Voltammetry as a tool for characterization of CdTe quantum dots
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23807507
PubMed Central
PMC3742199
DOI
10.3390/ijms140713497
PII: ijms140713497
Knihovny.cz E-zdroje
- MeSH
- kadmium chemie farmakologie MeSH
- kur domácí MeSH
- kvantové tečky chemie terapeutické užití ultrastruktura MeSH
- telur chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kadmium MeSH
- telur MeSH
Electrochemical detection of quantum dots (QDs) has already been used in numerous applications. However, QDs have not been well characterized using voltammetry, with respect to their characterization and quantification. Therefore, the main aim was to characterize CdTe QDs using cyclic and differential pulse voltammetry. The obtained peaks were identified and the detection limit (3 S/N) was estimated down to 100 fg/mL. Based on the convincing results, a new method for how to study stability and quantify the dots was suggested. Thus, the approach was further utilized for the testing of QDs stability.
Zobrazit více v PubMed
Bierman M.J., Lau Y.K.A., Jin S. Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett. 2007;7:2907–2912. PubMed
Burda C., Chen X.B., Narayanan R., El-Sayed M.A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005;105:1025–1102. PubMed
Alivisatos A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933–937.
Yong K.T., Sahoo Y., Choudhury K.R., Swihart M.T., Minter J.R., Prasad P.N. Control of the morphology and size of PbS nanowires using gold nanoparticles. Chem. Mater. 2006;18:5965–5972.
Drbohlavova J., Adam V., Kizek R., Hubalek J. Quantum Dots-Characterization, Preparation and Usage in Biological Systems. Int. J. Mol. Sci. 2009;10:656–673. PubMed PMC
Bouzigues C., Gacoin T., Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano. 2011;5:8488–8505. PubMed
Li Y.S., Yannouleas C., Landman U. Three-electron anisotropic quantum dots in variable magnetic fields: Exact results for excitation spectra, spin structures, and entanglement. Phys. Rev. B. 2007;76:1–13.
Tracy L.A., Nordberg E.P., Young R.W., Pinilla C.B., Stalford H.L., Ten Eyck G.A., Eng K., Childs K.D., Wendt J.R., Grubbs R.K., et al. Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry. Appl. Phys. Lett. 2010;97:1–3.
Aldeek F., Mustin C., Balan L., Medjahdi G., Roques-Carmes T., Arnoux P., Schneider R. Enhanced Photostability from CdSe(S)/ZnO Core/Shell Quantum Dots and Their Use in Biolabeling. Eur. J. Inorg. Chem. 2011;6:794–801.
Emin S., Loukanov A., Wakasa M., Nakabayashi S., Kaneko Y. Photostability of Water-dispersible CdTe Quantum Dots: Capping Ligands and Oxygen. Chem. Lett. 2010;39:654–656.
Ma Q.F., Chen J.Y., Wu X., Wang P.N., Yue Y., Dai N. Photostability comparison of CdTe and CdSe/CdS/ZnS quantum dots in living cells under single and two-photon excitations. J. Lumin. 2011;131:2267–2272.
Samadpour M., Zad A.I., Taghavinia N., Molaei M. A new structure to increase the photostability of CdTe quantum dot sensitized solar cells. J. Phys. D. 2011;44:1–7.
Zhao J.J., Chen J., Wang Z.P., Pan J., Huang Y.H. Double labeling and comparison of fluorescence intensity and photostability between quantum dots and FITC in oral tumors. Mol. Med. Rep. 2011;4:425–429. PubMed
Amelia M., Lincheneau C., Silvi S., Credi A. Electrochemical properties of CdSe and CdTe quantum dots. Chem. Soc. Rev. 2012;41:5728–5743. PubMed
Huang F.H., Chen G.N. Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid. Spectroc. Acta A. 2008;70:318–323. PubMed
Juzenas P., Chen W., Sun Y.P., Coelho M.A.N., Generalov R., Generalova N., Christensen I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 2008;60:1600–1614. PubMed PMC
Lu M.G., Al-Jamal K.T., Kostarelos K., Reineke J. Physiologically Based Pharmacokinetic Modeling of Nanoparticles. ACS Nano. 2010;4:6303–6317. PubMed
Jamieson T., Bakhshi R., Petrova D., Pocock R., Imani M., Seifalian A.M. Biological applications of quantum dots. Biomaterials. 2007;28:4717–4732. PubMed
Jin S., Hu Y.X., Gu Z.J., Liu L., Wu H.C. Application of Quantum Dots in Biological Imaging. J. Nanomater. 2011;2011:1–13. PubMed
Rosenthal S.J., Chang J.C., Kovtun O., McBride J.R., Tomlinson I.D. Biocompatible Quantum Dots for Biological Applications. Chem. Biol. 2011;18:10–24. PubMed PMC
Green M., O’Brien P. A novel metalorganic route for the direct and rapid synthesis of monodispersed quantum dots of indium phosphide. Chem. Commun. 1998;22:2459–2460.
Ryvolova M., Chomoucka J., Janu L., Drbohlavova J., Adam V., Hubalek J., Kizek R. Biotin-modified glutathione as a functionalized coating for bioconjugation of CdTe-based quantum dots. Electrophoresis. 2011;32:1619–1622. PubMed
Weng J.F., Song X.T., Li L.A., Qian H.F., Chen K.Y., Xu X.M., Cao C.X., Ren J.C. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta. 2006;70:397–402. PubMed
Chomoucka J., Drbohlavova J., Babula P., Adam V., Hubalek J., Provaznik I., Kizek R. Cell Toxicity and Preparation of Streptavidin-Modified Iron Nanoparticles and Glutathione-Modified Cadmium-Based Quantum Dots. In: Jakoby B., Vellekoop M.J., editors. Proceedings of Eurosensors XXIV Conference; Linz, Austria. 5–8 September 2010; Amsterdam, The Netherlands: Elsevier Science Bv; 2010.
Hua M., Li P., Li L., Huang L.L., Zhao X.H., Peng Y.J., Yang Y.H. Quantum dots as immobilized substrate for electrochemical detection of cocaine based on conformational switching of aptamer. J. Electroanal. Chem. 2011;662:306–311.
Li J.J., Xu M., Huang H.P., Zhou J.J., Abdel-Halim E.S., Zhang J.R., Zhu J.J. Aptamer-quantum dots conjugates-based ultrasensitive competitive electrochemical cytosensor for the detection of tumor cell. Talanta. 2011;85:2113–2120. PubMed
Gu Z.G., Yang S.P., Li Z.J., Sun X.L., Wang G.L., Fang Y.J., Liu J.K. An ultrasensitive electrochemical biosensor for glucose using CdTe-CdS core-shell quantum dot as ultrafast electron transfer relay between graphene-gold nanocomposite and gold nanoparticle. Electrochim. Acta. 2011;56:9162–9167.
Khene S., Moeno S., Nyokong T. Voltammetry and electrochemical impedance spectroscopy of gold electrodes modified with CdTe quantum dots and their conjugates with nickel tetraamino phthalocyanine. Polyhedron. 2011;30:2162–2170.
Yang M.H., Javadi A., Gong S.Q. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sens. Actuators B. 2011;155:357–360.
Yang C., Cu B.X., Xu C.X., Xu X.Y. Self-assembled ZnO quantum dot bioconjugates for direct electrochemical determination of allergen. J. Electroanal. Chem. 2011;660:97–100.
Gaponik N., Poznyak S.K., Osipovich N.P., Shavel A., Eychmuller A. Electrochemical probing of thiol-capped nanocrystals. Microchim. Acta. 2008;160:327–334.
Monticelli D., Ciceri E., Dossi C. Optimization and validation of an automated voltammetric stripping technique for ultratrace metal analysis. Anal. Chim. Acta. 2007;594:192–198. PubMed
Krystofova O., Trnkova L., Adam V., Zehnalek J., Hubalek J., Babula P., Kizek R. Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants. Sensors. 2010;10:5308–5328. PubMed PMC
Duan J.L., Song L.X., Zhan J.H. One-Pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and Their Hg(2+)-Sensitive Properties. Nano Res. 2009;2:61–68.
Long G.L., Winefordner J.D. Limit of detection. Anal. Chem. 1983;55:712–724.