Jacks of metal/metalloid chelation trade in plants-an overview

. 2015 ; 6 () : 192. [epub] 20150402

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25883598

Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as "metal/s") mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.

Zobrazit více v PubMed

Ahmad M. A., Gupta M. (2013). Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: comparative analysis in accumulation and biochemical and transcriptional alterations. Environ. Sci. Pollut. Res. 20, 8141–8150. 10.1007/s11356-013-1632-y PubMed DOI

Ahner B. A., Kong S., Morel F. M. M. (1995). Phytochelatin production in marine algae. 1. An interspecies comparison. Limnol. Ocenogr. 40, 649–657 10.4319/lo.1995.40.4.0649 DOI

Ali H., Khan E., Sajad M. A. (2013). Phytoremediation of heavy metals–concepts and applications. Chemosphere 91, 869–881. 10.1016/j.chemosphere.2013.01.075 PubMed DOI

Alloway B. (2013). Heavy metals and metalloids as micronutrients for plants and animals, in Heavy Metals in Soils, ed Alloway B. J. (Dordrecht: Springer; ), 195–209.

Andra S. S., Datta R., Sarkar D., Makris K. C., Mullens C. P., Sahi S. V., et al. (2010). Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326, 171–185 10.1007/s11104-009-9992-2 DOI

Anjum N. A., Ahamd I., Mohmood I., Pacheco M., Duarte A. C., Pereira E., et al. (2012b). Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids–a review. Environ. Exp. Bot. 75, 307–324 10.1016/j.envexpbot.2011.07.002 DOI

Anjum N. A., Aref I. M., Duarte A. C., Pereira E., Ahmad I., Iqbal M. (2014d). Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front. Plant Sci. 5:662. 10.3389/fpls.2014.00662 PubMed DOI PMC

Anjum N. A., Gill S. S., Gill R. (2014b). Plant Adaptation to Environmental Change: Significance of Amino Acids and their Derivatives, 1st Edn Wallingford, UK: CABI.

Anjum N. A., Israr M., Duarte A. C., Pereira M. E., Ahmad I. (2014c). Halimione portulacoides (L.) physiological/biochemical characterization for its adaptive responses to environmental mercury exposure. Environ. Res. 131, 39–49. 10.1016/j.envres.2014.02.008 PubMed DOI

Anjum N. A., Pereira M. E., Ahmad I., Duarte A. C., Umar S., Khan N. A. (2012a). Phytotechnologies: Remediation of Environmental Contaminants. Boca Raton, FL: CRC Press.

Anjum N. A., Singh H. P., Khan M. I. R., Masood A., Per T. S., Negi A., et al. . (2015). Too much is bad – an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ. Sci. Pollut. Res. 22, 3361–3382. 10.1007/s11356-014-3849-9 PubMed DOI

Anjum N. A., Umar S., Chan M. T. (2010). Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht: Springer; 10.1007/978-90-481-9404-9 DOI

Anjum N. A., Umar S., Iqbal M. (2014a). Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants – implications for phytoremediation. Environ. Sci. Pollut. Res. 21, 10286–10293. 10.1007/s11356-014-2889-5 PubMed DOI

Arakawa T., Timasheff S. N. (1985). The stabilization of proteins by osmolytes. Biophys. J. 47, 411–414. 10.1016/S0006-3495(85)83932-1 PubMed DOI PMC

Arrivault S., Senger T., Kramer U. (2006). The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J. 46, 861–879. 10.1111/j.1365-313X.2006.02746.x PubMed DOI

Asgher M., Khan M. I. R., Iqbal N., Masood A., Khan N. A. (2013). Cadmium tolerance in mustard cultivars: dependence on proline accumulation and nitrogen assimilation. J. Funct. Environ. Bot. 3, 30–42 10.5958/j.2231-1750.3.1.005 DOI

Ashraf M., Foolad M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216 10.1016/j.envexpbot.2005.12.006 DOI

Auguy F., Fahr M., Moulin P., Brugel A., Laplaze L., El Mzibri M., et al. . (2013). Lead tolerance and accumulation in Hirschfeldia incana, a Mediterranean Brassicaceae from metalliferous mine spoils. PLoS ONE 8:e61932. 10.1371/journal.pone.0061932 PubMed DOI PMC

Baker A. J. M., Whiting S. N. (2002). In search of the Holy Grail: a further step in understanding metal hyperaccumulation. New Phytol. 155, 1–4 10.1046/j.1469-8137.2002.00449_1.x PubMed DOI

Bilecen K., Ozturk U. H., Duru A. D., Sutlu T., Petoukhov M. V., Svergun D. I., et al. . (2005). Triticum durum metallothionein–Isolation of the gene and structural characterization of the protein using solution scattering and molecular modeling. J. Biol. Chem. 280, 13701–13711. 10.1074/jbc.M412984200 PubMed DOI

Blindauer C. A. (2008). Metallothioneins with unusual residues: histidines as modulators of zinc affinity and reactivity. J. Inorg. Biochem. 102, 507–521. 10.1016/j.jinorgbio.2007.10.032 PubMed DOI

Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., et al. . (2014). Remediation of heavy metal (loid) s contaminated soils – to mobilize or to immobilize? J. Hazard. Mater. 266, 141–166. 10.1016/j.jhazmat.2013.12.018 PubMed DOI

Boominathan R., Doran P. M. (2003). Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J. Biotechnol. 101, 131–146. 10.1016/S0168-1656(02)00320-6 PubMed DOI

Bruns I., Sutter K., Menge S., Neumann D., Krauss G. J. (2001). Cadmium lets increase the glutathione pool in bryophytes. J. Plant Physiol. 158, 79–89 10.1078/0176-1617-00071 DOI

Bittsánszkya A., Kfmives T., Gullner G., Gyulai G., Kiss J., Heszky L., et al. . (2005). Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ. Int. 31, 251–254. 10.1016/j.envint.2004.10.001 PubMed DOI

Çalişkan M. (2000). The metabolism of oxalic acid. Turk. J. Zool. 24, 103–106.

Callahan D. L., Baker A. J. M., Kolev S. D., Wedd A. G. (2006). Metal ion ligands in hyperaccumulating plants. J. Biol. Inorg. Chem. 11, 2–12. 10.1007/s00775-005-0056-7 PubMed DOI

Cánovas D., Vooijs R., Schat H., De Lorenzo V. (2004). The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic. J. Biol. Chem. 279, 51234–51240. 10.1074/jbc.M408622200 PubMed DOI

Choudhary S. P., Kanwar M., Bhardwaj R., Yu J. Q., Tran L. S. P. (2012b). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210 10.1371/journal.pone.0033210 PubMed DOI PMC

Choudhary S. P., Oral H. V., Bhardwaj R., Yu J. Q., Tran L. S. P. (2012a). Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J. Exp. Bot. 63, 5659–5675. 10.1093/jxb/ers219 PubMed DOI PMC

Clemens S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475–486. 10.1007/s004250000458 PubMed DOI

Clemens S. (2006). Evolution and function of phytochelatin synthases. J. Plant Physiol. 163, 319–332. 10.1016/j.jplph.2005.11.010 PubMed DOI

Cobbett C., Goldsbrough P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53, 159–182. 10.1146/annurev.arplant.53.100301.135154 PubMed DOI

Collins N. C., Shirley N. J., Saeed M., Pallotta M., Gustafson J. P. (2008). An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179, 669–682. 10.1534/genetics.107.083451 PubMed DOI PMC

Courbot M., Diez L., Ruotola R., Chalot M., Leroy P. (2004). Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl. Environ. Microbiol. 70, 7413–7417. 10.1128/AEM.70.12.7413-7417.2004 PubMed DOI PMC

Dago A., González I., Ariño C., Díaz-Cruz J. M., Esteban M. (2014). Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta 118, 201–209. 10.1016/j.talanta.2013.09.058 PubMed DOI

Deinlein U., Weber M., Schmidt H., Rensch S., Trampczynska A., Hansen T. H., et al. . (2012). Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in Zn hyperaccumulation. Plant Cell 24, 708–723. 10.1105/tpc.111.095000 PubMed DOI PMC

Delhaize E., Ma J. F., Ryan P. R. (2012). Transcriptional regulation of aluminium tolerance genes. Trend Plant Sci. 17, 341–348. 10.1016/j.tplants.2012.02.008 PubMed DOI

Dhankher O. P., Li Y., Rosen B. P., Shi J., Salt D., Senecoff J. F., et al. . (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and -glutamylcysteine synthetase expression. Nat. Biotechnol. 20, 1140–1145. 10.1038/nbt747 PubMed DOI

Dominguez-Solis J. R., Lopez-Martin M. C., Ager M. C., Ynsa M. D., Romero L. C., Gotor C. (2004). Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol. J. 2, 469–476. 10.1111/j.1467-7652.2004.00092.x PubMed DOI

Dorcak V., Krezel A. (2003). Correlation of acide-base chemistry of phytochelatin PC2 with its coordination properties towards the toxic metal ion Cd (II). Dalton. Trans. 11, 2253–2259 10.1039/b301357j DOI

Douchkov D., Gryczka C., Stephan U. W., Hell R., Bäumlein H. (2005). Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ. 28, 365–374 10.1111/j.1365-3040.2005.01273.x DOI

Duan G. L., Hu Y., Lui W. J., Kneer R., Zhao F. J., Zhu Y. G. (2011). Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grains. Environ. Exp. Bot. 71, 416–421 10.1016/j.envexpbot.2011.02.016 DOI

Dupae J., Bohler S., Noben J. P., Carpentier S., Vangronsveld J., Cuypers A. (2014). Problems inherent to a meta-analysis of proteomics data: a case study on the plants' response to Cd in different cultivation conditions. J. Proteomics 108, 30–54. 10.1016/j.jprot.2014.04.029 PubMed DOI

Ellis D. R., Salt D. E. (2003). Plants, selenium and human health. Curr. Opin. Plant Biol. 6, 273–279 10.1016/S1369-5266(03)00030-X PubMed DOI

Ernst W. H. O., Krauss G. J., Verkleij J. A. C., Wesenberg D. (2008). Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ. 31, 123–143. 10.1111/j.1365-3040.2007.01746.x PubMed DOI

Estrella-Gómez N. E., Sauri-Duch E., Zapata-Pérez O., Santamaría J. M. (2012). Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ. Exp. Bot. 75, 188–194 10.1016/j.envexpbot.2011.09.001 DOI

Feretti L., Elviri L., Pelinghelli M. A., Prediery G., Tegoni M. (2007). Glutathione and N-acetylcysteinylglycine: protonation and Zn2+ complexation. J. Inorg. Biochem. 101, 1442–1456. 10.1016/j.jinorgbio.2007.06.020 PubMed DOI

Fernández R., Bertrand A., García J. I., Tamés R. S., González A. (2012). Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis. Environ. Exp. Bot. 78, 18–24 10.1016/j.envexpbot.2011.12.016 DOI

Fernie A. R., Martinoia E. (2009). Malate. Jack of all trades or master of a few? Photochemistry 70, 828–832. 10.1016/j.phytochem.2009.04.023 PubMed DOI

Finkemeier I., Sweetlove L. J. (2009). The role of malate in plant homeostasis. Biol. Rep. 1:47. 10.3410/B1-47 PubMed DOI PMC

Freisinger E. (2008). Plant MTs-long neglected members of the metallothionein superfamily. Dalton. Trans. 47, 6663–6675 10.1039/b809789e PubMed DOI

Freisinger E. (2011). Structural features specific to plant metallothioneins. J. Biol. Inorg. Chem. 16, 1035–1045. 10.1007/s00775-011-0801-z PubMed DOI

Furukawa J., Yamaji N., Wang H., Mitani N., Murata Y., Sato K., et al. . (2007). An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 48, 1081–1091. 10.1093/pcp/pcm091 PubMed DOI

Gautam N., Verma P. K., Verma S., Tripathi R. D., Trivedi P. K., Adhikari B., et al. . (2012). Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct. Integr. Genomics 12, 635–647. 10.1007/s10142-012-0297-9 PubMed DOI

Gekeler W., Grill E., Winnacker E. L., Zenk M. H. (1988). Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch. Microbiol. 150, 197–202 10.1007/BF00425162 DOI

Gill S. S., Anjum N. A., Ahmad I., Pacheco M., Duarte A. C., Umar S., et al. (2012). Metal hyperaccumulation and tolerance in Alyssum, Arabidopsis and Thlaspi, in The Plant Family Brassicaceae: Contribution Towards Phytoremediation, eds Anjum N. A., Ahmad I., Pereira E., Duarte A. C., Umar S., Khan N. A. (Dordrecht: Springer; ), 99–137.

Gill S. S., Gill R., Anjum N. A. (2014). Target osmoprotectants for abiotic stress tolerance in crop plants – glycine betaine and proline, in Plant Adaptation to Environmental Change: Significance of Amino Acids and Their Derivatives, eds Anjum N. A., Gill S. S., Gill R. (Wallingford, CT: CAB International; ), 97–108.

Gonzalez-Mendoza D., Moreno A. Q., Zapata-Perez O. (2007). Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aqu. Toxicol. 83, 306–314 10.1016/j.aquatox.2007.05.005 PubMed DOI

Groppa M. D., Benavides M. P., Tomaro M. L. (2003). Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci. 161, 481–488 10.1016/S0168-9452(01)00432-0 DOI

Groppa M. D., Ianuzzo M. P., Tomaro M. L., Benavides M. P. (2007). Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32, 265–275. 10.1007/s00726-006-0343-9 PubMed DOI

Guo J., Xu L., Su Y., Wang H., Gao S., Xu J., et al. (2013). ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. BioMed. Res. Int. 2013:904769 10.1155/2013/904769 PubMed DOI PMC

Guo J., Xu W., Ma M. (2012). The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J. Hazard Mater. 199–200, 309–313 10.1016/j.jhazmat.2011.11.008 PubMed DOI

Guo W. J., Bundithya W., Goldsbrough P. B. (2003). Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol. 159, 369–381 10.1046/j.1469-8137.2003.00813.x PubMed DOI

Hall J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1–11. 10.1093/jexbot/53.366.1 PubMed DOI

Hasanuzzaman M., Fujita M. (2013). Exogenous sodium nitroprusside alleviate arsenic-induced oxidative stress in wheat seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22, 584–596 10.1007/s10646-013-1050-4 PubMed DOI

Hasanuzzaman M., Gill S. S., Fujita M. (2013). Physiological role of nitric oxide in plants grown under adverse environmental conditions, in Plant Acclimation to Environmental Stress, eds Tuteja N., Gill S. S. (New York, NY: Springer; ), 269–322.

Hasanuzzaman M., Nahar K., Fujita M. (2014). Regulatory role of polyamines in abiotic stress tolerance in plants, in Plant Adaptation to Environmental Change: Significance of Amino Acids and Their Derivatives, eds Anjum N. A., Gill S. S., Gill R. (Wallingford, CT: CAB International; ), 157–193.

Hassan Z., Aarts M. G. M. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ. Exp. Bot. 72, 53–63 10.1016/j.envexpbot.2010.04.003 DOI

Hassinen V. H., Tervahauta A. I., Schat H., Kärenlampi S. O. (2011). Plant metallothioneins–metal chelators with ROS scavenging activity? Plant Biol. 13, 225–232. 10.1111/j.1438-8677.2010.00398.x PubMed DOI

Hawrylak-Nowak B., Dresler S., Wójcik M. (2014). Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci. Hortic. 172, 10–18 10.1016/j.scienta.2014.03.040 DOI

Haydon M. J., Kawachi M., Wirtz M., Hillmer S., Hell R., Krämer U. (2012). Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24, 724–737. 10.1105/tpc.111.095042 PubMed DOI PMC

Hoekenga O. A., Maron L. G., Piñeros M. A., Cancado G. M., Shaff J., et al. . (2006). AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 103, 9738–9743. 10.1073/pnas.0602868103 PubMed DOI PMC

Hossain Z., Komatsu S. (2013). Contribution of proteomic studies towards understanding plant heavy metal stress response. Front. Plant Sci. 3:310. 10.3389/fpls.2012.00310 PubMed DOI PMC

Hu S., Lau K. W. K., Wu M. (2001). Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci. 161, 987–996 10.1016/S0168-9452(01)00501-5 DOI

Huang C. F., Yamaji N., Mitani N., Yano M., Nagamura Y., Ma J. F. (2009b). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21, 655–667. 10.1105/tpc.108.064543 PubMed DOI PMC

Huang Z. Y., Li L. P., Huang G. L., Yan Q. P., Shi B., Xu X. Q. (2009a). Growth-inhibitory and metal binding proteins in Chlorella vulgaris exposed to cadmium or zinc. Aquat. Toxicol. 91, 54–61. 10.1016/j.aquatox.2008.10.003 PubMed DOI

Ingle R. A., Mugford S. T., Rees J. D., Campbell M. M., Smith J. A. C. (2005). Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell, 17, 2089–2106. 10.1105/tpc.104.030577 PubMed DOI PMC

Inouhe M. (2005). Phytochelatins. Braz. J. Plant Physiol. 17, 65–78 10.1590/S1677-04202005000100006 DOI

Irtelli B., Petrucci W. A., Navari-Izzo F. (2009). Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess. J. Exp. Bot. 60, 269–277. 10.1093/jxb/ern286 PubMed DOI

Jakkeral S. A., Kajjidoni S. T. (2011). Root exudation of organic acids in selected genotypes under phosphorus deficient condition in blackgram (Vigna mungo L. Hepper). Karnataka J. Agric. Sci. 24, 316–319.

Jozefczak M., Remans T., Vangronsveld J., Cuypers A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 13, 3145–3175. 10.3390/ijms13033145 PubMed DOI PMC

Kalinowska R., Pawlik-Skowrónska B. (2010). Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environ. Pollut. 158, 2778–2785 10.1016/j.envpol.2010.03.003 PubMed DOI

Kanneganti V., Gupta A. K. (2008). Wall associated kinases from plants – an overview. Physiol. Mol. Biol. Plant. 14, 109–118. 10.1007/s12298-008-0010-6 PubMed DOI PMC

Kawachi M., Kobae Y., Mori H., Tomioka R., Lee Y., Maeshima M. (2009). A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol. 50, 1156–1170 10.1093/pcp/pcp067 PubMed DOI

Kerkeb L., Krämer U. (2003). The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol. 131, 716–724. 10.1104/pp102.010686 PubMed DOI PMC

Kidd P. S., Llugany M., Poschenrieder C., Gunse B., Barcelo J. (2001). The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52, 1339–1352. 10.1093/jexbot/52.359.1339 PubMed DOI

Kim S., Takahashi M., Higuchi K., Tsunoda K., Nakanishi H., Yoshimura E., et al. . (2005). Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol. 46, 1809–1818. 10.1093/pcp/pci196 PubMed DOI

Kopriva S., Wiedemann G., Reski R. (2007). Sulfate assimilation in basal land plants–what does genomic sequencing tell us? Plant Biol. 9, 556–564. 10.1055/s-2007-965430 PubMed DOI

Kumchai J., Huang J. Z., Lee C. Y., Chen F. C., Chin S. W. (2013). Proline partially overcomes excess molybdenum toxicity in cabbage seedlings grown in vitro. Genet. Mol. Res. 12, 5589–5601. 10.4238/2013.November.18.8 PubMed DOI

Lakra N., Mishra S. N., Singh D. B., Tomar P. C. (2006). Exogenous putrescine effect on cation concentration in leaf of Brassica juncea seedlings subjected to Cd and Pb along with salinity stress. J. Environ. Biol. 27, 263–269.

Lal N. (2010). Molecular mechanisms and genetic basis of heavy metal toxicity and tolerance in plants, in Plant Adaptation and Phytoremediation, eds Ashraf M., Ozturk M., Ahmad M. S. A. (Dordrecht: Springer; ), 35–58.

Lee H. S., Spraggon G., Schultz P. G., Wang F. (2009). Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J. Am. Chem. Soc. 131, 2481–2483. 10.1021/ja808340b PubMed DOI PMC

Lee M., Lee K., Lee J., Noh E. W., Lee Y. (2005). AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol. 138, 827–836. 10.1104/pp.104.058107 PubMed DOI PMC

Lefevre I., Gratia E., Lutts S. (2001). Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci. 16, 943–952 10.1016/S0168-9452(01)00485-X DOI

Li Y., Dankher O. P., Carreira L., Smith A. P., Meagher R. B. (2006). The shoot-specific expression of γ-glutamylcysteine synthetase directs the longdistance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol. 141, 288–298 10.1104/pp.105.074815 PubMed DOI PMC

Li Y., Dhankher O., Carreira L., Balish R., Meagher R. (2005). Engineered overexpression of γ-glutamylcysteine synthetase in plants confers high level arsenic and mercury tolerance. Environ. Toxicol. Chem. 24, 1376–1386 10.1897/04-340R.1 PubMed DOI

Ligaba A., Katsuhara M., Ryan P. R., Shibasaka M., Matsumoto H. (2006). The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol. 142, 1294–1303. 10.1104/pp.106.085233 PubMed DOI PMC

Liu J. H., Nada K., Honda C., Kitashiba H., Wen X. P. (2006). Polyamine biosynthesis of apple callus under salt stress. Importance of the arginine decarboxylase pathway in stress responses. J. Exp. Bot. 57, 2589–2599. 10.1093/jxb/erl018 PubMed DOI

Liu T., Liu S., Guan H., Ma L., Chen Z., Gu H., et al. (2009). Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ. Exp. Bot. 67, 377–386 10.1016/j.envexpbot.2009.03.016 DOI

Løvaas E. (1997). Antioxidant and metal-chelating effects of polyamines. Adv. Pharmacol. 38, 119–149 10.1016/S1054-3589(08)60982-5 PubMed DOI

Lv Y., Deng X., Quan L., Xia Y., Shen Z. (2013). Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367, 507–519 10.1007/s11104-012-1486-y DOI

Ma J. F., Ryan P. R., Delhaize E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278. 10.1016/S1360-1385(01)01961-6 PubMed DOI

Maestri E., Marmiroli M., Visioli G., Marmiroli N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ. Exp. Bot. 68, 1–13 10.1016/j.envexpbot.2009.10.011 DOI

Manara A. (2012). Plant responses to heavy metal toxicity, in Plants and Heavy Metals, ed Furini A. (New York, NY: Springer; ), 27–53.

Margoshes M., Vallee B. L. (1957). A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79, 4813–4814 10.1021/ja01574a064 DOI

Mari S., Lebrun M. (2006). Metal immobilization: where and how?, in Molecular Biology of Metal Homeostasis and Detoxification: From Microbes to Man, eds Tamàs M. J., Martinoia E. (Berlin: Springer; ), 273–298.

Marmiroli M., Pigoni V., Savo-Sardaro M. L., Marmiroli N. (2014). The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ. Exp. Bot. 99, 9–17 10.1016/j.envexpbot.2013.10.016 DOI

Maron L. G., Piñeros M. A., Guimarães C. T., Magalhaes J. V., Pleiman J. K., Mao C., et al. . (2010). Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 61, 728–740. 10.1111/j.1365-313X.2009.04103.x PubMed DOI

Massey L. (2003). Dietary influences on urinary oxalate and risk of kidney stones. Front. Biosci. 8:s584–94. 10.2741/1082 PubMed DOI

Mehes-Smith M., Nkongolo K., Cholewa E. (2013). Coping mechanisms of plants to metal contaminated soil, in Environmental Change and Sustainability, ed Steven S. (InTech-Open). 10.5772/55124 DOI

Mejáre M., Bülow L. (2001). Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19, 67–73. 10.1016/S0167-7799(00)01534-1 PubMed DOI

Mench M., Schwitzguebel J. P., Schroeder P., Bert V., Gawronski S., Gupta S. (2009). Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ. Sci. Pollut. Res. 16, 876–900. 10.1007/s11356-009-0252-z PubMed DOI

Mendoza-Cózatl D. G., Butko E., Springer F., Torpey J. W., Komives E. A., Kehr J., et al. . (2008). Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 54, 249–259. 10.1111/j.1365-313X.2008.03410.x PubMed DOI PMC

Mera R., Torres E., Abalde J. (2014). Sulphate, more than a nutrient, protects the microalga Chlamydomonas moewusii from cadmium toxicity. Aquat. Toxicol. 148, 92–103. 10.1016/j.aquatox.2013.12.034 PubMed DOI

Merrifield M. E., Chaseley J., Kille P., Stillman M. J. (2006). Determination of the Cd/S cluster stoichiometry in Fucus vesiculosus metallothionein. Chem. Res. Toxicol. 19, 365–375. 10.1021/tx050206j PubMed DOI

Minocha R., Thangavel P., Dhankher O. P., Long S. (2008). Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. J. Chromatogr. A 1207, 72–83. 10.1016/j.chroma.2008.08.023 PubMed DOI

Miyasaka S. C., George Buta J., Howell R. K., Foy C. D. (1991). Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol. 96, 737–743. 10.1104/pp.96.3.737 PubMed DOI PMC

Morelli E., Scarano G. (2001). Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum. Mar. Environ. Res. 52, 383–395. 10.1016/S0141-1136(01)00093-9 PubMed DOI

Mori S., Higuchi K., Suzuki K., Nishizawa N., Nakanishi H. (2007). Nicitianamine Synthase and Gene Encoding the Same. United States Patent No. 7,192,755B1.

Murphy A., Taiz T. (1995). Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol. 109, 945–954 10.1104/pp.109.3.945 PubMed DOI PMC

Nahar K., Hasanuzzaman M., Alam M. M., Fujita M. (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ. Exp. Bot. 112, 44–54 10.1016/j.envexpbot.2014.12.001 DOI

Nasibi F., Heidari T., Asrar Z., Mansoori H. (2013). Effect of arginine pre-treatment on nickel accumulation and alleviation of the oxidative stress in Hyoscyamus niger. J. Soil Sci. Plant Nutr. 13, 680–689 10.4067/S0718-95162013005000054 DOI

Nath S., Panda P., Mishra S., Dey M., Choudhury S., Sahoo L., et al. . (2014). Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol. Biochem. 80, 203–210. 10.1016/j.plaphy.2014.04.013 PubMed DOI

Nishikawa K., Onodera A., Tominaga N. (2006). Phytochelatins do not correlate with the level of Cd accumulation in Chlamydomonas spp. Chemosphere 63, 1553–1559. 10.1016/j.chemosphere.2005.09.056 PubMed DOI

Ortega-Villasante C., Rellán-Álvarez R., del Campo F. F., Carpena-Ruiz R. O., Hernández L. E. (2005). Cellular damage induced by cadmium and mercury in Medicago sativa. J. Exp. Bot. 56, 2239–2251. 10.1093/jxb/eri223 PubMed DOI

Ovečka M., Takáč T. (2014). Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol. Adv. 32, 73–86. 10.1016/j.biotechadv.2013.11.011 PubMed DOI

Oven M., Grill E., Golan-Goldhirsh A., Kutchan T. M., Zenk M. H. (2002). Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60, 467–474. 10.1016/S0031-9422(02)00135-8 PubMed DOI

Padmavathiamma P. K., Li L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut. 184, 105–126 10.1007/s11270-007-9401-5 DOI

Paleg L. G., Douglas T. J., Van Daal A., Keech D. B. (1981). Proline and betaine protect enzymes against heat inactivation. Aust. J. Plant Physiol. 9, 47–57.

Park J., Song W. Y., Ko D., Eom Y., Hansen T. H., Schiller M., et al. . (2012). The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 69, 278–288. 10.1111/j.1365-313X.2011.04789.x PubMed DOI

Pawlik-Skowrónska B. (2002). Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ. Pollut. 119, 119–127. 10.1016/S0269-7491(01)00280-9 PubMed DOI

Pawlik-Skowrónska B. (2003). When adapted to high Zn concentrations the periphytic greenalga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides. Aquat. Toxicol. 62, 155–163. 10.1016/S0166-445X(02)00080-2 PubMed DOI

Petraglia A., De Benedictis M., Degola F., Pastore G., Calcagno M., Ruotolo R., et al. . (2014). The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. J. Exp. Bot. 65, 1153–1163. 10.1093/jxb/ert472 PubMed DOI

Pianelli K., Mari S., Marquès L., Lebrun M., Czernic P. (2005). Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgenic Res. 14, 739–748. 10.1007/s11248-005-7159-3 PubMed DOI

Piñeros M. A., Magalhaes J. V., Carvalho Alves V. M., Kochian L. V. (2002). The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129, 1194–1206. 10.1104/pp.002295 PubMed DOI PMC

Piñeros M. A., Shaff J. E., Manslank H. S., Carvalho A. V. M., Kochian L. (2005). Aluminum resistant in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol. 137, 231–241. 10.1104/pp.104.047357 PubMed DOI PMC

Pokora W., Baścik-Remisiewicz A., Tukaj S., Kalinowska R., Pawlik-Skowrońska B., Dziadziuszko M., et al. . (2014). Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: a study with light-induced synchronized cultures of algae. J. Plant Physiol. 171, 69–77. 10.1016/j.jplph.2013.10.006 PubMed DOI

Popova T. N., Pinheiro de Carvalho M. A. A. (1998). Citrate and isocitrate in plant abolism. Biochim. Biophys. Acta 1364, 307–325. 10.1016/S0005-2728(98)00008-5 PubMed DOI

Rascio N., Navari-Izzo F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180, 169–181. 10.1016/j.plantsci.2010.08.016 PubMed DOI

Rellán-Álvarez R., Abadía J., Álvarez-Fernández A. (2008). Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 22, 1553–1562. 10.1002/rcm.3523 PubMed DOI

Rellán-Álvarez R., Ortega-Villasante C., Aìlvarez-Hernaìndez A., Del Campo F. F., Hernaìndez L. E. (2006). Stress responses of Zea mays to cadmium and mercury. Plant Soil 279, 41–50 10.1007/s11104-005-3900-1 DOI

Richau K. H., Kozhevnikova A. D., Seregin I. V., Vooijs R., Koevoets P. L. M., Smith J. A. C., et al. . (2009). Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol. 183, 106–116. 10.1111/j.1469-8137.2009.02826.x PubMed DOI

Richau K. H., Schat H. (2009). Intraspecific variation of nickeland zinc accumulation and tolerance in the hyperaccumulatoro Thlaspi caerulescens. Plant Soil 314, 253–262 10.1007/s11104-008-9724-z DOI

Roosens N. H., Bernard C., Leplae R., Verbruggen N. (2004). Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett. 577, 9–16. 10.1016/j.febslet.2004.08.084 PubMed DOI

Roosens N. H., Leplae R., Bernard C., Verbruggen N. (2005). Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study case. Planta 222, 716–729. 10.1007/s00425-005-0006-1 PubMed DOI

Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., et al. . (2013). The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044–6066. 10.3390/ijms14036044 PubMed DOI PMC

Salt D. E., Prince R. C., Baker A. J. M., Raskin I., Pickering I. J. (1999). Zinc legands in the metal hyperaccumulator Thalspi caerulescens as determined using X-absorption spectroscopy. Environ. Sci. Technol. 33, 713–717 10.1021/es980825x DOI

Sasaki T., Yamamoto Y., Ezaki B., Katsuhara M., Ahn S. J., Ryan P. R., et al. . (2004). A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37, 645–653. 10.1111/j.1365-313X.2003.01991.x PubMed DOI

Schützendübel A., Polle A. (2002). Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365. 10.1093/jexbot/53.372.1351 PubMed DOI

Sekhar K., Priyanka B., Reddy V. D., Rao K. V. (2011). Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ. Exp. Bot. 72, 131–139 10.1016/j.envexpbot.2011.02.017 DOI

Seth C., Remans T., Keunen E., Jozefczak M., Gielen H., Opdenakker K., et al. . (2012). Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 35, 334–346. 10.1111/j.1365-3040.2011.02338.x PubMed DOI

Sharma S. S., Dietz K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57, 711–726. 10.1093/jxb/erj073 PubMed DOI

Sharma S. S., Schat H., Vooijs R. (1998). In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49, 1531–1535. 10.1016/S0031-9422(98)00282-9 PubMed DOI

Shevyakova N. I., Il'ina E. N., Stetsenko L. A., Kuznetsov V. V. (2011). Nickel accumulation in rape shoots (Brassica napus L.) increased by putrescine. Int. J. Phytoremed. 13, 345–356. 10.1080/15226514.2010.495147 PubMed DOI

Shukla D., Kesari R., Mishra S., Dwivedi S., Tripathi R. D., Nath P., et al. . (2012). Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep. 31, 1687–1699. 10.1007/s00299-012-1283-3 PubMed DOI

Shukla D., Kesari R., Tiwari M., Dwivedi S., Tripathi R. D., Nath P., et al. . (2013). Expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250, 1263–1272. 10.1007/s00709-013-0508-9 PubMed DOI

Simões C. C., Melo J. O., Magalhaes J. V., Guimarães C. T. (2012). Genetic and molecular mechanisms of aluminum tolerance in plants. Genet. Mol. Res. 11, 1949–1957. 10.4238/2012.July.19.14 PubMed DOI

Singh D., Chauhan S. K. (2011). Organic acids of crop plants in aluminium detoxification. Curr. Sci. 100, 1109–1515.

Singh R. K., Anandhan S., Singh S., Patade V. Y., Ahmed Z., Pande V. (2011). Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasma 248, 839–847. 10.1007/s00709-010-0249-y PubMed DOI

Sobrino-Plata J., Ortega-Villasante C., Flores-Cáceres M. L., Escobar C., Del Campo F. F., Hernández L. E. (2009). Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77, 946–954. 10.1016/j.chemosphere.2009.08.007 PubMed DOI

Solanki R., Dhankhar R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66, 195–204 10.2478/s11756-011-0005-6 DOI

Solt J. P., Sneller F. E. C., Bryngelsson T., Lundborg T., Schat H. (2003). Phytochelatin and cadmium accumulation in wheat. Environ. Exp. Bot. 49, 21–28 10.1016/S0098-8472(02)00045-X DOI

Song H. M., Wang H. Z., Xu X. B. (2012). Overexpression of AtHsp90.3 in Arabidopsis thaliana impairs plant tolerance to heavy metal stress. Biol. Plant 56, 197–199 10.1007/s10535-012-0042-1 DOI

Song W. Y., Mendoza-Cózatl D. G., Lee Y., Schroeder J. I., Ahn S. N., Lee H. S., et al. . (2014). Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ. 37, 1192–1201. 10.1111/pce.12227 PubMed DOI PMC

Spisso A. A., Cerutti S., Silva F., Pacheco P. H., Martinez L. D. (2014). Characterization of Hg-phytochelatins complexes in vines (Vitis vinifera cv. Malbec) as defense mechanism aginst metal stress. Biometals 27, 591–599. 10.1007/s10534-014-9732-9 PubMed DOI

Srivalli S., Khanna-Chopra R. (2008). Delayed wheat flag leaf senescence due to the removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol. Biochem. 47, 663–670. 10.1016/j.plaphy.2009.03.015 PubMed DOI

Takahashi M., Terada Y., Nakai I., Nakanishi H., Yoshimura E., Mori S., et al. . (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15, 1263–1280. 10.1105/tpc.010256 PubMed DOI PMC

Tariq Javed M., Lindberg S., Greger M. (2014). Cellular proton dynamics in Elodea canadensis leaves induced by cadmium. Plant Physiol. Biochem. 77, 15–22. 10.1016/j.plaphy.2014.01.009 PubMed DOI

Tennstedt P., Peisker D., Bottcher C., Trampczynska A., Clemens S. (2009). Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol. 149, 938–948. 10.1104/pp.108.127472 PubMed DOI PMC

Thangavel P., Long S., Minocha R. (2007). Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tissue Organ Cult. 88, 201–216 10.1007/s11240-006-9192-1 DOI

Theriappan P., Gupta A. K., Dhasarathan P. (2011). Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J. Appl. Sci. Environ. Manag. 15, 251–255 10.4314/jasem.v15i2.68497 DOI

Trejo-Tellez L. I., Gomez-Merino F. C., Schmitt J. M. (2012). Citric acid: biosynthesis, properties and applications on higher plants, in Citric Acid, eds Vargas D. A., Medina J. V. (New York, NY: Nova Science Publishers, Inc.), 43–70.

Ueno D., Iwashita T., Zhao F. J., Ma J. F. (2008). Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol. 49, 540–548. 10.1093/pcp/pcn026 PubMed DOI

Usha B., Venkataraman G., Parida A. (2009). Heavy metal and abiotic stress inducible metallothionein isoform from Populus juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol. Genet. Genomics 281, 99–108. 10.1007/s00438-008-0398-2 PubMed DOI

Vacchina V., Mari S., Czernic P., Marquès L., Pianelli K., Schaumlöffel D., et al. . (2003). Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal. Chem. 75, 2740–2745. 10.1021/ac020704m PubMed DOI

Valero D., Pérez-Vicente A., Martínez-Romero D., Castillo S., Guillén F., Serrano M. (2002). Plum storability improved after calcium and heat postharvest treatments: role of polyamines. J. Food Sci. 67, 2571–2575 10.1111/j.1365-2621.2002.tb08778.x DOI

van de Mortel J. E., Almar Villanueva L., Schat H., Kwekkeboom J., Coughlan S., Moerland P. D., et al. . (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127–1147. 10.1104/pp.106.082073 PubMed DOI PMC

Vangronsveld J., Herzig R., Weyens N., Boulet J., Adriaensen K., Ruttens A., et al. . (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794. 10.1007/s11356-009-0213-6 PubMed DOI

Vatamaniuk O. K., Bucher E. A., Ward J. T., Rea P. A. (2001). A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J. Biol. Chem. 276, 20817–20820. 10.1074/jbc.C100152200 PubMed DOI

Vatamaniuk O. K., Mari S., Lang A., Chalasani S., Demkiv L. O., Rea P. A. (2004). Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. Stoichiometric and site-directed mutagenic analysis of Arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis. J. Biol. Chem. 279, 22449–22460. 10.1074/jbc.M313142200 PubMed DOI

Verbruggen N., Hermans C., Schat H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181, 759–776. 10.1111/j.1469-8137.2008.02748.x PubMed DOI

Verma D. P. S., Zhang C. S. (1999). Regulation of proline and arginine biosynthesis inn plants, in Plant Amno Acids: Biochemistry and Biotechnology, ed Singh B. K. (New York, NY: Marcel Dekker; ), 249–266.

Volland S., Bayer E., Baumgartner V., Andosch A., Lütz C., Sima E., et al. . (2014). Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 171, 154–163. 10.1016/j.jplph.2013.10.002 PubMed DOI PMC

Wang F., Wang Z., Zhu C. (2012). Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Acta Biochim. Biophys. Sin. 44, 886–893. 10.1093/abbs/gms073 PubMed DOI

Wang H. C., Wu J. S., Chia J. C., Yang C. C., Wu Y. J., Juang R. H. (2009). Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J. Agric. Food Chem. 57, 7348–7355. 10.1021/jf9020152 PubMed DOI

Wang X., Shi G., Xu Q., Hu J. (2007). Exogenous polyamines enhance copper tolerance of Nymphoides peltatum. J. Plant Physiol. 164, 1062–1070. 10.1016/j.jplph.2006.06.003 PubMed DOI

Wen X. P., Pang X. M., Matsuda N., Kita M., Inoue H., Hao Y. J., et al. . (2008). Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res. 17, 251–263. 10.1007/s11248-007-9098-7 PubMed DOI

Wycisk K., Kim E. J., Schroeder J. I., Krämer U. (2004). Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett. 578, 128–134. 10.1016/j.febslet.2004.10.086 PubMed DOI

Yang H., Huang Z. Y., Li J., Hu Y. (2014). MT-like proteins: potential bio-indicators of Chlorella vulgaris for zinc contamination in water environment. Ecol. Ind. 45, 103–109 10.1016/j.ecolind.2014.03.017 DOI

Yang L. T., Qi Y. P., Jiang H. X., Chen L. S. (2013). Roles of organic acid anion secretation in aluminum tolerance of higher plants. BioMed. Res. Int. 2013:173682. 10.1155/2013/173682 PubMed DOI PMC

Yokosho K., Yamaji N., Ma J. F. (2010). Isolation and characterization of two MATE genes in rye. Funct. Plant Biol. 37, 296–303. 10.1071/FP09265 PubMed DOI

Yokosho K., Yamaji N., Ma J. F. (2011). An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J. 68, 1061–1069. 10.1111/j.1365-313X.2011.04757.x PubMed DOI

Zacchini M., Pietrini F., Mugnozza G. S., Iori V., Pietrosanti L., Massacci A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197, 23–34 10.1007/s11270-008-9788-7 DOI

Zenk M. H. (1996). Heavy metal detoxification in higher plants–a review. Gene 179, 21–30. 10.1016/S0378-1119(96)00422-2 PubMed DOI

Zhang H., Xu W., Dai W., He Z., Ma M. (2006). Functional characterization of cadmium-responsive garlic gene AsMT2b: a new member of metallothionein family. Chin. Sci. Bull. 51, 409–416 10.1007/s11434-006-0409-9 DOI

Zhang Z., Gao X., Qiu B. (2008). Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69, 911–918. 10.1016/j.phytochem.2007.10.012 PubMed DOI

Zhao H., Yang H. (2008). Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci. Hortic. 116, 442–447 10.1016/j.scienta.2008.02.017 DOI

Zhao J., Shi G. X., Yuan Q. H. (2008). Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) Backer leaves. Biometals 21, 665–674. 10.1007/s10534-008-9151-x PubMed DOI

Zhou B., Yao W., Wang S., Wang Y., Jiang T. (2014). The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco. Int. J. Mol. Sci. 15, 10398–10409. 10.3390/ijms150610398 PubMed DOI PMC

Zhou J., Goldsbrough P. B. (1994). Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6, 875–884. 10.1105/tpc.6.6.875 PubMed DOI PMC

Zhu X. F., Zheng C., Hu Y. T., Jiang T., Liu Y., Dong N. Y., et al. . (2011). Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant Cell Environ. 34, 1055–1064. 10.1111/j.1365-3040.2011.02304.x PubMed DOI

Zimeri A. M., Dhankher O. P., McCaig B., Meagher R. B. (2005). The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol. Biol. 58, 839–855. 10.1007/s11103-005-8268-3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...