Evaluating the imazethapyr herbicide mediated regulation of phenol and glutathione metabolism and antioxidant activity in lentil seedlings
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38188166
PubMed Central
PMC10771082
DOI
10.7717/peerj.16370
PII: 16370
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidants, Herbicide, Imazethapyr, Lentil, Phenolic acid, Seedlings,
- MeSH
- antioxidancia MeSH
- čočka * MeSH
- fenol MeSH
- fenoly MeSH
- flavonoidy MeSH
- glutathion MeSH
- herbicidy * farmakologie MeSH
- semenáček MeSH
- zemědělské plodiny MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- fenol MeSH
- fenoly MeSH
- flavonoidy MeSH
- glutathion MeSH
- herbicidy * MeSH
- imazethapyr MeSH Prohlížeč
- phenolic acid MeSH Prohlížeč
The imidazolinone group of herbicides generally work for controlling weeds by limiting the synthesis of the aceto-hydroxy-acid enzyme, which is linked to the biosynthesis of branched-chain amino acids in plant cells. The herbicide imazethapyr is from the class and the active ingredient of this herbicide is the same as other herbicides Contour, Hammer, Overtop, Passport, Pivot, Pursuit, Pursuit Plus, and Resolve. It is commonly used for controlling weeds in soybeans, alfalfa hay, corn, rice, peanuts, etc. Generally, the herbicide imazethapyr is safe and non-toxic for target crops and environmentally friendly when it is used at low concentration levels. Even though crops are extremely susceptible to herbicide treatment at the seedling stage, there have been no observations of its higher dose on lentils (Lens culinaris Medik.) at that stage. The current study reports the consequence of imazethapyr treatment on phenolic acid and flavonoid contents along with the antioxidant activity of the phenolic extract. Imazethapyr treatment significantly increased the activities of several antioxidant enzymes, including phenylalanine ammonia lyase (PAL), phenol oxidase (POD), glutathione reductase (GR), and glutathione-s-transferase (GST), in lentil seedlings at doses of 0 RFD, 0.5 RFD, 1 RFD, 1.25 RFD, 1.5 RFD, and 2 RFD. Application of imazethapyr resulted in the 3.2 to 26.31 and 4.57-27.85% increase in mean phenolic acid and flavonoid content, respectively, over control. However, the consequent fold increase in mean antioxidant activity under 2, 2- diphenylpicrylhdrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay system was in the range of 1.17-1.85 and 1.47-2.03%. Mean PAL and POD activities increased by 1.63 to 3.66 and 1.71 to 3.35-fold, respectively, in agreement with the rise in phenolic compounds, indicating that these enzyme's activities were modulated in response to herbicide treatment. Following herbicide treatments, the mean thiol content also increased significantly in corroboration with the enhancement in GR activity in a dose-dependent approach. A similar increase in GST activity was also observed with increasing herbicide dose.
Agricultural Biochemistry Bidhan Chandra Krishi Viswavidyalaya Mohanpur West Bengal India
Agronomy Central Research Institute for Dryland Agriculture Hyderabad Telangana India
Crop Improvement Indian Institute of Sugarcane Research Lucknow Uttar Pradesh India
Crop Protection Indian Institute of Sugarcane Research Lucknow Uttar Pradash India
Department of Botany and Microbiology College of Science King Saud University Riyadh Saudi Arabia
Division of Biochemistry Indian Agricultural Research Institute New Delhi India
Division of Plant Biotechnology Indian Institute of Pulses Research Kanpur Uttar Pradesh India
Soil Science Bangladesh Wheat and Maize Research Institute Dinajpur Bangladesh
Zobrazit více v PubMed
Alla MN, Younis ME. Herbicide effects on phenolic metabolism in maize (Zea mays L.) and soybean (Glycine max L.) seedling. Journal of Experimental Botany. 1995;46(11):1731–1736. doi: 10.1093/jxb/46.11.1731. DOI
Aly AA, Mohamed AA. The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown ‘in vitro’. Australian Journal of Crop Science. 2012;6(3):541–549.
Ando K, Honma M, Chiba S, Tahara S, Mizutani J. Glutathione transferase from Mucorjavamicus. Agricultural and Biological Chemistry. 1988;52(1):135–139. doi: 10.1080/00021369.1988.10868612. DOI
Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Ahmad I. Jacks of metal/metalloid chelation trade in plants—An overview. Frontiers in Plant Science. 2015;6:192. doi: 10.3389/fpls.2015.00192. PubMed DOI PMC
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Biology. 1999;50(1):601–639. doi: 10.1146/annurev.arplant.50.1.601. PubMed DOI
Balech R, Maalouf F, Patil SB, Hejjaoui K, AbouKhater L, Rajendran K, Kumar S. Evaluation of performance and stability of new sources for tolerance to post-emergence herbicides in lentil (Lens culinaris ssp. culinarisMedik.) Crop and Pasture Science. 2022;73(11):1264–1278. doi: 10.1071/CP21810. DOI
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Analytical Biochemistry. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Braca A, De Tommasi N, Di Bari L, Pizza C, Politi M, Morelli I. Antioxidant principles from Bauhinia tarapotensis. Journal of Natural Products. 2001;64(7):892–895. doi: 10.1021/np0100845. PubMed DOI
Burrell MM, Rees TA. Metabolism of phenylalanine and tyrosine by rice leaves infected by Piriculariaoryzae. Physiological Plant Pathology. 1974;4(4):497–508. doi: 10.1016/0048-4059(74)90035-6. DOI
Curir P, VanSumere CF, Termini A, Barthe P, Marchesini A, Dolci M. Flavonoid accumulation is correlated with adventitious roots formation in Eucalyptus gunnii Hook micropropagated through axillary bud stimulation. Plant Physiology. 1990;92(4):1148–1153. doi: 10.1104/pp.92.4.1148. PubMed DOI PMC
Duary B, Dash S, Teja KC. Weed management in kharifblackgram with imazethapyr and other herbicides. Proceedings. National Seminar on Recent Trends in Agriculture and Allied Sciences for Better Tomorrow at Visva-Bharati; Sriniketan, West Bengal, India: 2016.
Falco JM, Vilanova L, Segura J. Effects of glyphosate on phenolic compounds and free amino acids in oat seedlings. Agrochimica. 1989;33(3):166–173.
Fancy NN, Bahlmann AK, Loake GJ. Nitric oxide function in plant abiotic stress. Plant, Cell & Environment. 2017;40(4):462–472. doi: 10.1111/pce.12707. PubMed DOI
Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology. 2012;3:182. doi: 10.3389/fphys.2012.00182. PubMed DOI PMC
Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide-and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Physiologia Plantarum. 1997;100(2):241–254. doi: 10.1111/j.1399-3054.1997.tb04780.x. DOI
Grewal SK, Gill RK, Virk HK, Bhardwaj RD. Methylglyoxal detoxification pathway-explored first time for imazethapyr tolerance in lentil (Lens culinaris L.) Plant Physiology and Biochemistry. 2022;177:10–22. doi: 10.1016/j.plaphy.2022.02.007. PubMed DOI
Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning) Free Radical Research. 1999;31(4):261–272. doi: 10.1080/10715769900300841. PubMed DOI
Hameed A, Sharma I, Kumar A, Azooz MM, Lone HA, Ahmad P. Oxidative Damage to Plants. Cambridge: Academic Press; 2014. Glutathione metabolism in plants under environmental stress; pp. 183–200. DOI
Hanson BD, Thill DC. Effects of imazethapyr and pendimethalin on lentil (Lens culinaris), pea (Pisum sativum), and a subsequent winter wheat (Triticum aestivum) crop. Weed Technology. 2001;15(1):190–194.
Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M, editors. Crop Stress and its Management: Perspectives and Strategies. Dordrecht: Springer; 2012. DOI
Hassan NM, NematAlla MM. Oxidative stress in herbicide-treated broad bean and maize plants. Acta Physiologiae Plantarum. 2005;27:429–438. doi: 10.1007/s11738-005-0047-x. DOI
Havaux M, Kloppstech K. The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta. 2001;213:953–966. doi: 10.1007/s004250100572. PubMed DOI
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry. 2002;13(10):572–584. doi: 10.1016/S0955-2863(02)00208-5. PubMed DOI
Hernandez I, Van Breusegem F. Opinion on the possible role of flavonoids as energy escape valves: novel tools for nature’s Swiss army knife? Plant Science. 2010;179(4):297–301. doi: 10.1016/j.plantsci.2010.06.001. DOI
Hoagland RE. Interaction of indoleacetic acid and glyphosate on phenolic metabolism in soybeans. Pesticide Biochemistry and Physiology. 1990;36(1):68–75. doi: 10.1016/0048-3575(90)90022-T. DOI
Hoseiny-Rad M, Aivazi AA. Biochemical and cytogenetic effects of Imazethapyr on Cicer arietinum L. Journal of Applied Biology and Biotechnology. 2020;8(2):73–77. doi: 10.7324/JABB.2020.80212. DOI
Islam F, Ali S, Farooq MA, Wang J, Gill RA, Zhu J, Zhou W. Butachlor-induced alterations in ultrastructure, antioxidant, and stress-responsive gene regulations in rice cultivars. Clean-Soil, Air, Water. 2017;45(3):1500851. doi: 10.1002/clen.201500851. DOI
Jaswal A, Menon S. Review of literature on effect of various herbicidal treatments on chickpea (Cicer arietinum L.) intercropping with lentil (Lens culinaris Medik.) International Journal of Chemical Science. 2020;8(5):1116–1121. doi: 10.22271/chemi.2020.v8.i5p.10443. DOI
Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry. 1999;47(10):3954–3962. doi: 10.1021/jf990146l. PubMed DOI
Kenyon WH, Duke SO. Effects of acifluorfen on endogenous antioxidants and protective enzymes in cucumber (Cucumis sativus L.) cotyledons. Plant Physiology. 1985;79(3):862–866. doi: 10.1104/pp.79.3.862. PubMed DOI PMC
Khazaei H, Subedi M, Nickerson M, Martínez-Villaluenga C, Frias J, Vandenberg A. Seed protein of lentils: current status, progress, and food applications. Foods. 2019;8(9):391. doi: 10.3390/foods8090391. PubMed DOI PMC
Kömives T, Casida JE. Diphenyl ether herbicides: effects of acifluorfen on phenylpropanoid biosynthesis and phenylalanine ammonia-lyase activity in spinach. Pesticide Biochemistry and Physiology. 1982;18(2):191–196. doi: 10.1016/0048-3575(82)90105-5. DOI
Kong JQ. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Advances. 2015;5(77):62587–62603. doi: 10.1039/C5RA08196C. DOI
Kumar R, Sagar V, Verma VC, Kumari M, Gujjar RS, Goswami SK, Kumar Jha S, Pandey H, Dubey AK, Srivastava S, Singh SP, Mall AK, Pathak AD, Singh H, Jha PK, Prasad PVV. Drought and salinity stresses induced physio-biochemical changes in sugarcane: an overview of tolerance mechanism and mitigating approaches. Frontiers in Plant Science. 2023;14:1225234. doi: 10.3389/fpls.2023.1225234. PubMed DOI PMC
Maas FM, De Kok LJ, Peters JL, Kuiper PJ. A comparative study on the effects of H2S and SO2 fumigation on the growth and accumulation of sulphate and sulphydryl compounds in Trifolium pratense L., Glycine max Merr. and Phaseolus vulgaris L. Journal of Experimental Botany. 1987;38(9):1459–1469. doi: 10.1093/jxb/38.9.1459. DOI
Miteva LE, Ivanov SV, Alexieva VS. Alterations in glutathione pool and some related enzymes in leaves and roots of pea plants treated with the herbicide glyphosate. Russian Journal of Plant Physiology. 2010;57:131–136. doi: 10.1134/S1021443710010188. DOI
Molin WT, Anderson EJ, Porter CA. Effects of alachlor on anthocyanin and lignin synthesis in etiolated sorghum (Sorghum bicolor (L.) Moench) mesocotyls. Pesticide Biochemistry and Physiology. 1986;25(1):105–111. doi: 10.1016/0048-3575(86)90037-4. DOI
Namrata K, Datta J, Kumar R, Chakravarty A, Pal S. Herbicide induced changes in Nutrient and antinutrient content during mung bean (Vigna radiate L) seed development. International Journal of Chemical Studies. 2020;8(2):223–228. doi: 10.22271/chemi.2020.v8.i2d.8772. DOI
Narwal S, Kumar D, Verma RPS. Effect of genotype, environment and malting on the antioxidant activity and phenolic content of Indian barley. Journal of Food Biochemistry. 2016;40(1):91–99. doi: 10.1111/jfbc.12198. DOI
NematAlla MM, Hassan NM, El-Bastawisy ZM. Changes in antioxidants and kinetics of glutathione-S-transferase of maize in response to isoproturon treatment. Plant Biosystems. 2008;142(1):5–16. doi: 10.1080/11263500701872135. DOI
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Reports. 2017;36(6):791–805. doi: 10.1007/s00299-017-2139-7. PubMed DOI
Niu L, Liao W. Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Frontiers in Plant Science. 2016;7(13):230. doi: 10.3389/fpls.2016.00230. PubMed DOI PMC
Pala F, Mennan H, Demir A. Determination of the weed species, frequency and density in lentil fields in Diyarbakır Province. Turkish Journal of Weed Science. 2018;21(1):33–42.
Presotto A, Gigon R, Renzi JP, Poverene M, Cantamutto M. Sensibility to AHAS inhibitors in progenies of wild Helianthus annuus hybridized to a CL sunflower cultivar. Proceedings of the 8th International Sunflower Conference Mar del Plata; Argentina: 2012.
Proietti S, Falconieri GS, Bertini L, Baccelli I, Paccosi E, Belardo A, Caruso C. GLYI4 plays a role in methylglyoxal detoxification and jasmonate-mediated stress responses in Arabidopsis thaliana. Biomolecules. 2019;9(10):635. doi: 10.3390/biom9100635. PubMed DOI PMC
Qian H, Lu H, Ding H, Lavoie M, Li Y, Liu W, Fu Z. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. Scientific Reports. 2015;5(1):11975. doi: 10.1038/srep11975. PubMed DOI PMC
Rajabi R, Khavari-Nejad RA, Ghanati F, Najafi F. Effects of stress induced by post-emergence application of metribuzin herbicide on wheat. African Journal of Biotechnology. 2012;11(16):3773–3778. doi: 10.5897/AJB11.3446. DOI
Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B-and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology. 1996;110(1):125–136. doi: 10.1104/pp.110.1.125. PubMed DOI PMC
Scarponi L, Alla MN, Martinetti L. Metolachlor in corn (Zea mays) and soybean (Glycine max): persistence and biochemical signs of stress during its detoxification. Journal of Agricultural and Food Chemistry. 1992;40(5):884–889. doi: 10.1021/jf00017a037. DOI
Scarponi L, Martinetti L, Nemat Alla MM. Growth response and changes in starch formation as a result of imazethapyr treatment of soybean (Glycine max L.) Journal of Agricultural and Food Chemistry. 1996;44(6):1572–1577. doi: 10.1021/jf950512a. DOI
Schmidt A, Kunert KJ. Lipid peroxidation in higher plants: the role of glutathione reductase. Plant Physiology. 1986;82(3):700–702. doi: 10.1104/pp.82.3.700. PubMed DOI PMC
Seneff S, Swanson N, Li C. Aluminum and glyphosate can synergistically induce pineal gland pathology: connection to gut dysbiosis and neurological disease. Agricultural Sciences. 2015;6(1):42. doi: 10.4236/as.2015.61005. DOI
Shannon J. Methods of enzymatic analysis. Second Edition. New York: Academic Press; 1966. p. 1088.
Shivani S, Kao C-Y, Chattopadhyay A, Chen J-W, Lai L-C, Lin W-H, Lu T-P, Huang I-H, Tsai M-H, Teng C-H, Wu J-J, Hsieh Y-H, Wang M-C, Chuang EY. Uremic toxin-producing bacteroides species prevail in the gut microbiota of Taiwanese CKD patients: an analysis using the new Taiwan microbiome baseline. Frontiers in Cellular and Infection Microbiology. 2022;12:414. doi: 10.3389/fcimb.2022.726256. PubMed DOI PMC
Singh H, Dolui S, Kumar R, Pal S, Bhattacharya A. Butachlor tolerance in wheat seedlings. International Journal of Economic Plants. 2022;9(3):214–221.
Singh R, Singh G. Economic analysis of application of weed management practices in kharif and summer mungbean [Vigna radiata (L.) Wilczek] International Journal of Current Microbiology and Applied Sciences. 2017;6:3182–3190. doi: 10.20546/ijcmas.2017.612.372. DOI
Smirnoff N. Tansley review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist. 1993:27–58. PubMed
Soares C, Carvalho MEA, Azevedo RA, Fidalgo F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environmental and Experimental Botany. 2019;161:4–25. doi: 10.1016/j.envexpbot.2018.12.009. DOI
Takahama U, Oniki T. Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant and Cell Physiology. 1992;33(4):379–387. doi: 10.1093/oxfordjournals.pcp.a078265. DOI
Tranel PJ, Wright TR. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Science. 2002;50(6):700–712. doi: 10.1614/0043-1745(2002)050[0700:RROWTA]2.0.CO;2. DOI
Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior. 2012;7(12):1621–1633. doi: 10.4161/psb.22455. PubMed DOI PMC
Tseng TY, Ou JF, Wang CY. Role of the ascorbate-glutathione cycle in paraquat tolerance of rice. Weed Science. 2013;61(3):361–373. doi: 10.1614/WS-D-12-00133.1. DOI
Tuladhar P, Sasidharan S, Saudagar P. Biocontrol Agents and Secondary Metabolites. Sawston: Woodhead Publishing; 2021. Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses; pp. 419–441. DOI
Vinson JA, Hao Y, Su X, Zubik L. Phenol antioxidant quantity and quality in foods: vegetables. Journal of Agricultural and Food Chemistry. 1998;46(9):3630–3634. doi: 10.1021/jf980295o. PubMed DOI
Weisshaar B, Jenkins GI. Phenylpropanoid biosynthesis and its regulation. Current Opinion in Plant Biology. 1998;1(3):251–257. doi: 10.1016/S1369-5266(98)80113-1. PubMed DOI
Yin Y, Yang M, Xi J, Cai W, Yi Y, He G, Jiang M. A sodium alginate-based nano-pesticide delivery system for enhanced in vitro photostability and insecticidal efficacy of phloxine B. Carbohydrate Polymers. 2020;247(2):116677. doi: 10.1016/j.carbpol.2020.116677. PubMed DOI
Zabalza A, Gaston S, Ribas-Carbó M, Orcaray L, Igal M, Royuela M. Nitrogen assimilation studies using 15N in soybean plants treated with imazethapyr, an inhibitor of branched-chain amino acid biosynthesis. Journal of Agricultural and Food chemistry. 2006;54(23):8818–8823. doi: 10.1021/jf0618224. PubMed DOI
Zabalza A, Gaston S, Sandalio LM, del Río LA, Royuela M. Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase. Environmental and Experimental Botany. 2007;59(2):150–159. doi: 10.1016/j.envexpbot.2005.11.003. DOI