Short-term assessment of cadmium toxicity and uptake from different types of Cd-based Quantum Dots in the model plant Allium cepa L
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29407734
DOI
10.1016/j.ecoenv.2018.01.044
PII: S0147-6513(18)30053-8
Knihovny.cz E-zdroje
- Klíčová slova
- Allium cepa L., Bioaccumulation, Cadmium, Differential pulse voltammetry, Fluorescence microscopy, Phytotoxicity, Quantum dots,
- MeSH
- adsorpce MeSH
- česneky chemie účinky léků MeSH
- fluorescenční mikroskopie MeSH
- kořeny rostlin chemie účinky léků MeSH
- kvantové tečky analýza toxicita MeSH
- sloučeniny kadmia analýza toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- sloučeniny kadmia MeSH
We report on the toxicity and bioaccumulation of three different types of Cd-based quantum dots (QDs), dispersed in aqueous medium, for a model plant Allium cepa L. It is believed that encapsulation of nanoparticles should reduce their toxicity and increase their stability in different environments; in this work we studied how QD encapsulation affects their phytotoxicity. Core, core/shell, and core/shell/shell QDs (CdTe, CdTe/ZnS, and CdTe/CdS/ZnS QDs capped by 2-mercaptopropionic acid) were tested and CdCl2 was used as a positive control. After 24-h and 72-h exposure, total Cd content (MCd) and bioaccumulation factors (BAFs) were determined in all parts of A. cepa plants (roots, bulb, shoot), and the total length of the root system was monitored as a toxicity end-point. Measurements of total Cd content versus free Cd2+ content (with Differential Pulse Voltammetry, DPV) in exposure media showed differences in chemical stability of the three QD types. Correspondingly, selected QDs showed different toxicity for A. cepa and different Cd bioaccumulation patterns. CdTe QDs were the most toxic; their effect was similar to CdCl2 due to the release of free Cd2+, which was confirmed by the DPV measurements. Plants exposed to CdTe QDs also bioaccumulated the most Cd among all QD exposure groups. CdTe/ZnS QDs showed no toxicity and very low bioaccumulation of Cd in A. cepa; the main source of measured Cd in the plants were QDs adsorbed on their roots, which was confirmed by fluorescence microscopy. On the contrary, CdTe/CdS/ZnS QD toxicity and bioaccumulation patterns were similar to those of CdTe QDs and pointed to unstable CdS/ZnS shells.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
SEYENS Information Solutions and Education Ltd Krimska ulica 20 1000 Ljubljana Slovenia
Citace poskytuje Crossref.org
Time-Dependent Growth of Silica Shells on CdTe Quantum Dots