Establishment of oral squamous cell carcinoma cell line and magnetic bead-based isolation and characterization of its CD90/CD44 subpopulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29029509
PubMed Central
PMC5630409
DOI
10.18632/oncotarget.19914
PII: 19914
Knihovny.cz E-zdroje
- Klíčová slova
- carcinoma, cell line, coculture techniques, head and neck neoplasms, tumor,
- Publikační typ
- časopisecké články MeSH
In this study, we describe the establishment of the human papillomavirus 18-positive, stage II, grade 1, T2N0M0 head and neck tumor primary cell line derived from oral squamous cell carcinoma of a non-smoking patient by using two different protocols. Furthermore, a preparation of subpopulations derived from this primary cell line according to the cluster of differentiation molecules CD44/CD90 status using magnetic bead-based separation and their characterization was performed. Impedance-based real-time cell analysis, enzyme-linked immunsorbant assay (ELISA), wound-healing assay, flow-cytometry, gene expression analysis, and MTT assay were used to characterize these four subpopulations (CD44+/CD90-, CD44-/CD90-, CD44+/CD90+, CD44-/CD90-). We optimised methodics for establishement of primary cell lines derived from oral squamous cell carcinoma tissue samples and subsequent separation of mesenchymal (CD90+) and epithelial (CD90-) types of tumorous cells. Primary cell line prepared by using trypsin proteolysis was more viable than the one prepared by using collagenase. According to our results, CD90 separation is a necessary step in preparation of permanent tumor-tissue derived cell lines. Based on the wound-healing assay, CD44+ cells exhibited stronger migratory capacity than CD44- subpopulations. CD44+ subpopulations had also significantly higher expression of BIRC5 and SOX2, lower expression of FLT1 and IL6, and higher levels of basal autophagy compared to CD44- subpopulations. Furthermore, co-cultivation experiments revealed that CD44-/CD90+ cells supported growth of epithelial tumor cells (CD44+/CD90-). On the contrary, factors released by CD44+/CD90+ type of cells seem to have rather inhibiting effect. The most cisplatin-resistant subpopulation with the shortest doubling time was CD44-/CD90+, but this subpopulation had a low migratory capacity.
Central European Institute of Technology Brno University of Technology CZ 61600 Brno Czech Republic
Department of Chemistry and Biochemistry Mendel University in Brno CZ 61300 Brno Czech Republic
Department of Physiology Faculty of Medicine Masaryk University CZ 62500 Brno Czech Republic
Zobrazit více v PubMed
Gregoire V, Lefebvre JL, Licitra L, Felip E, EHNS-ESMO-ESTRO Guidelines Working Group Squamous cell carcinoma of the head and neck: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21:v184–6. https://doi.org/10.1093/annonc/mdq185. PubMed DOI
Bragado P, Estrada Y, Sosa MS, Avivar-Valderas A, Cannan D, Genden E, Teng M, Ranganathan AC, Wen HC, Kapoor A, Bernstein E, Aguirre-Ghiso JA. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties. PLoS One. 2012;7:e29974. https://doi.org/10.1371/journal.pone.0029974. PubMed DOI PMC
Reers S, Pfannerstill AC, Maushagen R, Pries R, Wollenberg B. Stem cell profiling in head and neck cancer reveals an Oct-4 expressing subpopulation with properties of chemoresistance. Oral Oncol. 2014;50:155–62. https://doi.org/10.1016/j.oraloncology.2013.12.006. PubMed DOI
Tang KH, Dai YD, Tong M, Chan YP, Kwan PS, Fu L, Qin YR, Tsao SW, Lung HL, Lung ML, Tong DK, Law S, Chan KW, et al. A CD90(+) tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer. Cancer Res. 2013;73:2322–32. PubMed
Satpute PS, Hazarey V, Ahmed R, Yadav L. Cancer stem cells in head and neck squamous cell carcinoma: a review. Asian Pac J Cancer Prev. 2013;14:5579–87. https://doi.org/10.7314/apjcp.2013.14.10.5579. PubMed DOI
Major AG, Pitty LP, Farah CS. Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells Int. 2013 https://doi.org/10.1155/2013/319489. PubMed DOI PMC
Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4:33–45. https://doi.org/10.1038/nrm1004. PubMed DOI
Perez A, Neskey DM, Wen J, Pereira L, Reategui EP, Goodwin WJ, Carraway KL, Franzmann EJ. CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol. 2013;49:306–13. https://doi.org/10.1016/j.oraloncology.2012.11.009. PubMed DOI PMC
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8. https://doi.org/10.1073/pnas.0530291100. PubMed DOI PMC
Gunthert U, Hofmann M, Rudy W, Reber S, Zoller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma-cells. Cell. 1991;65:13–24. https://doi.org/10.1016/0092-8674(91)90403-l. PubMed DOI
La Fleur L, Johansson AC, Roberg K. A CD44(high)/EGFR(low) subpopulation within head and neck cancer cell lines shows an epithelial-mesenchymal transition phenotype and resistance to treatment. PLoS One. 2012;7:e44071. https://doi.org/e44071 10.1371/journal.pone.0044071. PubMed PMC
Janisiewicz AM, Shin JH, Murillo-Sauca O, Kwok S, Le QT, Kong C, Kaplan MJ, Sunwoo JB. CD44+cells have cancer stem cell-like properties in nasopharyngeal carcinoma. Int Forum Allergy Rhinol. 2012;2:465–70. https://doi.org/10.1002/alr.21068. PubMed DOI
Lim YC, Oh SY, Cha YY, Kim SH, Jin X, Kim H. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol. 2011;47:83–91. https://doi.org/10.1016/j.oraloncology.2010.11.011. PubMed DOI
Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8. https://doi.org/10.1073/pnas.0610117104. PubMed DOI PMC
Kidwai F, Costea DE, Hutchison I, Mackenzie I. The effects of CD44 down-regulation on stem cell properties of head and neck cancer cell lines. J Oral Pathol Med. 2013;42:682–90. https://doi.org/10.1111/jop.12076. PubMed DOI
Kinugasa Y, Matsui T, Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells. 2014;32:145–56. https://doi.org/10.1002/stem.1556. PubMed DOI
True LD, Zhang H, Ye M, Huang CY, Nelson PS, von Haller PD, Tjoelker LW, Kim JS, Qian WJ, Smith RD, Ellis WJ, Liebeskind ES, Liu AY. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Mod Pathol. 2010;23:1346–56. https://doi.org/10.1038/modpathol.2010.122. PubMed DOI PMC
Ko KS, Arora PD, McCulloch CA. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J Biol Chem. 2001;276:35967–77. https://doi.org/10.1074/jbc.M104106200. PubMed DOI
Liotta F, Querci V, Mannelli G, Santarlasci V, Maggi L, Capone M, Rossi MC, Mazzoni A, Cosmi L, Romagnani S, Maggi E, Gallo O, Annunziato F. Mesenchymal stem cells are enriched in head neck squamous cell carcinoma, correlates with tumour size and inhibit T-cell proliferation. Br J Cancer. 2015;112:745–54. https://doi.org/10.1038/bjc.2015.15. PubMed DOI PMC
Lu H, Clauser KR, Tam WL, Froese J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA, Weinberg RA. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105–17. https://doi.org/10.1038/ncb3041. PubMed DOI PMC
Pries R, Wittkopf N, Hasselbacher K, Wollenberg B. [Constitutive expression of the potential stem cell marker CD44 in permanent HNSCC cell lines]. [Article in German] HNO. 2008;56:461–6. https://doi.org/10.1007/s00106-008-1707-0. PubMed DOI
Lin CJ, Grandis JR, Carey TE, Gollin SM, Whiteside TL, Koch WM, Ferris RL, Lai SY. Head and neck squamous cell carcinoma cell lines: established models and rationale for selection. Head Neck. 2007;29:163–88. https://doi.org/10.1002/hed.20478. PubMed DOI
Zhao H, Peehl DM. Tumor-promoting phenotype of CD90(hi) prostate cancer-associated fibroblasts. Prostate. 2009;69:991–1000. https://doi.org/10.1002/pros.20946. PubMed DOI PMC
Spaeth EL, Labaff AM, Toole BP, Klopp A, Andreeff M, Marini FC. Mesenchymal CD44 expression contributes to the acquisition of an activated fibroblast phenotype via TWIST activation in the tumor microenvironment. Cancer Res. 2013;73:5347–59. https://doi.org/10.1158/0008-5472.can-13-0087. PubMed DOI PMC
Shan J, Shen J, Liu L, Xia F, Xu C, Duan G, Xu Y, Ma Q, Yang Z, Zhang Q, Ma L, Liu J, Xu S, et al. Nanog regulates self-renewal of cancer stem cells through the insulin-like growth factor pathway in human hepatocellular carcinoma. Hepatology. 2012;56:1004–14. https://doi.org/10.1002/hep.25745. PubMed DOI
Fukuda S, Pelus LM. Survivin, a cancer target with an emerging role in normal adult tissues. Mol Cancer Ther. 2006;5:1087–98. https://doi.org/10.1158/1535-7163.mct-05-0375. PubMed DOI
Dutsch-Wicherek M, Lazar A, Tomaszewska R, Kazmierczak W, Wicherek L. Analysis of metallothionein and vimentin immunoreactivity in pharyngeal squamous cell carcinoma and its microenvironment. Cell Tissue Res. 2013;352:341–9. https://doi.org/10.1007/s00441-013-1566-1. PubMed DOI PMC
Kim SY, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT, Lee YJ. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 2013;25:961–9. https://doi.org/10.1016/j.cellsig.2013.01.007. PubMed DOI PMC
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5. https://doi.org/10.1038/nature10138. PubMed DOI PMC
Lee CC, Ho HC, Su YC, Lee MS, Hung SK, Lin CH. MCP1-induced epithelial-mesenchymal transition in head and neck cancer by AKT activation. Anticancer Res. 2015;35:3299–306. PubMed
Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T, Bentires-Alj M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515:130–3. https://doi.org/10.1038/nature13862. PubMed DOI
Zhang GT, Tsang CM, Deng W, Yip YL, Lui VW, Wong SC, Cheung AL, Hau PM, Zeng MS, Lung ML, Chen HL, Lo KW, Takada K, Tsao SW. Enhanced IL-6/IL-6R signaling promotes growth and malignant properties in EBV-infected premalignant and cancerous nasopharyngeal epithelial cells. PLoS One. 2013;8:e62284. https://doi.org/10.1371/journal.pone.0062284. PubMed DOI PMC
Chen MF, Wang WH, Lin PY, Lee KD, Chen WC. Significance of the TGF-beta I/IL-6 axis in oral cancer. Clin Sci. 2012;122:459–72. https://doi.org/10.1042/cs20110434. PubMed DOI PMC
Sun X, Mao Y, Wang J, Zu L, Hao M, Cheng G, Qu Q, Cui D, Keller ET, Chen X, Shen K. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene. 2014 https://doi.org/10.1038/onc.2014.158. PubMed DOI
Dufour A, Sampson NS, Zucker S, Cao J. Role of the hemopexin domain of matrix metalloproteinases in cell migration. J Cell Physiol. 2008;217:643–51. https://doi.org/10.1002/jcp.21535. PubMed DOI PMC
Dufour A, Zucker S, Sampson NS, Kuscu C, Cao J. Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides. J Biol Chem. 2010;285:35944–56. https://doi.org/10.1074/jbc.M110.091769. PubMed DOI PMC
Chetty C, Lakka SS, Bhoopathi P, Rao JS. MMP-2 alters VEGF expression via alpha V beta 3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer. 2010;127:1081–95. https://doi.org/10.1002/ijc.25134. PubMed DOI PMC
Yang X, Zhu HC, Ge YY, Liu J, Cai J, Qin Q, Zhan LL, Zhang C, Xu LP, Liu ZM, Yang Y, Yang YH, Ma JX, et al. Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1 alpha. Tumor Biol. 2014;35:10443–8. https://doi.org/10.1007/s13277-014-2218-0. PubMed DOI
Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14:6044–66. https://doi.org/10.3390/ijms14036044. PubMed DOI PMC
Lu ZM, Ghosh S, Wang ZY, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003;4:499–515. https://doi.org/10.1016/s1535-6108(03)00304-0. PubMed DOI
Masood R, Hochstim C, Cervenka B, Zu S, Baniwal SK, Patel V, Kobielak A, Sinha UK. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;2:e68. https://doi.org/10.1038/oncsis.2013.33. PubMed DOI PMC
Ha TK, Chi SG. CAV1/caveolin 1 enhances aerobic glycolysis in colon cancer cells via activation of SLC2A3/GLUT3 transcription. Autophagy. 2012;8:1684–5. https://doi.org/10.4161/auto.21487. PubMed DOI PMC
Wang Q, Wu PC, Roberson RS, Luk BV, Ivanova I, Chu E, Wu DY. Survivin and escaping in therapy-induced cellular senescence. Int J Cancer. 2011;128:1546–58. https://doi.org/10.1002/ijc.25482. PubMed DOI PMC
Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell'Antonio G, Mautner J, Tonon G, Haigis M, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717–29. https://doi.org/10.1101/gad.2016111. PubMed DOI PMC
Theunissen TW, Silva JC. Switching on pluripotency: a perspective on the biological requirement of Nanog. Philos Trans R Soc Lond B Biol Sci. 2011;366:2222–9. https://doi.org/10.1098/rstb.2011.0003. PubMed DOI PMC
Lynch L, O'Donoghue D, Dean J, O'Sullivan J, O'Farrelly C, Golden-Mason L. Detection and characterization of hemopoietic stem cells in the adult human small intestine. J Immunol. 2006;176:5199–204. PubMed
Mitchell R, Szabo E, Shapovalova Z, Aslostovar L, Makondo K, Bhatia M. Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors. Stem Cells. 2014;32:2178–87. https://doi.org/10.1002/stem.1721. PubMed DOI
Van Limbergen EJ, Zabrocki P, Porcu M, Hauben E, Cools J, Nuyts S. FLT1 kinase is a mediator of radioresistance and survival in head and neck squamous cell carcinoma. Acta Oncol. 2014;53:637–45. https://doi.org/10.3109/0284186x.2013.835493. PubMed DOI
Gebaeck T, Schulz MM, Koumoutsakos P, Detmar M. TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques. 2009;46:265–74. https://doi.org/10.2144/000113083. PubMed DOI