Time-Dependent Growth of Silica Shells on CdTe Quantum Dots
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29914152
PubMed Central
PMC6027165
DOI
10.3390/nano8060439
PII: nano8060439
Knihovny.cz E-zdroje
- Klíčová slova
- dynamic light scattering, nanoparticles, photoluminescence spectra, quantum dots, scanning electron microscopy,
- Publikační typ
- časopisecké články MeSH
The purpose of this study is to investigate the time dependent growth of silica shells on CdTe quantum dots to get their optimum thicknesses for practical applications. The core/shell structured silica-coated CdTe quantum dots (CdTe/SiO₂ QDs) were synthesized by the Ströber process, which used CdTe QDs co-stabilized by mercaptopropionic acid. The coating procedure used silane primer (3-mercaptopropyltrimethoxysilane) in order to make the quantum dots (QDs) surface vitreophilic. The total size of QDs was dependent on both the time of silica shell growth in the presence of sodium silicate, and on the presence of ethanol during this growth. The size of particles was monitored during the first 72 h using two principally different methods: Dynamic Light Scattering (DLS), and Scanning Electron Microscopy (SEM). The data obtained by both methods were compared and reasons for differences discussed. Without ethanol precipitation, the silica shell thickness grew slowly and increased the nanoparticle total size from approximately 23 nm up to almost 30 nm (DLS data), and up to almost 60 nm (SEM data) in three days. During the same time period but in the presence of ethanol, the size of CdTe/SiO₂ QDs increased more significantly: up to 115 nm (DLS data) and up to 83 nm (SEM data). The variances occurring between silica shell thicknesses caused by different methods of silica growth, as well as by different evaluation methods, were discussed.
Zobrazit více v PubMed
Drbohlavová J., Adam V., Kizek R., Hubálek J. Quantum dots—Characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 2009;10:656–673. doi: 10.3390/ijms10020656. PubMed DOI PMC
Hobson D.W. Commercialization of nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009;1:189–202. doi: 10.1002/wnan.28. PubMed DOI
Farka Z., Juřík T., Kovář D., Trnková L., Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem. Rev. 2017;117:9973–10042. doi: 10.1021/acs.chemrev.7b00037. PubMed DOI
Klepárník K., Voráčová I., Lišková M., Přikryl J., Hezinová V., Foret F. Capillary electrophoresis immunoassays with conjugated quantum dots. Electrophoresis. 2011;32:1217–1223. doi: 10.1002/elps.201000652. PubMed DOI
Lišková M., Voráčová I., Klepárník K., Hezinová V., Přikryl J., Foret F. Conjugation reactions in the preparations of quantum dot-based immunoluminescent probes for analysis of proteins by capillary electrophoresis. Anal. Bioanal. Chem. 2011;400:369–379. doi: 10.1007/s00216-011-4700-5. PubMed DOI
Voráčová I., Klepárník K., Lišková M., Foret F. Determination of ζ-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis. 2015;36:867–874. doi: 10.1002/elps.201400459. PubMed DOI
Nazzal A.Y., Wang X., Qu L., Yu W., Wang Y., Peng X., Xiao M. Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films. J. Phys. Chem. B. 2004;108:5507–5515. doi: 10.1021/jp035361q. DOI
Derfus A.M., Chan W.C.W., Bhatia S.N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004;4:11–18. doi: 10.1021/nl0347334. PubMed DOI PMC
Rocha T.L., Mestre N.C., Sabóia-Morais S.M.T., Bebianno M.J. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review. Environ. Int. 2017;98:1–17. doi: 10.1016/j.envint.2016.09.021. PubMed DOI
Modlitbová P., Novotný K., Pořízka P., Klus J., Zlámalová-Gargošová H., Kaiser J. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicol. Environ. Saf. 2018;147:334–341. doi: 10.1016/j.ecoenv.2017.08.053. PubMed DOI
Mattoussi H., Matthew Mauro J., Goldman E.R., Anderson G.P., Sundar V.C., Mikulec F.V., Bawendi M.G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 2000;122:12142–12150. doi: 10.1021/ja002535y. DOI
Yang X., Zhang Y. Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles. Langmuir. 2004;20:6071–6073. doi: 10.1021/la049610t. PubMed DOI
Jing L., Yang C., Qiao R., Niu M., Du M., Wang D., Gao M. Highly fluorescent CdTe@SiO2 particles prepared via reverse microemulsion method. Chem. Mater. 2010;22:420–427. doi: 10.1021/cm9029962. DOI
Yang Y., Gao M. Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Adv. Mater. 2005;17:2354–2357. doi: 10.1002/adma.200500403. DOI
Wolcott A., Gerion D., Visconte M., Sun J., Schwartzberg A., Chen S., Zhang J.Z. Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins. J. Phys. Chem. B. 2006;110:5779–5789. doi: 10.1021/jp057435z. PubMed DOI
Rosenthal S.J., Chang J.C., Kovtun O., McBride J.R., Tomlinson I.D. Biocompatible quantum dots for biological applications. Chem. Biol. 2011;18:10–24. doi: 10.1016/j.chembiol.2010.11.013. PubMed DOI PMC
De Koninck P., Labrecque S., Heyes C.D., Wiseman P.W. Probing synaptic signaling with quantum dots. HFSP J. 2007;1:5–10. doi: 10.2976/1.2735016/10.2976/1. PubMed DOI PMC
Nann T., Mulvaney P. Single quantum dots in spherical silica particles. Angew. Chem. Int. Ed. 2004;43:5393–5396. doi: 10.1002/anie.200460752. PubMed DOI
Gerion D., Pinaud F., Williams S.C., Parak W.J., Zanchet D., Weiss S., Alivisatos A.P. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B. 2001;105:8861–8871. doi: 10.1021/jp0105488. DOI
Rogach A.L., Nagesha D., Ostrander J.W., Giersig M., Kotov N.A. “Raisin bun”-type composite spheres of silica and semiconductor nanocrystals. Chem. Mater. 2000;12:2676–2685. doi: 10.1021/cm000244i. DOI
Correa-Duarte M.A., Giersig M., Liz-Marzán L.M. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem. Phys. Lett. 1998;286:497–501. doi: 10.1016/S0009-2614(98)00012-8. DOI
Modlitbová P., Pořízka P., Novotný K., Drbohlavová J., Chamradová I., Zlámalová-Gargošová H., Romih T., Kaiser J. Short-term assessment of cadmium toxicity and uptake from di ff erent types of Cd-based Quantum Dots in the model plant Allium cepa L. Ecotoxicol. Environ. Saf. 2018;153:23–31. doi: 10.1016/j.ecoenv.2018.01.044. PubMed DOI
Selvan S.T., Tan T.T., Ying J.Y. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv. Mater. 2005;17:1620–1625. doi: 10.1002/adma.200401960. DOI
Mulvaney P., Liz-Marzán L.M., Giersig M., Ung T. Silica encapsulation of quantum dots and metal clusters. J. Mater. Chem. 2000;10:1259–1270. doi: 10.1039/b000136h. DOI
Giersig M., Ung T., Liz-Marzhn L.M., Mulvaney P. Direct Observation of Chemical Reactions in Silica-Coated Gold and Silver Nanoparticles. Adv. Mater. Commun. 1997;9:570–575. doi: 10.1002/adma.19970090712. DOI
Bootz A., Vogel V., Schubert D., Kreuter J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm. 2004;57:369–375. doi: 10.1016/S0939-6411(03)00193-0. PubMed DOI
Mahl D., Diendorf J., Meyer-Zaika W., Epple M. Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2011;377:386–392. doi: 10.1016/j.colsurfa.2011.01.031. DOI
Lange H. Comparative test of methods to determine particle size and particle size distribution in the submicron range. Part. Part. Syst. Charact. 1995;12:148–157. doi: 10.1002/ppsc.19950120307. DOI
Bowen P. Particle size distribution measurement from millimeters to nanometers and from rods to platelets. J. Dispers. Sci. Technol. 2002;23:631–662. doi: 10.1081/DIS-120015368. DOI