Activity of CdTe Quantum-Dot-Tagged Superoxide Dismutase and Its Analysis in Capillary Electrophoresis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SUB.D170.21.042
Uniwersytet Medyczny im. Piastów Slaskich we Wroclawiu
PubMed
34200401
PubMed Central
PMC8201241
DOI
10.3390/ijms22116156
PII: ijms22116156
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, enzyme activity, nanoparticles, protein labeling, quantum dots, superoxide dismutase,
- MeSH
- elektroforéza kapilární metody MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- kvantové tečky * MeSH
- lidé MeSH
- nanočástice chemie MeSH
- sloučeniny kadmia chemie MeSH
- superoxiddismutasa analýza metabolismus MeSH
- telur chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cadmium telluride MeSH Prohlížeč
- sloučeniny kadmia MeSH
- superoxiddismutasa MeSH
- telur MeSH
Quantum dots (QDs) have a broad range of applications in cell biolabeling, cancer treatment, metastasis imaging, and therapeutic drug monitoring. Despite their wide use, relatively little is known about their influence on other molecules. Interactions between QDs and proteins can influence the properties of both nanoparticles and proteins. The effect of mercaptosuccinic acid-capped CdTe QDs on intercellular copper-zinc superoxide dismutase (SOD1)-one of the main enzymatic antioxidants-was investigated. Incubation of SOD1 with QDs caused an increase in SOD1 activity, unlike in the case of CdCl2, which inhibited SOD1. Moreover, this effect on SOD1 increased with the size and potential of QDs, although the effect became clearly visible in higher concentrations of QDs. The intensity of QD-SOD1 fluorescence, analyzed with the use of capillary electrophoresis with laser-induced fluorescence detection, was dependent on SOD1 concentration. In the case of green QDs, the fluorescence signal decreased with increasing SOD1 concentration. In contrast, the signal strength for Y-QD complexes was not dependent on SOD1 dilutions. The migration time of QDs and their complexes with SOD1 varied depending on the type of QD used. The migration time of G-QD complexes with SOD1 differed slightly. However, in the case of Y-QD complexes with SOD1, the differences in the migration time were not dependent on SOD concentration. This research shows that QDs interact with SOD1 and the influence of QDs on SOD activity is size-dependent. With this knowledge, one might be able to control the activation/inhibition of specific enzymes, such as SOD1.
Zobrazit více v PubMed
Chan W.C., Maxwell D.J., Gao X., Bailey R.E., Han M., Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002;13:40–46. doi: 10.1016/S0958-1669(02)00282-3. PubMed DOI
Nirmal M., Brus L. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 1999;32:407–414. doi: 10.1021/ar9700320. DOI
Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–937. doi: 10.1126/science.271.5251.933. DOI
Olkhovets A., Hsu R.-C., Lipovskii A., Wise F.W. Size-dependent temperature variation of the energy gap in lead-salt quantum dots. Phys. Rev. Lett. 1998;81:3539–3542. doi: 10.1103/PhysRevLett.81.3539. DOI
Leatherdale C.A., Woo W.-K., Mikulec F.V., Bawendi M.G. On the absorption cross section of cdse nanocrystal quantum dots. J. Phys. Chem. B. 2002;106:7619–7622. doi: 10.1021/jp025698c. DOI
Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose J., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;28:538–544. doi: 10.1126/science.1104274. PubMed DOI PMC
Wang G., Li Z., Ma N. Next-generation DNA-functionalized quantum dots as biological sensors. ACS Chem. Biol. 2018;13:1705–1713. doi: 10.1021/acschembio.7b00887. PubMed DOI
Inoshita T., Sakaki H. Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots. Phys. Rev. B. 1997;56:4355–4358. doi: 10.1103/PhysRevB.56.R4355. DOI
Hoshino A., Fujioka K., Oku T., Suga M., Sasaki Y.F., Ohta T., Yasuhara M., Suzuki K., Yamamoto K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 2004;4:2163–2169. doi: 10.1021/nl048715d. DOI
Mashinchian O., Johari-Ahar M., Ghaemi B., Rashidi M., Barar J., Omidi Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts. 2014;4:149–166. doi: 10.15171/bi.2014.008. PubMed DOI PMC
Sun C., Cao Z., Wu M., Lu C. Intracellular tracking of single native molecules with electroporation-delivered quantum dots. Anal. Chem. 2014;86:11403–11409. doi: 10.1021/ac503363m. PubMed DOI
Lisse D., Richter C.P., Drees C., Birkholz O., You C., Rampazzo E., Piehler J. Monofunctional stealth nanoparticle for unbiased single molecule tracking inside living cells. Nano Lett. 2014;14:2189–2195. doi: 10.1021/nl500637a. PubMed DOI
Komatsuzaki A., Ohyanagi T., Tsukasaki Y., Miyanaga Y., Ueda M., Jin T. Compact halo-ligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes. Small. 2015;11:1396–1401. doi: 10.1002/smll.201402508. PubMed DOI
Varela J.A., Dupuis J.P., Etchepare L., Espana A., Cognet L., Groc L. Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat. Commun. 2016;7:10947. doi: 10.1038/ncomms10947. PubMed DOI PMC
Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., Nitschke R., Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 2008;5:763–775. doi: 10.1038/nmeth.1248. PubMed DOI
Stroh M., Zimmer J.P., Duda D.G., Levchenko T.S., Cohen K.S., Brown E.B., Scadden D.T., Torchilin V.P., Bawendi M.G., Fukumura D., et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med. 2005;11:678–682. doi: 10.1038/nm1247. PubMed DOI PMC
Gao X., Cui Y., Levenson R.M., Chung L.W., Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004;22:969–976. doi: 10.1038/nbt994. PubMed DOI
Levene M.J., Dombeck D.A., Kasischke K.A., Molloy R.P., Webb W.W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 2004;91:1908–1912. doi: 10.1152/jn.01007.2003. PubMed DOI
Akerman M.E., Chan W.C., Laakkonen P., Bhatia S.N., Ruoslahti E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA. 2002;99:12617–12621. doi: 10.1073/pnas.152463399. PubMed DOI PMC
Voura E.B., Jaiswal J.K., Mattoussi H., Simon S.M. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 2004;10:993–998. doi: 10.1038/nm1096. PubMed DOI
Drbohlavova J., Adam V., Kizek R., Hubalek J. Quantum dots—Characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 2009;10:656–673. doi: 10.3390/ijms10020656. PubMed DOI PMC
Stanisavljevic M., Krizkova S., Vaculovicova M., Kizek R., Adam V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015;74:562–574. doi: 10.1016/j.bios.2015.06.076. PubMed DOI
Manabe N., Hoshino A., Liang Y., Goto T., Kato N., Yamamoto K. Quantum dot as a drug tracer in vivo. IEEE Trans. NanoBiosci. 2006;5:263–267. doi: 10.1109/TNB.2006.886569. PubMed DOI
Bagalkot V., Zhang L., Levy-Nissenbaum E., Jon S., Kantoff P.W., Langer O.C. Quantum dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7:3065–3070. doi: 10.1021/nl071546n. PubMed DOI
Zrazhevskiy P., Sena M., Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010;39:4326–4354. doi: 10.1039/b915139g. PubMed DOI PMC
Probst C.E., Zrazhevskiy P., Bagalkot V., Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 2013;65:703–718. doi: 10.1016/j.addr.2012.09.036. PubMed DOI PMC
Zhang L., Shang L., Dong S. Sensitive and selective determination of Cu2+ by electrochemiluminescence of CdTe quantum dots. Electrochem. Commun. 2008;10:1452–1454. doi: 10.1016/j.elecom.2008.07.015. DOI
Chen S., Zhang X., Zhang Q., Hou X., Zhou Q., Yan J., Tan W. CdSe quantum dots decorated by mercaptosuccinic acid as fluorescence probe for Cu2+ J. Lumin. 2011;131:947–951. doi: 10.1016/j.jlumin.2010.12.029. DOI
Dutta P., Saikia D., Adhikary N.C., Sarma N.S. Macromolecular systems with MSA-capped CdTe and CdTe/ZnS core/shell quantum dots as superselective and ultrasensitive optical sensors for picric acid Explosive. ACS Appl. Mater. Interfaces. 2015;7:24778–24790. doi: 10.1021/acsami.5b07660. PubMed DOI
Yuan J., Guo W., Yin J., Wang E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta. 2009;77:1858–1863. doi: 10.1016/j.talanta.2008.10.032. PubMed DOI
Yuan J., Guo W., Wang E. Utilizing a CdTe quantum dots−enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal. Chem. 2008;80:1141–1145. doi: 10.1021/ac0713048. PubMed DOI
Wang X., Sun X., Lao J., He H., Cheng T., Wang M., Wang S., Huang F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B Biointerfaces. 2014;122:638–644. doi: 10.1016/j.colsurfb.2014.07.043. PubMed DOI
Zhao M.-X., Zhu B.-J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett. 2016;11:207. doi: 10.1186/s11671-016-1394-9. PubMed DOI PMC
Lewandowski Ł., Kepinska M., Milnerowicz H. Inhibition of copper-zinc superoxide dismutase activity by selected environmental xenobiotics. Environ. Toxicol. Pharmacol. 2018;58:105–113. doi: 10.1016/j.etap.2017.12.022. PubMed DOI
Sun H., Cui E., Liu R. Molecular mechanism of copper-zinc superoxide dismutase activity change exposed to N-acetyl-L-cysteine-capped CdTe quantum dots-induced oxidative damage in mouse primary hepatocytes and nephrocytes. Environ. Sci. Pollut. Res. 2015;22:18267–18277. doi: 10.1007/s11356-015-5035-0. PubMed DOI
McCord J.M., Fridovich I. Superoxide Dismutase. An enzymic function for erythrocuprein (hemocuprein) J. Biol. Chem. 1969;244:6049–6055. doi: 10.1016/S0021-9258(18)63504-5. PubMed DOI
Fukai T., Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox. Signal. 2011;15:1583–1606. doi: 10.1089/ars.2011.3999. PubMed DOI PMC
Lewandowski Ł., Kepinska M., Milnerowicz H. The copper-zinc superoxide dismutase activity in selected diseases. Eur. J. Clin. Invest. 2019;49:e13036. doi: 10.1111/eci.13036. PubMed DOI
Younus H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018;12:88–93. PubMed PMC
Samia A.C., Chen X., Burda C. Semiconductor Quantum Dots for Photodynamic Therapy. J. Am. Chem. Soc. 2003;125:15736–15737. doi: 10.1021/ja0386905. PubMed DOI
Ipe B.I., Lehnig M., Niemeyer C.M. On the generation of free radical species from quantum dots. Small. 2005;1:706–709. doi: 10.1002/smll.200500105. PubMed DOI
Lai L., Lin C., Xu Z.-Q., Han X.-L., Tian F.-F., Mei P., Li D.-W., Ge Y.-S., Jiang F.-L., Zhang Y.-Z., et al. Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2012;97:366–376. doi: 10.1016/j.saa.2012.06.025. PubMed DOI
Huang S., Qiu H., Lu S., Zhu F., Xiao Q. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches. J. Hazard. Mater. 2015;285:18–26. doi: 10.1016/j.jhazmat.2014.11.019. PubMed DOI
Shukla G.S., Hussain T., Srivastava R.S., Chandra S.V. Glutathione peroxidase and catalase in liver, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal. Ind. Health. 1989;27:59–69. doi: 10.2486/indhealth.27.59. PubMed DOI
Roméo M., Bennani N., Gnassia-Barelli M., Lafaurie M., Girard J.P. Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat. Toxicol. 2000;48:185–194. doi: 10.1016/S0166-445X(99)00039-9. PubMed DOI
Pruell R.J., Engelhardt F.R. Liver cadmium uptake, catalase inhibition and cadmium thionein production in the killifish (Fundulus Heteroclitus) induced by experimental cadmium exposure. Mar. Environ. Res. 1980;3:101–111. doi: 10.1016/0141-1136(80)90019-7. DOI
Jamall I.S., Crispin Smith J. Effects of cadmium on glutathione peroxidase, superoxide dismutase, and lipid peroxidation in the rat heart: A possible mechanism of cadmium cardiotoxicity. Toxicol. Appl. Pharmacol. 1985;80:33–42. doi: 10.1016/0041-008X(85)90098-5. PubMed DOI
Huang Y.-H., Shih C.-M., Huang C.-J., Lin C.-M., Chou C.-M., Tsai M.-L., Liu T.P., Chiu J.-F., Chen C.-T. Effects of cadmium on structure and enzymatic activity of Cu,Zn-SOD and oxidative status in neural cells. J. Cell Biochem. 2006;98:577–589. doi: 10.1002/jcb.20772. PubMed DOI
Zhu J.Y., Chan K.M. Mechanism of cadmium-induced cytotoxicity on the ZFL zebrafish liver cell line. Metallomics. 2012;4:1064–1076. doi: 10.1039/c2mt20134h. PubMed DOI
Banni M., Chouchene L., Said K., Kerkeni A., Messaoudi I. Mechanisms underlying the protective effect of zinc and selenium against cadmium-induced oxidative stress in zebrafish Danio rerio. Biometals. 2011;24:981–992. doi: 10.1007/s10534-011-9456-z. PubMed DOI
Nyyssönen K., Porkkala-Sarataho E., Kaikkonen J., Salonen J.T. Ascorbate and urate are the strongest determinants of plasma antioxidative capacity and serum lipid resistance to oxidation in Finnish men. Atherosclerosis. 1997;130:223–233. doi: 10.1016/S0021-9150(96)06064-9. PubMed DOI
Wang G., Su X., Yang S., Jia Y., Li D. The double-effect mechanism between Fe3O4 nanoparticles and MSA-capped CdTe QDs. J. Lumin. 2012;132:2505–2511. doi: 10.1016/j.jlumin.2012.04.036. DOI
Yu X., Liu J., Zuo S., Yu Y., Cai K., Yang R. Application of mercaptosuccinic acid capped CdTe quantum dots for latent fingermark development. Forensic Sci. Int. 2013;231:125–130. doi: 10.1016/j.forsciint.2013.04.027. PubMed DOI
Guszpit E., Krizkova S., Kepinska M., Rodrigo M.A., Milnerowicz H., Kopel P., Kizek R. Fluorescence-tagged metallothionein with CdTe quantum dots analyzed by the chip-CE technique. J. Nanopart. Res. 2015;17:423. doi: 10.1007/s11051-015-3226-8. PubMed DOI PMC
Wang J., Zhang H., Zhang T., Zhang R., Liu R., Chen Y. Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. Int. J. Biol. Macromol. 2015;77:59–67. doi: 10.1016/j.ijbiomac.2015.02.037. PubMed DOI
Zeng G.-M., Chen A.-W., Chen G.-Q., Hu X.-J., Guan S., Shang C., Lu L.-H., Zou Z.-J. Responses ofp chrysosporium to toxic pollutants: Physiological flux, oxidative stress, and detoxification. Environ. Sci. Technol. 2012;46:7818–7825. doi: 10.1021/es301006j. PubMed DOI
Derfus A.M., Chan W.C., Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18. doi: 10.1021/nl0347334. PubMed DOI PMC
Lu Z., Li C.M., Bao H., Qiao Y., Toh Y., Yang X. Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir. 2008;24:5445–5452. doi: 10.1021/la704075r. PubMed DOI
Singh B.R., Singh B.N., Khan W., Singh H.B., Naqvi A.H. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials. 2012;33:5753–5767. doi: 10.1016/j.biomaterials.2012.04.045. PubMed DOI
Stanisavjevic M., Chomoucka J., Dostalova S., Krizkova S., Vaculovicova M., Adam V., Rene K. Interactions between CdTe quantum dots and DNA revealed by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis. 2014;35:2587–2592. doi: 10.1002/elps.201400204. PubMed DOI
Tang T., Deng J., Zhang M., Shi G., Zhou T. Quantum dot- DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for radiometric detection of organosphorus pesticides. Talanta. 2016;146:55–61. doi: 10.1016/j.talanta.2015.08.023. PubMed DOI
Huang X., Weng J., Sang F., Song X., Cao C., Ren J. Characterization of quantum dot bioconjugates by capillary electrophoresis with laser-induced fluorescent detection. J. Chromatogr. A. 2006;1131:251–254. doi: 10.1016/j.chroma.2006.02.087. PubMed DOI
Matczuk M., Legat J., Timerbaev A.R., Jarosz M. A sensitive and versatile method for characterization of protein- mediated transformations of quantum dots. Analyst. 2016;141:2574–2580. doi: 10.1039/C6AN00276E. PubMed DOI
Guan L.-Y., Li Y.-Q., Lin S., Zhang M.-Z., Chen J., Ma Z.-Y., Zhao Y.-D. Characterization of CdTe/CdSe quantum dots- transferrin fluorescent probes for cellular labeling. Anal. Chim. Acta. 2012;741:86–92. doi: 10.1016/j.aca.2012.06.043. PubMed DOI
Janu L., Stanisavljevic M., Krizkova S., Sobrova P., Vaculovicova M., Kizek R., Adam V. Electrophoretic study of peptide-mediated quantum dot-human immunoglobulin bioconjugation. Electrophoresis. 2013;34:2725–2732. doi: 10.1002/elps.201300088. PubMed DOI
Duan J., Song L., Zhan J. One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg 2+ -sensitive properties. Nano Res. 2009;2:61–68. doi: 10.1007/s12274-009-9004-0. DOI
Misra H., Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247:3170–3175. doi: 10.1016/S0021-9258(19)45228-9. PubMed DOI