Lead ions encapsulated in liposomes and their effect on Staphylococcus aureus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24317385
PubMed Central
PMC3881135
DOI
10.3390/ijerph10126687
PII: ijerph10126687
Knihovny.cz E-zdroje
- MeSH
- elektrochemické techniky * MeSH
- liposomy chemie MeSH
- nanočástice toxicita MeSH
- olovo toxicita MeSH
- spektrofotometrie atomová MeSH
- Staphylococcus aureus účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- liposomy MeSH
- olovo MeSH
The aim of the study was the preparation of a liposome complex with encapsulated lead ions, which were electrochemically detected. In particular, experiments were focused on the potential of using an electrochemical method for the determination of free and liposome-encapsulated lead and determination of the encapsulation efficiency preventing the lead toxicity. Primarily, encapsulation of lead ions in liposomes and confirmation of successful encapsulation by electrochemical methods was done. Further, the reduction effect of the liposome matrix on the detected electrochemical signal was monitored. Besides encapsulation itself, comparison of toxicity of free lead ions and lead ions encapsulated in liposome was tested. The calculated IC50 values for evaluating the lead cytotoxicity showed significant differences between the lead enclosed in liposomes (28 µM) and free lead ions (237 µM). From the cytotoxicity studies on the bacterial strain of S. aureus it was observed that the free lead ions are less toxic in comparison with lead encapsulated in liposomes. Liposomes appear to be a suitable carrier of various substances through the inner cavity. Due to the liposome structure the lead enclosed in the liposome is more easily accepted into the cell structure and the toxicity of the enclosed lead is higher in comparison to free lead ions.
Zobrazit více v PubMed
Neal A.P., Guilarte T.R. Mechanisms of lead and manganese neurotoxicity. Toxicol. Res. 2013;2:99–114. doi: 10.1039/c2tx20064c. PubMed DOI PMC
Afridi H.I., Kazi T.G., Arain M.B., Jamali M.K., Kazi G.H., Jalbani N. Determination of cadmium and lead in biological samples by three ultrasonic-based samples treatment procedures followed by electrothermal atomic absorption spectrometry. J. AOAC Int. 2007;90:470–478. PubMed
Najafi N.M., Massumi A., Shafaghizadeh M. In situ digestion of serum samples in graphite furnace prior to determination by ETAAS. Sci. Iran. 2005;12:324–328.
Afridi H.I., Kazi T.G., Kazi A.G., Shah F., Wadhwa S.K., Kolachi N.F., Shah A.Q., Baig J.A., Kazi N. Levels of arsenic, cadmium, lead, manganese and zinc in biological samples of paralysed steel mill workers with related to controls. Biol. Trace Elem. Res. 2011;144:164–182. doi: 10.1007/s12011-011-9063-4. PubMed DOI
Parsons P.J. Monitoring human exposure to lead—An assessment of current laboratory performance for the determination of blood lead. Environ. Res. 1992;57:149–162. doi: 10.1016/S0013-9351(05)80075-1. PubMed DOI
Blazewicz A., Orlicz-Szczesna G., Prystupa A., Szczesny P. Use of ion chromatography for the determination of selected metals in blood serum of patients with type 2 diabetes. J. Trace Elem. Med. Biol. 2010;24:14–26. doi: 10.1016/j.jtemb.2009.08.001. PubMed DOI
Vamvakaki V., Fournier D., Chaniotakis N.A. Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosens. Bioelectron. 2005;21:384–388. doi: 10.1016/j.bios.2004.10.028. PubMed DOI
Livney Y.D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 2010;15:73–83. doi: 10.1016/j.cocis.2009.11.002. DOI
Pantos A., Tsiourvas D., Paleos C.M., Nounesis G. Enhanced drug transport from unilamellar to multilamellar liposomes induced by molecular recognition of their lipid membranes. Langmuir. 2005;21:6696–6702. doi: 10.1021/la050211n. PubMed DOI
Sharma A., Sharma U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997;154:123–140. doi: 10.1016/S0378-5173(97)00135-X. DOI
Dos Santos N., Waterhouse D., Masin D., Tardi P.G., Karlsson G., Edwards K., Bally M.B. Substantial increases in idarubicin plasma concentration by liposome encapsulation mediates improved antitumor activity. J. Control. Release. 2005;105:89–105. doi: 10.1016/j.jconrel.2005.03.007. PubMed DOI
Oja C., Tardi P., Schutze-Redelmeier M.P., Cullis P.R. Doxorubicin entrapped within liposome-associated antigens results in a selective inhibition of the antibody response to the linked antigen. Biochim. Biophys. Acta-Biomembr. 2000;1468:31–40. doi: 10.1016/S0005-2736(00)00178-4. PubMed DOI
Petersen A.L., Hansen A.E., Gabizon A., Andresen T.L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 2012;64:1417–1435. doi: 10.1016/j.addr.2012.09.003. PubMed DOI
Viswanathan S., Wu L.C., Huang M.R., Ho J.A.A. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal. Chem. 2006;78:1115–1121. doi: 10.1021/ac051435d. PubMed DOI
Zhong Z.Y., Peng N., Qing Y., Shan J.L., Li M.X., Guan W., Dai N., Gu X.Q., Wang D. An electrochemical immunosensor for simultaneous multiplexed detection of neuron-specific enolase and pro-gastrin-releasing peptide using liposomes as enhancer. Electrochim. Acta. 2011;56:5624–5629.
Drbohlavova J., Adam V., Kizek R., Hubalek J. Quantum dots—Characterization, preparation and usage in biological systems. Int. J. Mol. Sci. 2009;10:656–673. doi: 10.3390/ijms10020656. PubMed DOI PMC
Hynek D., Prasek J., Pikula J., Adam V., Hajkova P., Krejcova L., Trnkova L., Sochor J., Pohanka M., Hubalek J., et al. Electrochemical analysis of lead toxicosis in vultures. Int. J. Electrochem. Sci. 2011;6:5980–6010.
Krystofova O., Trnkova L., Adam V., Zehnalek J., Hubalek J., Babula P., Kizek R. Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants. Sensors. 2010;10:5308–5328. doi: 10.3390/s100605308. PubMed DOI PMC
Hynek D., Krejcova L., Krizkova S., Ruttkay-Nedecky B., Pikula J., Adam V., Hajkova P., Trnkova L., Sochor J., Pohanka M., et al. Metallomics study of lead-protein interactions in albumen by electrochemical and electrophoretic methods. Int. J. Electrochem. Sci. 2012;7:943–964.
Krizkova S., Zitka O., Adam V., Beklova M., Horna A., Svobodova Z., Sures B., Trnkova L., Zeman L., Kizek R. Possibilities of electrochemical techniques in metallothionein and lead detection in fish tissues. Czech J. Anim. Sci. 2007;52:143–148.
Sochor J., Majzlik P., Salas P., Adam V., Trnkova L., Hubalek J., Kizek R. A study of availability of heavy metal ions by using various exracction procedures and electrochemical detection. Lis. Cukrov. Repar. 2010;126:414–415.
Percival S.L., Thomas J., Linton S., Okel T., Corum L., Slone W. The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds. Int. Wound J. 2012;9:488–493. doi: 10.1111/j.1742-481X.2011.00903.x. PubMed DOI PMC
Martinez-Abad A., Sanchez G., Lagaron J.M., Ocio M.J. On the different growth conditions affecting silver antimicrobial efficacy on Listeria monocytogenes and Salmonella enterica. Int. J. Food Microbiol. 2012;158:147–154. doi: 10.1016/j.ijfoodmicro.2012.07.010. PubMed DOI
Fernandez-Saiz P., Soler C., Lagaron J.M., Ocio M.J. Effects of chitosan films on the growth of Listeria monocytogenes, Staphylococcus aureus and Salmonella spp. in laboratory media and in fish soup. Int. J. Food Microbiol. 2010;137:287–294. doi: 10.1016/j.ijfoodmicro.2009.11.016. PubMed DOI
Borneman D.L., Ingham S.C., Ane C. Mathematical approaches to estimating lag-phase duration and growth rate for predicting growth of Salmonella serovars, Escherichia coli O157:H7, and Staphylococcus aureus in raw beef, bratwurst, and poultry. J. Food Prot. 2009;72:1190–1200. PubMed
Rufian-Henares J.A., Morales F.J. Microtiter plate-based assay for screening antimicrobial activity of melanoidins against E. coli and S. aureus. Food Chem. 2008;111:1069–1074. doi: 10.1016/j.foodchem.2008.05.027. DOI
Mahdavi B., Yaacob W.A., Din L.B., Nazlina I. Antimicrobial activity of consecutive extracts of Etlingera brevilabrum. Sains Malays. 2012;41:1233–1237.
Jenkins R., Burton N., Cooper R. Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2011;66:2536–2542. doi: 10.1093/jac/dkr340. PubMed DOI
Belley A., Harris R., Beveridge T., Parr T., Moeck G. Ultrastructural effects of oritavancin on methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Antimicrob. Agents Chemother. 2009;53:800–804. doi: 10.1128/AAC.00603-08. PubMed DOI PMC
Webster D., Rennie R.P., Brosnikoff C.L., Chui L., Brown C. Methicillin-resistant Staphylococcus aureus with reduced susceptibility to vancomycin in Canada. Diagn. Microbiol. Infect. Dis. 2007;57:177–181. doi: 10.1016/j.diagmicrobio.2006.07.007. PubMed DOI
Haferburg G., Kothe E. Microbes and metals: Interactions in the environment. J. Basic Microbiol. 2007;47:453–467. doi: 10.1002/jobm.200700275. PubMed DOI
Huang C.M., Chen C.H., Pornpattananangkul D., Zhang L., Chan M., Hsieh M.F., Zhang L.F. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials. 2011;32:214–221. PubMed PMC
Kilian G., Tshanga S.S., Oidu B., Milne P.J. Antimicrobial activity of liposome encapsulated cyclo(l-tyrosyl-l-prolyl) Pharmazie. 2011;66:421–423. PubMed
Low W.L., Martin C., Hill D.J., Kenward M.A. Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Lett. Appl. Microbiol. 2013;57:33–39. doi: 10.1111/lam.12082. PubMed DOI
Omri A., Ravaoarinoro M. Preparation, properties and the effects of amikacin, netilmicin and tobramycin in free and liposomal formulations on Gram-negative and Gram-positive bacteria. Int. J. Antimicrob. Agents. 1996;7:9–14. doi: 10.1016/0924-8579(96)00003-9. PubMed DOI
Kunjachan S., Blauz A., Mockel D., Theek B., Kiessling F., Etrych T., Ulbrich K., van Bloois L., Storm G., Bartosz G., et al. Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur. J. Pharm. Sci. 2012;45:421–428. doi: 10.1016/j.ejps.2011.08.028. PubMed DOI
Gonzalez N., Sevillano D., Alou L., Cafini F., Gimenez M.-J., Gomez-Lus M.-L., Prieto J., Aguilar L. Influence of the MBC/MIC ratio on the antibacterial activity of vancomycin versus linezolid against methicillin-resistant Staphylococcus aureus isolates in a pharmacodynamic model simulating serum and soft tissue interstitial fluid concentrations reported in diabetic patients. J. Antimicrob. Chemother. 2013;68:2291–2295. PubMed
Chudobova D., Dobes J., Nejdl L., Maskova D., Rodrigo M.A.M., Nedecky B.R., Krystofova O., Kynicky J., Konecna M., Pohanka M., et al. Oxidative stress in Staphylococcus aureus treated with silver(I) ions revealed by spectrometric and voltammetric assays. Int. J. Electrochem. Sci. 2013;8:4422–4440.
Gangwar A. Antimicrobial effectiveness of different preparations of calcium hydroxide. Ind. J. Dental Res. 2011;22:66–70. doi: 10.4103/0970-9290.79986. PubMed DOI
Chudobova D., Nejdl L., Gumulec J., Krystofova O., Rodrigo M.A.M., Kynicky J., Ruttkay-Nedecky B., Kopel P., Babula P., Adam V., et al. Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int. J. Mol. Sci. 2013;14:13592–13614. PubMed PMC