Jacks of metal/metalloid chelation trade in plants-an overview
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
25883598
PubMed Central
PMC4382971
DOI
10.3389/fpls.2015.00192
Knihovny.cz E-zdroje
- Klíčová slova
- chelation, glutathione, metal/metalloids, metallothioneins, organic acid, phytochelatins, plant tolerance, thiol compounds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as "metal/s") mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.
Department of Agronomy Faculty of Agriculture Sher e Bangla Agricultural University Dhaka Bangladesh
Department of Environmental Science School of Life Sciences Periyar University Salem India
Department of Genetics and Plant Breeding Bangladesh Agricultural University Mymensingh Bangladesh
Laboratory of Plant Stress Responses Faculty of Agriculture Kagawa University Miki cho Japan
Post Graduate Department of Biotechnology St Xavier's College Kolkata India
Zobrazit více v PubMed
Ahmad M. A., Gupta M. (2013). Exposure PubMed DOI
Ahner B. A., Kong S., Morel F. M. M. (1995). Phytochelatin production in marine algae. 1. An interspecies comparison. Limnol. Ocenogr. 40, 649–657 10.4319/lo.1995.40.4.0649 DOI
Ali H., Khan E., Sajad M. A. (2013). Phytoremediation of heavy metals–concepts and applications. Chemosphere 91, 869–881. 10.1016/j.chemosphere.2013.01.075 PubMed DOI
Alloway B. (2013). Heavy metals and metalloids as micronutrients for plants and animals, in Heavy Metals in Soils, ed Alloway B. J. (Dordrecht: Springer; ), 195–209.
Andra S. S., Datta R., Sarkar D., Makris K. C., Mullens C. P., Sahi S. V., et al. (2010). Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326, 171–185 10.1007/s11104-009-9992-2 DOI
Anjum N. A., Ahamd I., Mohmood I., Pacheco M., Duarte A. C., Pereira E., et al. (2012b). Modulation of glutathione and its related enzymes in plants' responses to toxic metals and metalloids–a review. Environ. Exp. Bot. 75, 307–324 10.1016/j.envexpbot.2011.07.002 DOI
Anjum N. A., Aref I. M., Duarte A. C., Pereira E., Ahmad I., Iqbal M. (2014d). Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front. Plant Sci. 5:662. 10.3389/fpls.2014.00662 PubMed DOI PMC
Anjum N. A., Gill S. S., Gill R. (2014b). Plant Adaptation to Environmental Change: Significance of Amino Acids and their Derivatives, 1st Edn Wallingford, UK: CABI.
Anjum N. A., Israr M., Duarte A. C., Pereira M. E., Ahmad I. (2014c). PubMed DOI
Anjum N. A., Pereira M. E., Ahmad I., Duarte A. C., Umar S., Khan N. A. (2012a). Phytotechnologies: Remediation of Environmental Contaminants. Boca Raton, FL: CRC Press.
Anjum N. A., Singh H. P., Khan M. I. R., Masood A., Per T. S., Negi A., et al. (2015). Too much is bad – an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ. Sci. Pollut. Res. 22, 3361–3382. 10.1007/s11356-014-3849-9 PubMed DOI
Anjum N. A., Umar S., Chan M. T. (2010). Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Dordrecht: Springer; 10.1007/978-90-481-9404-9 DOI
Anjum N. A., Umar S., Iqbal M. (2014a). Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants – implications for phytoremediation. Environ. Sci. Pollut. Res. 21, 10286–10293. 10.1007/s11356-014-2889-5 PubMed DOI
Arakawa T., Timasheff S. N. (1985). The stabilization of proteins by osmolytes. Biophys. J. 47, 411–414. 10.1016/S0006-3495(85)83932-1 PubMed DOI PMC
Arrivault S., Senger T., Kramer U. (2006). The PubMed DOI
Asgher M., Khan M. I. R., Iqbal N., Masood A., Khan N. A. (2013). Cadmium tolerance in mustard cultivars: dependence on proline accumulation and nitrogen assimilation. J. Funct. Environ. Bot. 3, 30–42 10.5958/j.2231-1750.3.1.005 DOI
Ashraf M., Foolad M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59, 206–216 10.1016/j.envexpbot.2005.12.006 DOI
Auguy F., Fahr M., Moulin P., Brugel A., Laplaze L., El Mzibri M., et al. (2013). Lead tolerance and accumulation in PubMed DOI PMC
Baker A. J. M., Whiting S. N. (2002). In search of the Holy Grail: a further step in understanding metal hyperaccumulation. New Phytol. 155, 1–4 10.1046/j.1469-8137.2002.00449_1.x PubMed DOI
Bilecen K., Ozturk U. H., Duru A. D., Sutlu T., Petoukhov M. V., Svergun D. I., et al. (2005). PubMed DOI
Blindauer C. A. (2008). Metallothioneins with unusual residues: histidines as modulators of zinc affinity and reactivity. J. Inorg. Biochem. 102, 507–521. 10.1016/j.jinorgbio.2007.10.032 PubMed DOI
Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., et al. (2014). Remediation of heavy metal (loid) s contaminated soils – to mobilize or to immobilize? J. Hazard. Mater. 266, 141–166. 10.1016/j.jhazmat.2013.12.018 PubMed DOI
Boominathan R., Doran P. M. (2003). Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J. Biotechnol. 101, 131–146. 10.1016/S0168-1656(02)00320-6 PubMed DOI
Bruns I., Sutter K., Menge S., Neumann D., Krauss G. J. (2001). Cadmium lets increase the glutathione pool in bryophytes. J. Plant Physiol. 158, 79–89 10.1078/0176-1617-00071 DOI
Bittsánszkya A., Kfmives T., Gullner G., Gyulai G., Kiss J., Heszky L., et al. (2005). Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ. Int. 31, 251–254. 10.1016/j.envint.2004.10.001 PubMed DOI
Çalişkan M. (2000). The metabolism of oxalic acid. Turk. J. Zool. 24, 103–106.
Callahan D. L., Baker A. J. M., Kolev S. D., Wedd A. G. (2006). Metal ion ligands in hyperaccumulating plants. J. Biol. Inorg. Chem. 11, 2–12. 10.1007/s00775-005-0056-7 PubMed DOI
Cánovas D., Vooijs R., Schat H., De Lorenzo V. (2004). The role of thiol species in the hypertolerance of PubMed DOI
Choudhary S. P., Kanwar M., Bhardwaj R., Yu J. Q., Tran L. S. P. (2012b). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in PubMed DOI PMC
Choudhary S. P., Oral H. V., Bhardwaj R., Yu J. Q., Tran L. S. P. (2012a). Interaction of brassinosteroids and polyamines enhances copper stress tolerance in PubMed DOI PMC
Clemens S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475–486. 10.1007/s004250000458 PubMed DOI
Clemens S. (2006). Evolution and function of phytochelatin synthases. J. Plant Physiol. 163, 319–332. 10.1016/j.jplph.2005.11.010 PubMed DOI
Cobbett C., Goldsbrough P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53, 159–182. 10.1146/annurev.arplant.53.100301.135154 PubMed DOI
Collins N. C., Shirley N. J., Saeed M., Pallotta M., Gustafson J. P. (2008). An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye ( PubMed DOI PMC
Courbot M., Diez L., Ruotola R., Chalot M., Leroy P. (2004). Cadmium-responsive thiols in the ectomycorrhizal fungus PubMed DOI PMC
Dago A., González I., Ariño C., Díaz-Cruz J. M., Esteban M. (2014). Chemometrics applied to the analysis of induced phytochelatins in PubMed DOI
Deinlein U., Weber M., Schmidt H., Rensch S., Trampczynska A., Hansen T. H., et al. (2012). Elevated nicotianamine levels in PubMed DOI PMC
Delhaize E., Ma J. F., Ryan P. R. (2012). Transcriptional regulation of aluminium tolerance genes. Trend Plant Sci. 17, 341–348. 10.1016/j.tplants.2012.02.008 PubMed DOI
Dhankher O. P., Li Y., Rosen B. P., Shi J., Salt D., Senecoff J. F., et al. (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and -glutamylcysteine synthetase expression. Nat. Biotechnol. 20, 1140–1145. 10.1038/nbt747 PubMed DOI
Dominguez-Solis J. R., Lopez-Martin M. C., Ager M. C., Ynsa M. D., Romero L. C., Gotor C. (2004). Increased cysteine availability is essential for cadmium tolerance and accumulation in PubMed DOI
Dorcak V., Krezel A. (2003). Correlation of acide-base chemistry of phytochelatin PC2 with its coordination properties towards the toxic metal ion Cd (II). Dalton. Trans. 11, 2253–2259 10.1039/b301357j DOI
Douchkov D., Gryczka C., Stephan U. W., Hell R., Bäumlein H. (2005). Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ. 28, 365–374 10.1111/j.1365-3040.2005.01273.x DOI
Duan G. L., Hu Y., Lui W. J., Kneer R., Zhao F. J., Zhu Y. G. (2011). Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grains. Environ. Exp. Bot. 71, 416–421 10.1016/j.envexpbot.2011.02.016 DOI
Dupae J., Bohler S., Noben J. P., Carpentier S., Vangronsveld J., Cuypers A. (2014). Problems inherent to a meta-analysis of proteomics data: a case study on the plants' response to Cd in different cultivation conditions. J. Proteomics 108, 30–54. 10.1016/j.jprot.2014.04.029 PubMed DOI
Ellis D. R., Salt D. E. (2003). Plants, selenium and human health. Curr. Opin. Plant Biol. 6, 273–279 10.1016/S1369-5266(03)00030-X PubMed DOI
Ernst W. H. O., Krauss G. J., Verkleij J. A. C., Wesenberg D. (2008). Interaction of heavy metals with the sulphur metabolism in angiosperms from an ecological point of view. Plant Cell Environ. 31, 123–143. 10.1111/j.1365-3040.2007.01746.x PubMed DOI
Estrella-Gómez N. E., Sauri-Duch E., Zapata-Pérez O., Santamaría J. M. (2012). Glutathione plays a role in protecting leaves of DOI
Feretti L., Elviri L., Pelinghelli M. A., Prediery G., Tegoni M. (2007). Glutathione and N-acetylcysteinylglycine: protonation and Zn2 PubMed DOI
Fernández R., Bertrand A., García J. I., Tamés R. S., González A. (2012). Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of DOI
Fernie A. R., Martinoia E. (2009). Malate. Jack of all trades or master of a few? Photochemistry 70, 828–832. 10.1016/j.phytochem.2009.04.023 PubMed DOI
Finkemeier I., Sweetlove L. J. (2009). The role of malate in plant homeostasis. Biol. Rep. 1:47. 10.3410/B1-47 PubMed DOI PMC
Freisinger E. (2008). Plant MTs-long neglected members of the metallothionein superfamily. Dalton. Trans. 47, 6663–6675 10.1039/b809789e PubMed DOI
Freisinger E. (2011). Structural features specific to plant metallothioneins. J. Biol. Inorg. Chem. 16, 1035–1045. 10.1007/s00775-011-0801-z PubMed DOI
Furukawa J., Yamaji N., Wang H., Mitani N., Murata Y., Sato K., et al. (2007). An aluminum-activated citrate transporter in barley. Plant Cell Physiol. 48, 1081–1091. 10.1093/pcp/pcm091 PubMed DOI
Gautam N., Verma P. K., Verma S., Tripathi R. D., Trivedi P. K., Adhikari B., et al. (2012). Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct. Integr. Genomics 12, 635–647. 10.1007/s10142-012-0297-9 PubMed DOI
Gekeler W., Grill E., Winnacker E. L., Zenk M. H. (1988). Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch. Microbiol. 150, 197–202 10.1007/BF00425162 DOI
Gill S. S., Anjum N. A., Ahmad I., Pacheco M., Duarte A. C., Umar S., et al. (2012). Metal hyperaccumulation and tolerance in Alyssum,
Gill S. S., Gill R., Anjum N. A. (2014). Target osmoprotectants for abiotic stress tolerance in crop plants – glycine betaine and proline, in Plant Adaptation to Environmental Change: Significance of Amino Acids and Their Derivatives, eds Anjum N. A., Gill S. S., Gill R. (Wallingford, CT: CAB International; ), 97–108.
Gonzalez-Mendoza D., Moreno A. Q., Zapata-Perez O. (2007). Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, PubMed DOI
Groppa M. D., Benavides M. P., Tomaro M. L. (2003). Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci. 161, 481–488 10.1016/S0168-9452(01)00432-0 DOI
Groppa M. D., Ianuzzo M. P., Tomaro M. L., Benavides M. P. (2007). Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32, 265–275. 10.1007/s00726-006-0343-9 PubMed DOI
Guo J., Xu L., Su Y., Wang H., Gao S., Xu J., et al. (2013). PubMed DOI PMC
Guo J., Xu W., Ma M. (2012). The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic PubMed DOI
Guo W. J., Bundithya W., Goldsbrough P. B. (2003). Characterization of the PubMed DOI
Hall J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1–11. 10.1093/jexbot/53.366.1 PubMed DOI
Hasanuzzaman M., Fujita M. (2013). Exogenous sodium nitroprusside alleviate arsenic-induced oxidative stress in wheat seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22, 584–596 10.1007/s10646-013-1050-4 PubMed DOI
Hasanuzzaman M., Gill S. S., Fujita M. (2013). Physiological role of nitric oxide in plants grown under adverse environmental conditions, in Plant Acclimation to Environmental Stress, eds Tuteja N., Gill S. S. (New York, NY: Springer; ), 269–322.
Hasanuzzaman M., Nahar K., Fujita M. (2014). Regulatory role of polyamines in abiotic stress tolerance in plants, in Plant Adaptation to Environmental Change: Significance of Amino Acids and Their Derivatives, eds Anjum N. A., Gill S. S., Gill R. (Wallingford, CT: CAB International; ), 157–193.
Hassan Z., Aarts M. G. M. (2011). Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ. Exp. Bot. 72, 53–63 10.1016/j.envexpbot.2010.04.003 DOI
Hassinen V. H., Tervahauta A. I., Schat H., Kärenlampi S. O. (2011). Plant metallothioneins–metal chelators with ROS scavenging activity? Plant Biol. 13, 225–232. 10.1111/j.1438-8677.2010.00398.x PubMed DOI
Hawrylak-Nowak B., Dresler S., Wójcik M. (2014). Selenium affects physiological parameters and phytochelatins accumulation in cucumber ( DOI
Haydon M. J., Kawachi M., Wirtz M., Hillmer S., Hell R., Krämer U. (2012). Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in PubMed DOI PMC
Hoekenga O. A., Maron L. G., Piñeros M. A., Cancado G. M., Shaff J., et al. (2006). PubMed DOI PMC
Hossain Z., Komatsu S. (2013). Contribution of proteomic studies towards understanding plant heavy metal stress response. Front. Plant Sci. 3:310. 10.3389/fpls.2012.00310 PubMed DOI PMC
Hu S., Lau K. W. K., Wu M. (2001). Cadmium sequestration in DOI
Huang C. F., Yamaji N., Mitani N., Yano M., Nagamura Y., Ma J. F. (2009b). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21, 655–667. 10.1105/tpc.108.064543 PubMed DOI PMC
Huang Z. Y., Li L. P., Huang G. L., Yan Q. P., Shi B., Xu X. Q. (2009a). Growth-inhibitory and metal binding proteins in PubMed DOI
Ingle R. A., Mugford S. T., Rees J. D., Campbell M. M., Smith J. A. C. (2005). Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell, 17, 2089–2106. 10.1105/tpc.104.030577 PubMed DOI PMC
Inouhe M. (2005). Phytochelatins. Braz. J. Plant Physiol. 17, 65–78 10.1590/S1677-04202005000100006 DOI
Irtelli B., Petrucci W. A., Navari-Izzo F. (2009). Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of PubMed DOI
Jakkeral S. A., Kajjidoni S. T. (2011). Root exudation of organic acids in selected genotypes under phosphorus deficient condition in blackgram (
Jozefczak M., Remans T., Vangronsveld J., Cuypers A. (2012). Glutathione is a key player in metal-induced oxidative stress defenses. Int. J. Mol. Sci. 13, 3145–3175. 10.3390/ijms13033145 PubMed DOI PMC
Kalinowska R., Pawlik-Skowrónska B. (2010). Response of two terrestrial green microalgae (Chlorophyta, Trebouxiophyceae) isolated from Cu-rich and unpolluted soils to copper stress. Environ. Pollut. 158, 2778–2785 10.1016/j.envpol.2010.03.003 PubMed DOI
Kanneganti V., Gupta A. K. (2008). Wall associated kinases from plants – an overview. Physiol. Mol. Biol. Plant. 14, 109–118. 10.1007/s12298-008-0010-6 PubMed DOI PMC
Kawachi M., Kobae Y., Mori H., Tomioka R., Lee Y., Maeshima M. (2009). A mutant strain PubMed DOI
Kerkeb L., Krämer U. (2003). The role of free histidine in xylem loading of nickel in PubMed DOI PMC
Kidd P. S., Llugany M., Poschenrieder C., Gunse B., Barcelo J. (2001). The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize ( PubMed DOI
Kim S., Takahashi M., Higuchi K., Tsunoda K., Nakanishi H., Yoshimura E., et al. (2005). Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol. 46, 1809–1818. 10.1093/pcp/pci196 PubMed DOI
Kopriva S., Wiedemann G., Reski R. (2007). Sulfate assimilation in basal land plants–what does genomic sequencing tell us? Plant Biol. 9, 556–564. 10.1055/s-2007-965430 PubMed DOI
Kumchai J., Huang J. Z., Lee C. Y., Chen F. C., Chin S. W. (2013). Proline partially overcomes excess molybdenum toxicity in cabbage seedlings grown PubMed DOI
Lakra N., Mishra S. N., Singh D. B., Tomar P. C. (2006). Exogenous putrescine effect on cation concentration in leaf of
Lal N. (2010). Molecular mechanisms and genetic basis of heavy metal toxicity and tolerance in plants, in Plant Adaptation and Phytoremediation, eds Ashraf M., Ozturk M., Ahmad M. S. A. (Dordrecht: Springer; ), 35–58.
Lee H. S., Spraggon G., Schultz P. G., Wang F. (2009). Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J. Am. Chem. Soc. 131, 2481–2483. 10.1021/ja808340b PubMed DOI PMC
Lee M., Lee K., Lee J., Noh E. W., Lee Y. (2005). PubMed DOI PMC
Lefevre I., Gratia E., Lutts S. (2001). Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice ( DOI
Li Y., Dankher O. P., Carreira L., Smith A. P., Meagher R. B. (2006). The shoot-specific expression of γ-glutamylcysteine synthetase directs the longdistance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol. 141, 288–298 10.1104/pp.105.074815 PubMed DOI PMC
Li Y., Dhankher O., Carreira L., Balish R., Meagher R. (2005). Engineered overexpression of γ-glutamylcysteine synthetase in plants confers high level arsenic and mercury tolerance. Environ. Toxicol. Chem. 24, 1376–1386 10.1897/04-340R.1 PubMed DOI
Ligaba A., Katsuhara M., Ryan P. R., Shibasaka M., Matsumoto H. (2006). The PubMed DOI PMC
Liu J. H., Nada K., Honda C., Kitashiba H., Wen X. P. (2006). Polyamine biosynthesis of apple callus under salt stress. Importance of the arginine decarboxylase pathway in stress responses. J. Exp. Bot. 57, 2589–2599. 10.1093/jxb/erl018 PubMed DOI
Liu T., Liu S., Guan H., Ma L., Chen Z., Gu H., et al. (2009). Transcriptional profiling of DOI
Løvaas E. (1997). Antioxidant and metal-chelating effects of polyamines. Adv. Pharmacol. 38, 119–149 10.1016/S1054-3589(08)60982-5 PubMed DOI
Lv Y., Deng X., Quan L., Xia Y., Shen Z. (2013). Metallothioneins DOI
Ma J. F., Ryan P. R., Delhaize E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278. 10.1016/S1360-1385(01)01961-6 PubMed DOI
Maestri E., Marmiroli M., Visioli G., Marmiroli N. (2010). Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ. Exp. Bot. 68, 1–13 10.1016/j.envexpbot.2009.10.011 DOI
Manara A. (2012). Plant responses to heavy metal toxicity, in Plants and Heavy Metals, ed Furini A. (New York, NY: Springer; ), 27–53.
Margoshes M., Vallee B. L. (1957). A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 79, 4813–4814 10.1021/ja01574a064 DOI
Mari S., Lebrun M. (2006). Metal immobilization: where and how?, in Molecular Biology of Metal Homeostasis and Detoxification: From Microbes to Man, eds Tamàs M. J., Martinoia E. (Berlin: Springer; ), 273–298.
Marmiroli M., Pigoni V., Savo-Sardaro M. L., Marmiroli N. (2014). The effect of silicon on the uptake and translocation of arsenic in tomato ( DOI
Maron L. G., Piñeros M. A., Guimarães C. T., Magalhaes J. V., Pleiman J. K., Mao C., et al. (2010). Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J. 61, 728–740. 10.1111/j.1365-313X.2009.04103.x PubMed DOI
Massey L. (2003). Dietary influences on urinary oxalate and risk of kidney stones. Front. Biosci. 8:s584–94. 10.2741/1082 PubMed DOI
Mehes-Smith M., Nkongolo K., Cholewa E. (2013). Coping mechanisms of plants to metal contaminated soil, in Environmental Change and Sustainability, ed Steven S. (InTech-Open). 10.5772/55124 DOI
Mejáre M., Bülow L. (2001). Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19, 67–73. 10.1016/S0167-7799(00)01534-1 PubMed DOI
Mench M., Schwitzguebel J. P., Schroeder P., Bert V., Gawronski S., Gupta S. (2009). Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ. Sci. Pollut. Res. 16, 876–900. 10.1007/s11356-009-0252-z PubMed DOI
Mendoza-Cózatl D. G., Butko E., Springer F., Torpey J. W., Komives E. A., Kehr J., et al. (2008). Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of PubMed DOI PMC
Mera R., Torres E., Abalde J. (2014). Sulphate, more than a nutrient, protects the microalga PubMed DOI
Merrifield M. E., Chaseley J., Kille P., Stillman M. J. (2006). Determination of the Cd/S cluster stoichiometry in PubMed DOI
Minocha R., Thangavel P., Dhankher O. P., Long S. (2008). Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography. J. Chromatogr. A 1207, 72–83. 10.1016/j.chroma.2008.08.023 PubMed DOI
Miyasaka S. C., George Buta J., Howell R. K., Foy C. D. (1991). Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol. 96, 737–743. 10.1104/pp.96.3.737 PubMed DOI PMC
Morelli E., Scarano G. (2001). Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom PubMed DOI
Mori S., Higuchi K., Suzuki K., Nishizawa N., Nakanishi H. (2007). Nicitianamine Synthase and Gene Encoding the Same. United States Patent No. 7,192,755B1.
Murphy A., Taiz T. (1995). Comparison of metallothionein gene expression and nonprotein thiols in ten PubMed DOI PMC
Nahar K., Hasanuzzaman M., Alam M. M., Fujita M. (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean ( DOI
Nasibi F., Heidari T., Asrar Z., Mansoori H. (2013). Effect of arginine pre-treatment on nickel accumulation and alleviation of the oxidative stress in DOI
Nath S., Panda P., Mishra S., Dey M., Choudhury S., Sahoo L., et al. (2014). Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol. Biochem. 80, 203–210. 10.1016/j.plaphy.2014.04.013 PubMed DOI
Nishikawa K., Onodera A., Tominaga N. (2006). Phytochelatins do not correlate with the level of Cd accumulation in PubMed DOI
Ortega-Villasante C., Rellán-Álvarez R., del Campo F. F., Carpena-Ruiz R. O., Hernández L. E. (2005). Cellular damage induced by cadmium and mercury in PubMed DOI
Ovečka M., Takáč T. (2014). Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol. Adv. 32, 73–86. 10.1016/j.biotechadv.2013.11.011 PubMed DOI
Oven M., Grill E., Golan-Goldhirsh A., Kutchan T. M., Zenk M. H. (2002). Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60, 467–474. 10.1016/S0031-9422(02)00135-8 PubMed DOI
Padmavathiamma P. K., Li L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut. 184, 105–126 10.1007/s11270-007-9401-5 DOI
Paleg L. G., Douglas T. J., Van Daal A., Keech D. B. (1981). Proline and betaine protect enzymes against heat inactivation. Aust. J. Plant Physiol. 9, 47–57.
Park J., Song W. Y., Ko D., Eom Y., Hansen T. H., Schiller M., et al. (2012). The phytochelatin transporters PubMed DOI
Pawlik-Skowrónska B. (2002). Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga PubMed DOI
Pawlik-Skowrónska B. (2003). When adapted to high Zn concentrations the periphytic greenalga PubMed DOI
Petraglia A., De Benedictis M., Degola F., Pastore G., Calcagno M., Ruotolo R., et al. (2014). The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. J. Exp. Bot. 65, 1153–1163. 10.1093/jxb/ert472 PubMed DOI
Pianelli K., Mari S., Marquès L., Lebrun M., Czernic P. (2005). Nicotianamine over-accumulation confers resistance to nickel in PubMed DOI
Piñeros M. A., Magalhaes J. V., Carvalho Alves V. M., Kochian L. V. (2002). The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol. 129, 1194–1206. 10.1104/pp.002295 PubMed DOI PMC
Piñeros M. A., Shaff J. E., Manslank H. S., Carvalho A. V. M., Kochian L. (2005). Aluminum resistant in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol. 137, 231–241. 10.1104/pp.104.047357 PubMed DOI PMC
Pokora W., Baścik-Remisiewicz A., Tukaj S., Kalinowska R., Pawlik-Skowrońska B., Dziadziuszko M., et al. (2014). Adaptation strategies of two closely related PubMed DOI
Popova T. N., Pinheiro de Carvalho M. A. A. (1998). Citrate and isocitrate in plant abolism. Biochim. Biophys. Acta 1364, 307–325. 10.1016/S0005-2728(98)00008-5 PubMed DOI
Rascio N., Navari-Izzo F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 180, 169–181. 10.1016/j.plantsci.2010.08.016 PubMed DOI
Rellán-Álvarez R., Abadía J., Álvarez-Fernández A. (2008). Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 22, 1553–1562. 10.1002/rcm.3523 PubMed DOI
Rellán-Álvarez R., Ortega-Villasante C., Aìlvarez-Hernaìndez A., Del Campo F. F., Hernaìndez L. E. (2006). Stress responses of DOI
Richau K. H., Kozhevnikova A. D., Seregin I. V., Vooijs R., Koevoets P. L. M., Smith J. A. C., et al. (2009). Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator PubMed DOI
Richau K. H., Schat H. (2009). Intraspecific variation of nickeland zinc accumulation and tolerance in the hyperaccumulatoro DOI
Roosens N. H., Bernard C., Leplae R., Verbruggen N. (2004). Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator PubMed DOI
Roosens N. H., Leplae R., Bernard C., Verbruggen N. (2005). Variations in plant metallothioneins: the heavy metal hyperaccumulator PubMed DOI
Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., et al. (2013). The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044–6066. 10.3390/ijms14036044 PubMed DOI PMC
Salt D. E., Prince R. C., Baker A. J. M., Raskin I., Pickering I. J. (1999). Zinc legands in the metal hyperaccumulator DOI
Sasaki T., Yamamoto Y., Ezaki B., Katsuhara M., Ahn S. J., Ryan P. R., et al. (2004). A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37, 645–653. 10.1111/j.1365-313X.2003.01991.x PubMed DOI
Schützendübel A., Polle A. (2002). Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53, 1351–1365. 10.1093/jexbot/53.372.1351 PubMed DOI
Sekhar K., Priyanka B., Reddy V. D., Rao K. V. (2011). DOI
Seth C., Remans T., Keunen E., Jozefczak M., Gielen H., Opdenakker K., et al. (2012). Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 35, 334–346. 10.1111/j.1365-3040.2011.02338.x PubMed DOI
Sharma S. S., Dietz K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Exp. Bot. 57, 711–726. 10.1093/jxb/erj073 PubMed DOI
Sharma S. S., Schat H., Vooijs R. (1998). PubMed DOI
Shevyakova N. I., Il'ina E. N., Stetsenko L. A., Kuznetsov V. V. (2011). Nickel accumulation in rape shoots ( PubMed DOI
Shukla D., Kesari R., Mishra S., Dwivedi S., Tripathi R. D., Nath P., et al. (2012). Expression of phytochelatin synthase from aquatic macrophyte PubMed DOI
Shukla D., Kesari R., Tiwari M., Dwivedi S., Tripathi R. D., Nath P., et al. (2013). Expression of PubMed DOI
Simões C. C., Melo J. O., Magalhaes J. V., Guimarães C. T. (2012). Genetic and molecular mechanisms of aluminum tolerance in plants. Genet. Mol. Res. 11, 1949–1957. 10.4238/2012.July.19.14 PubMed DOI
Singh D., Chauhan S. K. (2011). Organic acids of crop plants in aluminium detoxification. Curr. Sci. 100, 1109–1515.
Singh R. K., Anandhan S., Singh S., Patade V. Y., Ahmed Z., Pande V. (2011). Metallothionein-like gene from PubMed DOI
Sobrino-Plata J., Ortega-Villasante C., Flores-Cáceres M. L., Escobar C., Del Campo F. F., Hernández L. E. (2009). Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere 77, 946–954. 10.1016/j.chemosphere.2009.08.007 PubMed DOI
Solanki R., Dhankhar R. (2011). Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66, 195–204 10.2478/s11756-011-0005-6 DOI
Solt J. P., Sneller F. E. C., Bryngelsson T., Lundborg T., Schat H. (2003). Phytochelatin and cadmium accumulation in wheat. Environ. Exp. Bot. 49, 21–28 10.1016/S0098-8472(02)00045-X DOI
Song H. M., Wang H. Z., Xu X. B. (2012). Overexpression of DOI
Song W. Y., Mendoza-Cózatl D. G., Lee Y., Schroeder J. I., Ahn S. N., Lee H. S., et al. (2014). Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and PubMed DOI PMC
Spisso A. A., Cerutti S., Silva F., Pacheco P. H., Martinez L. D. (2014). Characterization of Hg-phytochelatins complexes in vines ( PubMed DOI
Srivalli S., Khanna-Chopra R. (2008). Delayed wheat flag leaf senescence due to the removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol. Biochem. 47, 663–670. 10.1016/j.plaphy.2009.03.015 PubMed DOI
Takahashi M., Terada Y., Nakai I., Nakanishi H., Yoshimura E., Mori S., et al. (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15, 1263–1280. 10.1105/tpc.010256 PubMed DOI PMC
Tariq Javed M., Lindberg S., Greger M. (2014). Cellular proton dynamics in PubMed DOI
Tennstedt P., Peisker D., Bottcher C., Trampczynska A., Clemens S. (2009). Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol. 149, 938–948. 10.1104/pp.108.127472 PubMed DOI PMC
Thangavel P., Long S., Minocha R. (2007). Changes in phytochelatins and their biosynthetic intermediates in red spruce ( DOI
Theriappan P., Gupta A. K., Dhasarathan P. (2011). Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. J. Appl. Sci. Environ. Manag. 15, 251–255 10.4314/jasem.v15i2.68497 DOI
Trejo-Tellez L. I., Gomez-Merino F. C., Schmitt J. M. (2012). Citric acid: biosynthesis, properties and applications on higher plants, in Citric Acid, eds Vargas D. A., Medina J. V. (New York, NY: Nova Science Publishers, Inc.), 43–70.
Ueno D., Iwashita T., Zhao F. J., Ma J. F. (2008). Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator PubMed DOI
Usha B., Venkataraman G., Parida A. (2009). Heavy metal and abiotic stress inducible metallothionein isoform from PubMed DOI
Vacchina V., Mari S., Czernic P., Marquès L., Pianelli K., Schaumlöffel D., et al. (2003). Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal. Chem. 75, 2740–2745. 10.1021/ac020704m PubMed DOI
Valero D., Pérez-Vicente A., Martínez-Romero D., Castillo S., Guillén F., Serrano M. (2002). Plum storability improved after calcium and heat postharvest treatments: role of polyamines. J. Food Sci. 67, 2571–2575 10.1111/j.1365-2621.2002.tb08778.x DOI
van de Mortel J. E., Almar Villanueva L., Schat H., Kwekkeboom J., Coughlan S., Moerland P. D., et al. (2006). Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of PubMed DOI PMC
Vangronsveld J., Herzig R., Weyens N., Boulet J., Adriaensen K., Ruttens A., et al. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794. 10.1007/s11356-009-0213-6 PubMed DOI
Vatamaniuk O. K., Bucher E. A., Ward J. T., Rea P. A. (2001). A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in PubMed DOI
Vatamaniuk O. K., Mari S., Lang A., Chalasani S., Demkiv L. O., Rea P. A. (2004). Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. Stoichiometric and site-directed mutagenic analysis of PubMed DOI
Verbruggen N., Hermans C., Schat H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181, 759–776. 10.1111/j.1469-8137.2008.02748.x PubMed DOI
Verma D. P. S., Zhang C. S. (1999). Regulation of proline and arginine biosynthesis inn plants, in Plant Amno Acids: Biochemistry and Biotechnology, ed Singh B. K. (New York, NY: Marcel Dekker; ), 249–266.
Volland S., Bayer E., Baumgartner V., Andosch A., Lütz C., Sima E., et al. (2014). Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J. Plant Physiol. 171, 154–163. 10.1016/j.jplph.2013.10.002 PubMed DOI PMC
Wang F., Wang Z., Zhu C. (2012). Heteroexpression of the wheat phytochelatin synthase gene ( PubMed DOI
Wang H. C., Wu J. S., Chia J. C., Yang C. C., Wu Y. J., Juang R. H. (2009). Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J. Agric. Food Chem. 57, 7348–7355. 10.1021/jf9020152 PubMed DOI
Wang X., Shi G., Xu Q., Hu J. (2007). Exogenous polyamines enhance copper tolerance of PubMed DOI
Wen X. P., Pang X. M., Matsuda N., Kita M., Inoue H., Hao Y. J., et al. (2008). Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res. 17, 251–263. 10.1007/s11248-007-9098-7 PubMed DOI
Wycisk K., Kim E. J., Schroeder J. I., Krämer U. (2004). Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in PubMed DOI
Yang H., Huang Z. Y., Li J., Hu Y. (2014). MT-like proteins: potential bio-indicators of DOI
Yang L. T., Qi Y. P., Jiang H. X., Chen L. S. (2013). Roles of organic acid anion secretation in aluminum tolerance of higher plants. BioMed. Res. Int. 2013:173682. 10.1155/2013/173682 PubMed DOI PMC
Yokosho K., Yamaji N., Ma J. F. (2010). Isolation and characterization of two DOI
Yokosho K., Yamaji N., Ma J. F. (2011). An Al-inducible PubMed DOI
Zacchini M., Pietrini F., Mugnozza G. S., Iori V., Pietrosanti L., Massacci A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 197, 23–34 10.1007/s11270-008-9788-7 DOI
Zenk M. H. (1996). Heavy metal detoxification in higher plants–a review. Gene 179, 21–30. 10.1016/S0378-1119(96)00422-2 PubMed DOI
Zhang H., Xu W., Dai W., He Z., Ma M. (2006). Functional characterization of cadmium-responsive garlic gene DOI
Zhang Z., Gao X., Qiu B. (2008). Detection of phytochelatins in the hyperaccumulator PubMed DOI
Zhao H., Yang H. (2008). Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in DOI
Zhao J., Shi G. X., Yuan Q. H. (2008). Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in PubMed DOI
Zhou B., Yao W., Wang S., Wang Y., Jiang T. (2014). The metallothionein gene, PubMed DOI PMC
Zhou J., Goldsbrough P. B. (1994). Functional homologs of fungal metallothionein genes from PubMed DOI PMC
Zhu X. F., Zheng C., Hu Y. T., Jiang T., Liu Y., Dong N. Y., et al. (2011). Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in PubMed DOI
Zimeri A. M., Dhankher O. P., McCaig B., Meagher R. B. (2005). The plant PubMed DOI