMC
Perillo B, Di Donato M, Pezone A, et al. . ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52(2):192–203. doi:10.1038/s12276-020-0384-2 PubMed DOI PMC
Denicourt C, Dowdy SF.. Cip/Kip proteins: more than just CDKs inhibitors. Genes Dev. 2004;18(8):851–855. doi:10.1101/gad.1205304 PubMed DOI
Matthews HK, Bertoli C, de Bruin RAM.. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74–88. doi:10.1038/s41580-021-00404-3 PubMed DOI
Cumming RC, Andon NL, Haynes PA, et al. . Protein disulfide bond formation in the cytoplasm during oxidative stress*. J Biol Chem. 2004;279(21):21749–21758. doi:10.1074/jbc.M312267200 PubMed DOI
Chiu J, Dawes IW.. Redox control of cell proliferation. Trends Cell Biol. 2012;22(11):592–601. doi:10.1016/j.tcb.2012.08.002 PubMed DOI
Lukosz M, Jakob S, Büchner N, et al. . Nuclear redox signaling. Antioxid Redox Signal. 2010;12(6):713–742. doi:10.1089/ars.2009.2609 PubMed DOI
Webster KA, Prentice H, Bishopric NH.. Oxidation of zinc finger transcription factors: physiological consequences. Antioxid Redox Signal. 2001;3(4):535–548. doi:10.1089/15230860152542916 PubMed DOI
Whittal RM, Benz CC, Scott G, et al. . Preferential oxidation of zinc finger 2 in estrogen receptor DNA-binding domain prevents dimerization and, hence, DNA binding. Biochemistry. 2000;39(29):8406–8417. doi:10.1021/bi000282f PubMed DOI
Houée-Lévin C, Bobrowski K, Horakova L, et al. . Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res. 2015;49(4):347–373. doi:10.3109/10715762.2015.1007968 PubMed DOI
Winterbourn CC, Hampton MB.. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008;45(5):549–561. doi:10.1016/j.freeradbiomed.2008.05.004 PubMed DOI
Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148–157. doi:10.1016/j.freeradbiomed.2014.11.013 PubMed DOI PMC
Marino SM, Gladyshev VN.. Analysis and functional prediction of reactive cysteine residues. J Biol Chem. 2012;287(7):4419–4425. doi:10.1074/jbc.R111.275578 PubMed DOI PMC
Reuter S, Gupta SC, Chaturvedi MM, et al. . Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006 PubMed DOI PMC
Liu S, Li B, Xu J, et al. . SOD1 promotes cell proliferation and metastasis in non-small cell lung cancer via an miR-409-3p/SOD1/SETDB1 epigenetic regulatory feedforward loop. Front Cell Dev Biol. 2020:8 [cited 2023 Dec 28]. Available from: https://www.frontiersin.org/articles/10.3389fcell.2020.00213 PubMed DOI PMC
Li S, Fu L, Tian T, et al. . Disrupting SOD1 activity inhibits cell growth and enhances lipid accumulation in nasopharyngeal carcinoma. Cell Commun Signal. 2018;16(1):28. doi:10.1186/s12964-018-0240-3 PubMed DOI PMC
Chiang SK, Chen SE, Chang LC.. The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells. 2021;10(9):2401. doi:10.3390/cells10092401 PubMed DOI PMC
Balan M, Chakraborty S, Flynn E, et al. . Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth. Sci Rep. 2017;7(1):5900. doi:10.1038/s41598-017-05455-1 PubMed DOI PMC
Lien GS, Wu MS, Bien MY, et al. . Epidermal growth factor stimulates nuclear factor-κB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3 K, and Akt in human colon cancer cells. PLoS One. 2014;9(8):e104891. doi:10.1371/journal.pone.0104891 PubMed DOI PMC
Mayerhofer M, Florian S, Krauth MT, et al. . Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64(9):3148–3154. doi:10.1158/0008-5472.CAN-03-1200 PubMed DOI
Stancill JS, Corbett JA.. The role of thioredoxin/peroxiredoxin in the β-cell defense against oxidative damage. Front Endocrinol. 2021:12 [cited 2024 Jan 9]. Available from: https://www.frontiersin.org/articles/10.3389fendo.2021.718235 PubMed DOI PMC
Hönigova K, Navratil J, Peltanova B, et al. . Metabolic tricks of cancer cells. Biochim Biophys Acta BBA – Rev Cancer. 2022;1877(3):188705. doi:10.1016/j.bbcan.2022.188705 PubMed DOI
Xiao GG, Wang M, Li N, et al. . Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem. 2003;278(50):50781–50790. doi:10.1074/jbc.M306423200 PubMed DOI
Surh YJ, Kundu JK, Na HK, et al. . Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr. 2005;135(12 Suppl):2993S–3001S. doi:10.1093/jn/135.12.2993S PubMed DOI
Fourquet S, Guerois R, Biard D, et al. . Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem. 2010;285(11):8463–8471. doi:10.1074/jbc.M109.051714 PubMed DOI PMC
He F, Ru X, Wen T.. NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 2020;21(13):4777. doi:10.3390/ijms21134777 PubMed DOI PMC
Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol. 2018;7:81–86. doi:10.1016/j.cotox.2017.11.002 PubMed DOI PMC
Pineda-Molina E, Klatt P, Vázquez J, et al. . Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry. 2001;40(47):14134–14142. doi:10.1021/bi011459o PubMed DOI
Hirota K, Murata M, Sachi Y, et al. . Distinct roles of thioredoxin in the cytoplasm and in the nucleus: a two-step mechanism of redox regulation of transcription factor NF-κB *. J Biol Chem. 1999;274(39):27891–27897. doi:10.1074/jbc.274.39.27891 PubMed DOI
Anrather J, Racchumi G, Iadecola C.. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem. 2006;281(9):5657–5667. doi:10.1074/jbc.M506172200 PubMed DOI
Djavaheri-Mergny M, Javelaud D, Wietzerbin J, et al. . NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett. 2004;578(1-2):111–115. doi:10.1016/j.febslet.2004.10.082 PubMed DOI
Pan H, Wang H, Wang X, et al. . The absence of Nrf2 enhances NF-κB-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012;2012:217580. doi:10.1155/2012/217580 PubMed DOI PMC
Seldon MP, Silva G, Pejanovic N, et al. . Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol Baltim Md 1950. 2007;179(11):7840–7851. doi:10.4049/jimmunol.179.11.7840 PubMed DOI
Liu GH, Qu J, Shen X.. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta. 2008;1783(5):713–727. doi:10.1016/j.bbamcr.2008.01.002 PubMed DOI
Liu X, Quan J, Shen Z, et al. . Metallothionein 2A (MT2A) controls cell proliferation and liver metastasis by controlling the MST1/LATS2/YAP1 signaling pathway in colorectal cancer. Cancer Cell Int. 2022;22(1):205. doi:10.1186/s12935-022-02623-w PubMed DOI PMC
Jiang LJ, Maret W, Vallee BL.. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A. 1998;95(7):3483–3488. doi:10.1073/pnas.95.7.3483 PubMed DOI PMC
Méplan C, Richard MJ, Hainaut P.. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000;19(46):5227–5236. doi:10.1038/sj.onc.1203907 PubMed DOI
Méplan C, Verhaegh G, Richard MJ, et al. . Metal ions as regulators of the conformation and function of the tumour suppressor protein p53: implications for carcinogenesis. Proc Nutr Soc. 1999;58(3):565–571. doi:10.1017/S0029665199000749 PubMed DOI
Ruttkay-Nedecky B, Nejdl L, Gumulec J, et al. . The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14(3):6044–6066. doi:10.3390/ijms14036044 PubMed DOI PMC
Arisumi S, Fujiwara T, Yasumoto K, et al. . Metallothionein 3 promotes osteoclast differentiation and survival by regulating the intracellular Zn2 + concentration and NRF2 pathway. Cell Death Discov. 2023;9(1):1–13. doi:10.1038/s41420-023-01729-y PubMed DOI PMC
Nagel WW, Vallee BL.. Cell cycle regulation of metallothionein in human colonic cancer cells. Proc Natl Acad Sci USA. 1995;92(2):579–583. doi:10.1073/pnas.92.2.579 PubMed DOI PMC
Kondo Y, Rusnak JM, Hoyt DG, et al. . Enhanced apoptosis in metallothionein null cells. Mol Pharmacol. 1997;52(2):195–201. doi:10.1124/mol.52.2.195 PubMed DOI
Burhans WC, Heintz NH.. The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med. 2009;47(9):1282–1293. doi:10.1016/j.freeradbiomed.2009.05.026 PubMed DOI
Hoffman A, Spetner LM, Burke M.. Ramifications of a redox switch within a normal cell: its absence in a cancer cell. Free Radic Biol Med. 2008;45(3):265–268. doi:10.1016/j.freeradbiomed.2008.03.025 PubMed DOI
Menon SG, Sarsour EH, Spitz DR, et al. . Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell Cycle1. Cancer Res. 2003;63(9):2109–2117. PubMed
Go YM, Jones DP.. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta. 2008;1780(11):1273–1290. doi:10.1016/j.bbagen.2008.01.011 PubMed DOI PMC
Gough DR, Cotter TG.. Hydrogen peroxide: a jekyll and hyde signalling molecule. Cell Death Dis. 2011;2(10):e213–e213. doi:10.1038/cddis.2011.96 PubMed DOI PMC
Murray TVA, Smyrnias I, Schnelle M, et al. . Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription. J Mol Cell Cardiol. 2015;79:54–68. doi:10.1016/j.yjmcc.2014.10.017 PubMed DOI PMC
Lee SR, Kwon KS, Kim SR, et al. . Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem. 1998;273(25):15366–15372. doi:10.1074/jbc.273.25.15366 PubMed DOI
Moloney JN, Cotter TG.. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64. doi:10.1016/j.semcdb.2017.05.023 PubMed DOI
Östman A, Frijhoff J, Sandin Å, et al. . Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem (Tokyo). 2011;150(4):345–356. doi:10.1093/jb/mvr104 PubMed DOI
Raman D, Pervaiz S.. Redox inhibition of protein phosphatase PP2A: potential implications in oncogenesis and its progression. Redox Biol. 2019;27:101105. doi:10.1016/j.redox.2019.101105 PubMed DOI PMC
Kwon J, Lee SR, Yang KS, et al. . Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A. 2004;101(47):16419–16424. doi:10.1073/pnas.0407396101 PubMed DOI PMC
Mahadev K, Zilbering A, Zhu L, et al. . Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem. 2001;276(24):21938–21942. doi:10.1074/jbc.C100109200 PubMed DOI
Humphries KM, Juliano C, Taylor SS.. Regulation of cAMP-dependent protein kinase activity by glutathionylation. J Biol Chem. 2002;277(45):43505–43511. doi:10.1074/jbc.M207088200 PubMed DOI
Kemble DJ, Sun G.. Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci U S A. 2009;106(13):5070–5075. doi:10.1073/pnas.0806117106 PubMed DOI PMC
Arciuch VGA, Galli S, Franco MC, et al. . Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression. PLoS One. 2009;4(10):e7523. doi:10.1371/journal.pone.0007523 PubMed DOI PMC
Keyes JD, Parsonage D, Yammani RD, et al. . Endogenous, regulatory cysteine sulfenylation of ERK kinases in response to proliferative signals. Free Radic Biol Med. 2017;112:534–543. doi:10.1016/j.freeradbiomed.2017.08.018 PubMed DOI PMC
Nadeau PJ, Charette SJ, Toledano MB, et al. . Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH2-terminal kinase activation and apoptosis. Mol Biol Cell. 2007;18(10):3903–3913. doi:10.1091/mbc.e07-05-0491 PubMed DOI PMC
Shi T, Dansen TB.. Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxid Redox Signal. 2020;33(12):839–859. doi:10.1089/ars.2020.8074 PubMed DOI
Saitoh M, Nishitoh H, Fujii M, et al. . Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17(9):2596–2606. doi:10.1093/emboj/17.9.2596 PubMed DOI PMC
Cross JV, Templeton DJ.. Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem J. 2004;381(Pt 3):675–683. doi:10.1042/BJ20040591 PubMed DOI PMC
Scherz-Shouval R, Shvets E, Fass E, et al. . Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26(7):1749–1760. doi:10.1038/sj.emboj.7601623 PubMed DOI PMC
Mathiassen SG, De Zio D, Cecconi F.. Autophagy and the cell cycle: a complex landscape. Front Oncol. 2017:7. doi:10.3389/fonc.2017.00051 PubMed DOI PMC
Knight H, Abis G, Kaur M, et al. . Cyclin D-CDK4 disulfide bond attenuates pulmonary vascular cell proliferation. Circ Res. 2023;133(12):966–988. doi:10.1161/CIRCRESAHA.122.321836 PubMed DOI PMC
Pawlonka J, Rak B, Ambroziak U.. The regulation of cyclin D promoters – review. Cancer Treat Res Commun. 2021;27:100338. doi:10.1016/j.ctarc.2021.100338 PubMed DOI
Jiang X, Xie H, Dou Y, et al. . Expression and function of FRA1 protein in tumors. Mol Biol Rep. 2020;47(1):737–752. doi:10.1007/s11033-019-05123-9 PubMed DOI
Guo ZY, Hao X-h, Tan FF, et al. . The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics. 2011;2(2):63–76. doi:10.1007/s13148-010-0018-y PubMed DOI PMC
Burch PM, Yuan Z, Loonen A, et al. . An extracellular signal-regulated kinase 1- and 2-dependent program of chromatin trafficking of c-Fos and Fra-1 Is required for cyclin D1 expression during cell cycle reentry. Mol Cell Biol. 2004;24(11):4696–4709. doi:10.1128/MCB.24.11.4696-4709.2004 PubMed DOI PMC
Phalen TJ, Weirather K, Deming PB, et al. . Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J Cell Biol. 2006;175(5):779–789. doi:10.1083/jcb.200606005 PubMed DOI PMC
Menon SG, Sarsour EH, Kalen AL, et al. . Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res. 2007;67(13):6392–6399. doi:10.1158/0008-5472.CAN-07-0225 PubMed DOI
Li L, Cheung S-h, Evans EL, et al. . Modulation of gene expression and tumor cell growth by redox modification of STAT3. Cancer Res. 2010;70(20):8222–8232. doi:10.1158/0008-5472.CAN-10-0894 PubMed DOI
Grillo M, Palmer C, Holmes N, et al. . Stat3 oxidation-dependent regulation of gene expression impacts on developmental processes and involves cooperation with Hif-1α. PLoS One. 2020;15(12):e0244255. doi:10.1371/journal.pone.0244255 PubMed DOI PMC
Xie Y, Kole S, Precht P, et al. . S-Glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology. 2009;150(3):1122–1131. doi:10.1210/en.2008-1241 PubMed DOI PMC
Cicchillitti L, Fasanaro P, Biglioli P, et al. . Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130*. J Biol Chem. 2003;278(21):19509–19517. doi:10.1074/jbc.M300511200 PubMed DOI
Kirova DG, Judasova K, Vorhauser J, et al. . A ROS-dependent mechanism to drive progression through S phase. Published online 2022 Mar 31. doi:10.1101/2022.03.31.486607 PubMed DOI PMC
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, et al. . Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85. doi:10.1146/annurev.biochem.73.011303.073723 PubMed DOI
He L, Nan MH, Oh HC, et al. . Asperlin induces G2/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells. Biochem Biophys Res Commun. 2011;409(3):489–493. doi:10.1016/j.bbrc.2011.05.032 PubMed DOI
Guo Z, Kozlov S, Lavin MF, et al. . ATM activation by oxidative stress. Science. 2010;330(6003):517–521. doi:10.1126/science.1192912 PubMed DOI
Bhakat KK, Mantha AK, Mitra S.. Transcriptional regulatory functions of mammalian AP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid Redox Signal. 2009;11(3):621. doi:10.1089/ars.2008.2198 PubMed DOI PMC
Howpay Manage SA, Fleming AM, Chen HN, et al. . Cysteine oxidation to sulfenic acid in APE1 aids G-quadruplex binding while compromising DNA repair. ACS Chem Biol. 2022;17(9):2583–2594. doi:10.1021/acschembio.2c00511 PubMed DOI PMC
Xanthoudakis S, Miao G, Wang F, et al. . Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992;11(9):3323–3335. doi:10.1002/j.1460-2075.1992.tb05411.x PubMed DOI PMC
Xanthoudakis S, Curran T.. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 1992;11(2):653–665. doi:10.1002/j.1460-2075.1992.tb05097.x PubMed DOI PMC
Fritz G, Grösch S, Tomicic M, et al. . APE/Ref-1 and the mammalian response to genotoxic stress. Toxicology. 2003;193(1):67–78. doi:10.1016/S0300-483X(03)00290-7 PubMed DOI
Seo YR, Kelley MR, Smith ML.. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A. 2002;99(22):14548–14553. doi:10.1073/pnas.212319799 PubMed DOI PMC
Walker LJ, Robson CN, Black E, et al. . Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol. 1993;13(9):5370–5376. doi:10.1128/mcb.13.9.5370-5376.1993 PubMed DOI PMC
Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med. 2016;6(3):a026104. doi:10.1101/cshperspect.a026104 PubMed DOI PMC
Tan M, Li S, Swaroop M, et al. . Transcriptional activation of the human glutathione peroxidase promoter by p53. J Biol Chem. 1999;274(17):12061–12066. doi:10.1074/jbc.274.17.12061 PubMed DOI
Sablina AA, Budanov AV, Ilyinskaya GV, et al. . The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11(12):1306–1313. doi:10.1038/nm1320 PubMed DOI PMC
Hussain SP, Amstad P, He P, et al. . p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res. 2004;64(7):2350–2356. doi:10.1158/0008-5472.CAN-2287-2 PubMed DOI
Drane P, Bravard A, Bouvard V, et al. . Reciprocal down-regulation of p53 and SOD2 gene expression-implication in p53 mediated apoptosis. Oncogene. 2001;20(4):430–439. doi:10.1038/sj.onc.1204101 PubMed DOI
Faraonio R, Vergara P, Di Marzo D, et al. . P53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J Biol Chem. 2006;281(52):39776–39784. doi:10.1074/jbc.M605707200 PubMed DOI
Liu D, Xu Y.. P53, oxidative stress, and aging. Antioxid Redox Signal. 2011;15(6):1669–1678. doi:10.1089/ars.2010.3644 PubMed DOI PMC
Scotcher J, Clarke DJ, Mackay CL, et al. . Redox regulation of tumour suppressor protein p53: identification of the sites of hydrogen peroxide oxidation and glutathionylation. Chem Sci. 2013;4(3):1257–1269. doi:10.1039/c2sc21702c DOI
Buzek J, Latonen L, Kurki S, et al. . Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. Nucleic Acids Res. 2002;30(11):2340–2348. doi:10.1093/nar/30.11.2340 PubMed DOI PMC
Oakes V, Wang W, Harrington B, et al. . Cyclin A/Cdk2 regulates Cdh1 and claspin during late S/G2 phase of the cell cycle. Cell Cycle. 2014;13(20):3302–3311. doi:10.4161/15384101.2014.949111 PubMed DOI PMC
Shen T, Huang S.. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem. 2012;12(6):631–639. doi:10.2174/187152012800617678 PubMed DOI PMC
Sur S, Agrawal DK.. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem. 2016;416(1-2):33–46. doi:10.1007/s11010-016-2693-2 PubMed DOI PMC
Dutertre S, Cazales M, Quaranta M, et al. . Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J Cell Sci. 2004;117(Pt 12):2523–2531. doi:10.1242/jcs.01108 PubMed DOI
Savitsky PA, Finkel T.. Redox regulation of CDC25C. J Biol Chem. 2002;277(23):20535–20540. doi:10.1074/jbc.M201589200 PubMed DOI
Sohn J, Rudolph J.. Catalytic and chemical competence of regulation of CDC25 phosphatase by oxidation/reduction. Biochemistry. 2003;42(34):10060–10070. doi:10.1021/bi0345081 PubMed DOI
Heo S, Kim S, Kang D.. The role of hydrogen peroxide and peroxiredoxins throughout the cell cycle. Antioxidants. 2020;9(4):280. doi:10.3390/antiox9040280 PubMed DOI PMC
Willems E, Dedobbeleer M, Digregorio M, et al. . The functional diversity of aurora kinases: a comprehensive review. Cell Div. 2018;13(1):7. doi:10.1186/s13008-018-0040-6 PubMed DOI PMC
Katayama H, Zhou H, Li Q, et al. . Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle*. J Biol Chem. 2001;276(49):46219–46224. doi:10.1074/jbc.M107540200 PubMed DOI
Zhao Zs, Lim JP, Ng YW, et al. . The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell. 2005;20(2):237–249. doi:10.1016/j.molcel.2005.08.035 PubMed DOI
Zeng K, Bastos RN, Barr FA, et al. . Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol. 2010;191(7):1315–1332. doi:10.1083/jcb.201008106 PubMed DOI PMC
Lim JM, Lee KS, Woo HA, et al. . Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J Cell Biol. 2015;210(1):23–33. doi:10.1083/jcb.201412068 PubMed DOI PMC
Van Horn RD, Chu S, Fan L, et al. . Cdk1 activity is required for mitotic activation of Aurora A during G2/M transition of human cells. J Biol Chem. 2010;285(28):21849–21857. doi:10.1074/jbc.M110.141010 PubMed DOI PMC
Lane N. A unifying view of ageing and disease: the double-agent theory. J Theor Biol. 2003;225(4):531–540. doi:10.1016/S0022-5193(03)00304-7 PubMed DOI
Forman HJ, Zhang H.. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709. doi:10.1038/s41573-021-00233-1 PubMed DOI PMC
Chatterjee A, Zhu Y, Tong Q, et al. . The addition of manganese porphyrins during radiation inhibits prostate cancer growth and simultaneously protects normal prostate tissue from radiation damage. Antioxid Basel Switz. 2018;7(1):21. doi:10.3390/antiox7010021 PubMed DOI PMC
Anderson CM, Lee CM, Saunders DP, et al. . Phase IIb, randomized, double-blind trial of GC4419 versus placebo to reduce severe oral mucositis due to concurrent radiotherapy and cisplatin For head and neck cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2019;37(34):3256–3265. doi:10.1200/JCO.19.01507 PubMed DOI PMC
Chidambaram SB, Anand N, Varma SR, et al. . Superoxide dismutase and neurological disorders. IBRO Neurosci Rep. 2024;16:373–394. doi:10.1016/j.ibneur.2023.11.007 PubMed DOI PMC
Cheng B, Zhong JP, Wu FX, et al. . Ebselen protects rat hearts against myocardial ischemia-reperfusion injury. Exp Ther Med. 2019;17(2):1412–1419. doi:10.3892/etm.2018.7089 PubMed DOI PMC
Yamaguchi T, Sano K, Takakura K, et al. . Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke. 1998;29(1):12–17. doi:10.1161/01.str.29.1.12 PubMed DOI
Landgraf AD, Alsegiani AS, Alaqel S, et al. . Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration. ACS Chem Neurosci. 2020;11(19):3008–3016. doi:10.1021/acschemneuro.0c00328 PubMed DOI PMC
Elbatreek MH, Mucke H, Schmidt HHHW.. NOX inhibitors: from bench to naxibs to bedside. Handb Exp Pharmacol. 2021;264:145–168. doi:10.1007/164_2020_387 PubMed DOI
Szekeres FLM, Walum E, Wikström P, et al. . A small molecule inhibitor of NOX2 and NOX4 improves contractile function after ischemia–reperfusion in the mouse heart. Sci Rep. 2021;11(1):11970. doi:10.1038/s41598-021-91575-8 PubMed DOI PMC
Kim SJ, Kim HS, Seo YR.. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019:e5381692. doi:10.1155/2019/5381692 PubMed DOI PMC
Yang C, Song J, Hwang S, et al. . Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biol. 2021;47:102144. doi:10.1016/j.redox.2021.102144 PubMed DOI PMC
Xu D, Rovira II, Finkel T.. Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev Cell. 2002;2(3):251–252. doi:10.1016/S1534-5807(02)00132-6 PubMed DOI
El-Senduny FF, Badria FA, El-Waseef AM, et al. . Approach for chemosensitization of cisplatin-resistant ovarian cancer by cucurbitacin B. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37(1):685–698. doi:10.1007/s13277-015-3773-8 PubMed DOI
Zhang X, Huang J, Yu C, et al. . Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. OncoTargets Ther. 2020;13:513–523. doi:10.2147/OTT.S228453 PubMed DOI PMC
Aghababaei F, Hadidi M.. Recent advances in potential health benefits of quercetin. Pharmaceuticals. 2023;16(7):1020. doi:10.3390/ph16071020 PubMed DOI PMC
Vieira-Frez FC, Sehaber-Sierakowski CC, Perles JVCM, et al. . Anti- and pro-oxidant effects of quercetin stabilized by microencapsulation on interstitial cells of Cajal, nitrergic neurons and M2-like macrophages in the jejunum of diabetic rats. Neurotoxicology. 2020;77:193–204. doi:10.1016/j.neuro.2020.01.011 PubMed DOI
Gomes CL, de Albuquerque Wanderley Sales V, Gomes de Melo C, et al. . Beta-lapachone: natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. Phytochemistry. 2021;186:112713. doi:10.1016/j.phytochem.2021.112713 PubMed DOI
Zheng P, Zhou C, Lu L, et al. . Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res CR. 2022;41(1):271. doi:10.1186/s13046-022-02485-0 PubMed DOI PMC
Monk BJ, Kauderer JT, Moxley KM, et al. . A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: an NRG oncology/gynecologic oncology group study. Gynecol Oncol. 2018;151(3):422–427. doi:10.1016/j.ygyno.2018.10.001 PubMed DOI PMC
Gao J, Wu X, Huang S, et al. . Novel insights into anticancer mechanisms of elesclomol: more than a prooxidant drug. Redox Biol. 2023;67:102891. doi:10.1016/j.redox.2023.102891 PubMed DOI PMC
O’Day SJ, Eggermont AMM, Chiarion-Sileni V, et al. . Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(9):1211–1218. doi:10.1200/JCO.2012.44.5585 PubMed DOI
Kaźmierczak-Barańska J, Boguszewska K, Adamus-Grabicka A, et al. . Two faces of vitamin C—antioxidative and pro-oxidative agent. Nutrients. 2020;12(5):1501. doi:10.3390/nu12051501 PubMed DOI PMC
Ma Y, Chapman J, Levine M, et al. . High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6(222):222ra18. doi:10.1126/scitranslmed.3007154 PubMed DOI
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, et al. . O2⋅− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 2017;31(4):487–500.e8. doi:10.1016/j.ccell.2017.02.018 PubMed DOI PMC
Springett GM, Husain K, Neuger A, et al. . A phase I safety, pharmacokinetic, and pharmacodynamic presurgical trial of vitamin E δ-tocotrienol in patients with pancreatic ductal neoplasia. EBioMedicine. 2015;2(12):1987–1995. doi:10.1016/j.ebiom.2015.11.025 PubMed DOI PMC
Gharaei R, Alyasin A, Mahdavinezhad F, et al. . Randomized controlled trial of astaxanthin impacts on antioxidant status and assisted reproductive technology outcomes in women with polycystic ovarian syndrome. J Assist Reprod Genet. 2022;39(4):995–1008. doi:10.1007/s10815-022-02432-0 PubMed DOI PMC
Abe SK, Inoue M.. Green tea and cancer and cardiometabolic diseases: a review of the current epidemiological evidence. Eur J Clin Nutr. 2021;75:865–876. doi:10.1038/s41430-020-00710-7 PubMed DOI PMC
Gao N, Ni M, Song J, et al. . Causal relationship between tea intake and cardiovascular diseases: A Mendelian randomization study. Front Nutr. 2022:9. doi:10.3389/fnut.2022.938201 PubMed DOI PMC
Martin BJ, Tan RB, Gillen JB, et al. . No effect of short-term green tea extract supplementation on metabolism at rest or during exercise in the fed state. Int J Sport Nutr Exerc Metab. 2014;24(6):656–664. doi:10.1123/ijsnem.2013-0202 PubMed DOI
FAR Garcia, Cornelison T, Nuño T, DL Greenspan, JW Byron, C-H Hsu, DS Alberts, Chow H-HS.. Results of a phase II randomized, double-blind, placebo-controlled trial of Polyphenon E in women with persistent high-risk HPV infection and low-grade cervical intraepithelial neoplasia. Gynecol. Oncol. 2014;132:377–382. doi:10.1016/j.ygyno.2013.12.034 PubMed DOI PMC
Seely D, Legacy M, Auer RC, et al. . Adjuvant melatonin for the prevention of recurrence and mortality following lung cancer resection (AMPLCaRe): a randomized placebo controlled clinical trial. EClinicalMedicine. 2021;33:100763. doi:10.1016/j.eclinm.2021.100763 PubMed DOI PMC
Kah G, Chandran R, Abrahamse H.. Curcumin a natural phenol and its therapeutic role in cancer and photodynamic therapy: a review. Pharmaceutics. 2023;15(2):639. doi:10.3390/pharmaceutics15020639 PubMed DOI PMC
Ryan JL, Heckler CE, Ling M, et al. . Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res. 2013;180(1):34–43. doi:10.1667/RR3255.1 PubMed DOI PMC
Hegde M, Girisa S, BharathwajChetty B, et al. . Curcumin formulations for better bioavailability: what we learned from clinical trials thus far? ACS Omega. 2023;8(12):10713–10746. doi:10.1021/acsomega.2c07326 PubMed DOI PMC
Gunther JR, Chadha AS, Guha S, et al. . A phase II randomized double blinded trial evaluating the efficacy of curcumin with pre-operative chemoradiation for rectal cancer. J Gastrointest Oncol. 2022;13(6):2938–2950. doi:10.21037/jgo-22-259 PubMed DOI PMC
Passildas-Jahanmohan J, Eymard J, Pouget M, et al. . Multicenter randomized phase II study comparing docetaxel plus curcumin versus docetaxel plus placebo in first-line treatment of metastatic castration-resistant prostate cancer. Cancer Med. 2021;10(7):2332–2340. doi:10.1002/cam4.3806 PubMed DOI PMC