In this study, a model crop plant white mustard (Sinapis alba L.) was treated with an aqueous dispersion of silica-coated CdTe quantum dots (CdTe/SiO2 QDs) in a 72-h short-term toxicity test. The toxicity was established via measurements of (i) the root length and (ii) the chlorophyll fluorescence. These results were compared to two other sources of cadmium, free Cd ions (CdCl2) and prime un-shell nanoparticles CdTe QDs. Tested compounds were applied in concentrations representing 20 and 200 μM Cd. The uptake and translocation of Cd were investigated using inductively coupled plasma optical emission spectrometry (ICP-OES) and the spatial Cd distribution was investigated in detail applying laser induced breakdown spectroscopy (LIBS). The LIBS maps with a lateral resolution of 100 μm were constructed for the whole plants, and maps with a lateral resolution of 25 μm (micro-LIBS arrangement) were used to analyse only the most interesting parts of plants with Cd presence (e.g. root tips or a part crossing the root into the above-ground part). Our results show that the bioaccumulation patterns and spatial distribution of Cd in CdTe/SiO2 QDs-treated plants differ from the plants of positive control and CdTe QDs. Fluorescence microscopy photographs revealed that CdTe/SiO2 became adsorbed onto the plant surface in comparison to CdTe QDs. Further, a physico-chemical characterization of QDs before and after the test exposure showed only minor changes in the nanoparticle diameters and no tendencies of QDs for agglomeration or aggregation during the exposure.
Nanotechnology, new fascinating field of science, is bringing many application's options. However, it is necessary to understand their potential environmental risk and toxicity. Zinc selenide quantum dots (ZnSe QDs) are getting valuable due to wide industrial usage, mainly as cadmium free diodes or stabilizing ligand. Thanks to unique properties, they could also open the possibilities of application in the agriculture. Their effects on living organisms, including plants, are still unknown. Therefore, the attention of this work was given to antioxidant response of Arabidopsis thaliana to 100 and 250 μM ZnSe QDs foliar feeding. ZnSe QDs treatment had no statistically significant differences in morphology but led to increased antioxidant response in the leaves at the level of gene expression and production secondary antioxidant metabolites. Concurrently, analysis of growth properties of Agrobacterium tumefaciens was done. 250 μM ZnSe solution inhibited the Agrobacterium tumefaciens viability by 60%. This is the first mention about effect ZnSe QDs on the plants. Although QDs induced oxidative stress, the apply treatment dose of ZnSe QDs did not have significant toxic effect on the plants and even no morphological changes were observed. However, the same amount of ZnSe QD induced an inhibitory effect on Agrobacterium tumefaciens.
- MeSH
- Agrobacterium tumefaciens účinky léků růst a vývoj MeSH
- antioxidancia metabolismus MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- exprese genu * MeSH
- kvantové tečky toxicita MeSH
- metabolomika * MeSH
- sloučeniny selenu aplikace a dávkování toxicita MeSH
- sloučeniny zinku aplikace a dávkování toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl2and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50168hvalues were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl2. However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd2+ions dissolved from Cd-based QDs.
- MeSH
- adsorpce MeSH
- Araceae účinky léků růst a vývoj metabolismus MeSH
- biomasa MeSH
- chemické látky znečišťující vodu chemie toxicita MeSH
- chlorid kademnatý metabolismus toxicita MeSH
- glutathion chemie MeSH
- kvantové tečky metabolismus toxicita MeSH
- kyselina 3-merkaptopropionová chemie MeSH
- monitorování životního prostředí metody MeSH
- sladká voda chemie MeSH
- sloučeniny kadmia metabolismus toxicita MeSH
- telur metabolismus toxicita MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
BACKGROUND: Suitable fluorophores are the core of fluorescence imaging. Among the most exciting, yet controversial, labels are quantum dots (QDs) with their unique optical and chemical properties, but also considerable toxicity. This hinders QDs applicability in living systems. Surface chemistry has a profound impact on biological behavior of QDs. This study describes a two-step synthesis of QDs formed by CdTe core doped with Schiff base ligand for lanthanides [Ln (Yb3+, Tb3+ and Gd3+)] as novel cytocompatible fluorophores. RESULTS: Microwave-assisted synthesis resulted in water-soluble nanocrystals with high colloidal and fluorescence stability with quantum yields of 40.9-58.0%. Despite induction of endocytosis and cytoplasm accumulation of Yb- and TbQDs, surface doping resulted in significant enhancement in cytocompatibility when compared to the un-doped CdTe QDs. Furthermore, only negligible antimigratory properties without triggering formation of reactive oxygen species were found, particularly for TbQDs. Ln-doped QDs did not cause observable hemolysis, adsorbed only a low degree of plasma proteins onto their surface and did not possess significant genotoxicity. To validate the applicability of Ln-doped QDs for in vitro visualization of receptor status of living cells, we performed a site-directed conjugation of antibodies towards immuno-labeling of clinically relevant target-human norepinephrine transporter (hNET), over-expressed in neuroendocrine tumors like neuroblastoma. Immuno-performance of modified TbQDs was successfully tested in distinct types of cells varying in hNET expression and also in neuroblastoma cells with hNET expression up-regulated by vorinostat. CONCLUSION: For the first time we show that Ln-doping of CdTe QDs can significantly alleviate their cytotoxic effects. The obtained results imply great potential of Ln-doped QDs as cytocompatible and stable fluorophores for various bio-labeling applications.
- MeSH
- analýza jednotlivých buněk metody MeSH
- fluorescenční barviva toxicita MeSH
- kvantové tečky toxicita MeSH
- lanthanoidy chemie MeSH
- lidé MeSH
- mikrovlny MeSH
- nádorové buněčné linie MeSH
- optické zobrazování metody MeSH
- povrchové vlastnosti MeSH
- Schiffovy báze chemie MeSH
- sloučeniny kadmia toxicita MeSH
- telur toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We report on the toxicity and bioaccumulation of three different types of Cd-based quantum dots (QDs), dispersed in aqueous medium, for a model plant Allium cepa L. It is believed that encapsulation of nanoparticles should reduce their toxicity and increase their stability in different environments; in this work we studied how QD encapsulation affects their phytotoxicity. Core, core/shell, and core/shell/shell QDs (CdTe, CdTe/ZnS, and CdTe/CdS/ZnS QDs capped by 2-mercaptopropionic acid) were tested and CdCl2 was used as a positive control. After 24-h and 72-h exposure, total Cd content (MCd) and bioaccumulation factors (BAFs) were determined in all parts of A. cepa plants (roots, bulb, shoot), and the total length of the root system was monitored as a toxicity end-point. Measurements of total Cd content versus free Cd2+ content (with Differential Pulse Voltammetry, DPV) in exposure media showed differences in chemical stability of the three QD types. Correspondingly, selected QDs showed different toxicity for A. cepa and different Cd bioaccumulation patterns. CdTe QDs were the most toxic; their effect was similar to CdCl2 due to the release of free Cd2+, which was confirmed by the DPV measurements. Plants exposed to CdTe QDs also bioaccumulated the most Cd among all QD exposure groups. CdTe/ZnS QDs showed no toxicity and very low bioaccumulation of Cd in A. cepa; the main source of measured Cd in the plants were QDs adsorbed on their roots, which was confirmed by fluorescence microscopy. On the contrary, CdTe/CdS/ZnS QD toxicity and bioaccumulation patterns were similar to those of CdTe QDs and pointed to unstable CdS/ZnS shells.
Nanobiosynthesis belongs to the most recent methods for synthesis of nanoparticles. This type of synthesis provides many advantages including the uniformity in particle shape and size. The biosynthesis has also a significant advantage regarding chemical properties of the obtained particles. In this study, we characterized the basic properties and composition of quantum dots (QDs), obtained by the extracellular biosynthesis by Escherichia coli. Furthermore, the toxicity of the biosynthesized QDs was compared to QDs prepared by microwave synthesis. The obtained results revealed the presence of cyan CdTe QDs after removal of substantial amounts of organic compounds, which stabilized the nanoparticle surface. QDs toxicity was evaluated using three cell lines Human Foreskin Fibroblast (HFF), Human Prostate Cancer cells (PC-3) and Breast Cancer cells (MCF-7) and the MTT assay. The test revealed differences in the toxicity between variants of QDs, varying about 10% in the HFF and 30% in the MCF-7 cell lines. The toxicity of the biosynthesized QDs to the PC-3 cell lines was about 35% lower in comparison with the QDs prepared by microwave synthesis.
- MeSH
- buněčné linie MeSH
- Escherichia coli metabolismus MeSH
- kvantové tečky toxicita MeSH
- lidé MeSH
- sloučeniny kadmia toxicita MeSH
- telur toxicita MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity.
- MeSH
- ekosystém MeSH
- krysa rodu rattus MeSH
- kvantové tečky toxicita MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- organoselenové sloučeniny toxicita MeSH
- skot MeSH
- sloučeniny kadmia toxicita MeSH
- sloučeniny selenu toxicita MeSH
- synergismus léků MeSH
- vodní organismy účinky léků růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH