FGFR2 residence in primary cilia is necessary for epithelial cell signaling

. 2025 Jul 07 ; 224 (7) : . [epub] 20250421

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40257378

Grantová podpora
NW24-08-00364 Agency for Healthcare Research of the Czech Republic
GA23-07631S Czech Science Foundation
LX22NPO5102 National Institute for Cancer Research
European Union
LUAUS23295 Ministry of Education, Youth and Sports of the Czech Republic
MUNI/G/1771/2020 Agency of the Masaryk University
CZ.02.2.69/0.0/0.0/19_073/0016943 IGA MUNI
Brno City Municipality

Primary cilium projects from cells to provide a communication platform with neighboring cells and the surrounding environment. This is ensured by the selective entry of membrane receptors and signaling molecules, producing fine-tuned and effective responses to the extracellular cues. In this study, we focused on one family of signaling molecules, the fibroblast growth factor receptors (FGFRs), their residence within cilia, and its role in FGFR signaling. We show that FGFR1 and FGFR2, but not FGFR3 and FGFR4, localize to primary cilia of the developing mouse tissues and in vitro cells. For FGFR2, we demonstrate that the ciliary residence is necessary for its signaling and expression of target morphogenic genes. We also show that the pathogenic FGFR2 variants have minimal cilium presence, which can be rescued for the p.P253R variant associated with the Apert syndrome by using the RLY-4008 kinase inhibitor. Finally, we determine the molecular regulators of FGFR2 trafficking to cilia, including IFT144, BBS1, and the conserved T429V430 motif within FGFR2.

Zobrazit více v PubMed

Abraham, S.P., Nita A., Krejci P., and Bosakova M.. 2021. Cilia kinases in skeletal development and homeostasis. Dev. Dyn. 251:577–608. 10.1002/dvdy.426 PubMed DOI

Ahmed, Z., Schüller A.C., Suhling K., Tregidgo C., and Ladbury J.E.. 2008. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem. J. 413:37–49. 10.1042/BJ20071594 PubMed DOI

Ahmed, Z., George R., Lin C.-C., Suen K.M., Levitt J.A., Suhling K., and Ladbury J.E.. 2010. Direct binding of Grb2 SH3 domain to FGFR2 regulates SHP2 function. Cell. Signal. 22:23–33. 10.1016/j.cellsig.2009.08.011 PubMed DOI

Ahmed, Z., Lin C.C., Suen K.M., Melo F.A., Levitt J.A., Suhling K., and Ladbury J.E.. 2013. Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. J. Cell Biol. 200:493–504. 10.1083/jcb.201204106 PubMed DOI PMC

Behal, R.H., Miller M.S., Qin H., Lucker B.F., Jones A., and Cole D.G.. 2012. Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex A proteins. J. Biol. Chem. 287:11689–11703. 10.1074/jbc.M111.287102 PubMed DOI PMC

Benmerah, A. 2013. The ciliary pocket. Curr. Opin. Cell Biol. 25:78–84. 10.1016/j.ceb.2012.10.011 PubMed DOI

Berbari, N.F., Johnson A.D., Lewis J.S., Askwith C.C., and Mykytyn K.. 2008. Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. Mol. Biol. Cell. 19:1540–1547. 10.1091/mbc.e07-09-0942 PubMed DOI PMC

Berman, S.A., Wilson N.F., Haas N.A., and Lefebvre P.A.. 2003. A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13:1145–1149. 10.1016/S0960-9822(03)00415-9 PubMed DOI

Best, S., Yu J., Lord J., Roche M., Watson C.M., Bevers R.P.J., Stuckey A., Madhusudhan S., Jewell R., Sisodiya S.M., et al. 2022. Uncovering the burden of hidden ciliopathies in the 100 000 genomes project: A reverse phenotyping approach. J. Med. Genet. 59:1151–1164. 10.1136/jmedgenet-2022-108476 PubMed DOI PMC

Boehlke, C., Bashkurov M., Buescher A., Krick T., John A.-K., Nitschke R., Walz G., and Kuehn E.W.. 2010. Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J. Cell Sci. 123:1460–1467. 10.1242/jcs.058883 PubMed DOI

Bosakova, M., Abraham S.P., Nita A., Hruba E., Buchtova M., Taylor S.P., Duran I., Martin J., Svozilova K., Barta T., et al. 2020. Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling. EMBO Mol. Med. 12:e11739. 10.15252/emmm.201911739 PubMed DOI PMC

Brewer, K.M., Brewer K.K., Richardson N.C., and Berbari N.F.. 2022. Neuronal cilia in energy homeostasis. Front. Cell Dev. Biol. 10:1082141. 10.3389/fcell.2022.1082141 PubMed DOI PMC

Burghoorn, J., Dekkers M.P.J., Rademakers S., de Jong T., Willemsen R., and Jansen G.. 2007. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 104:7157–7162. 10.1073/pnas.0606974104 PubMed DOI PMC

Chaya, T., Omori Y., Kuwahara R., and Furukawa T.. 2014. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 33:1227–1242. 10.1002/embj.201488175 PubMed DOI PMC

Choura, M., and Rebaï A.. 2011. Receptor tyrosine kinases: From biology to pathology. J. Recept. Signal Transduct. Res. 31:387–394. 10.3109/10799893.2011.625425 PubMed DOI

Cipolletta, E., Campanile A., Santulli G., Sanzari E., Leosco D., Campiglia P., Trimarco B., and Iaccarino G.. 2009. The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc. Res. 84:407–415. 10.1093/cvr/cvp252 PubMed DOI

Clement, D.L., Mally S., Stock C., Lethan M., Satir P., Schwab A., Pedersen S.F., and Christensen S.T.. 2013. PDGFRα signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. J. Cell Sci. 126:953–965. 10.1242/jcs.116426 PubMed DOI PMC

Cong, L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., and Zhang F.. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science. 339:819–823. 10.1126/science.1231143 PubMed DOI PMC

Danilov, A.I., Gomes-Leal W., Ahlenius H., Kokaia Z., Carlemalm E., and Lindvall O.. 2009. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia. 57:136–152. 10.1002/glia.20741 PubMed DOI

Dar, P., Sachs G.S., Carter S.M., Ferreira J.C., Nitowsky H.M., and Gross S.J.. 2001. Prenatal diagnosis of Bardet-Biedl syndrome by targeted second-trimester sonography. Ultrasound Obstet. Gynecol. 17:354–356. 10.1046/j.1469-0705.2001.00253.x PubMed DOI

de Vries, J., Yntema J.L., van Die C.E., Crama N., Cornelissen E.A.M., and Hamel B.C.J.. 2010. Jeune syndrome: Description of 13 cases and a proposal for follow-up protocol. Eur. J. Pediatr. 169:77–88. 10.1007/s00431-009-0991-3 PubMed DOI PMC

Deane, J.A., Verghese E., Martelotto L.G., Cain J.E., Galtseva A., Rosenblum N.D., Watkins D.N., and Ricardo S.D.. 2013. Visualizing renal primary cilia. Nephrology (Carlton). 18:161–168. 10.1111/nep.12022 PubMed DOI

Du, Z., and Lovly C.M.. 2018. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer. 17:58. 10.1186/s12943-018-0782-4 PubMed DOI PMC

Duran, I., Taylor S.P., Zhang W., Martin J., Qureshi F., Jacques S.M., Wallerstein R., Lachman R.S., Nickerson D.A., Bamshad M., et al. 2017. Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia. Cilia. 6:7. 10.1186/s13630-017-0051-y PubMed DOI PMC

Engle, S.E., Bansal R., Antonellis P.J., and Berbari N.F.. 2021. Cilia signaling and obesity. Semin. Cell Dev. Biol. 110:43–50. 10.1016/j.semcdb.2020.05.006 PubMed DOI PMC

Eswarakumar, V.P., Lax I., and Schlessinger J.. 2005. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16:139–149. 10.1016/j.cytogfr.2005.01.001 PubMed DOI

Evans, M.J., Fanucchi M.V., Van Winkle L.S., Baker G.L., Murphy A.E., Nishio S.J., Sannes P.L., and Plopper C.G.. 2002. Fibroblast growth factor-2 during postnatal development of the tracheal basement membrane zone. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L1263–L1270. 10.1152/ajplung.00180.2002 PubMed DOI

Ezratty, E.J., Stokes N., Chai S., Shah A.S., Williams S.E., and Fuchs E.. 2011. A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell. 145:1129–1141. 10.1016/j.cell.2011.05.030 PubMed DOI PMC

Firestone, A.J., Weinger J.S., Maldonado M., Barlan K., Langston L.D., O’Donnell M., Gelfand V.I., Kapoor T.M., and Chen J.K.. 2012. Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature. 484:125–129. 10.1038/nature10936 PubMed DOI PMC

Follit, J.A., Tuft R.A., Fogarty K.E., and Pazour G.J.. 2006. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell. 17:3781–3792. 10.1091/mbc.e06-02-0133 PubMed DOI PMC

Francavilla, C., Rigbolt K.T.G., Emdal K.B., Carraro G., Vernet E., Bekker-Jensen D.B., Streicher W., Wikström M., Sundström M., Bellusci S., et al. 2013. Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs. Mol. Cell. 51:707–722. 10.1016/j.molcel.2013.08.002 PubMed DOI

Garcia-Gonzalo, F.R., and Reiter J.F.. 2017. Open Sesame: How transition fibers and the transition zone control ciliary composition. Cold Spring Harb. Perspect. Biol. 9:a028134. 10.1101/cshperspect.a028134 PubMed DOI PMC

Gerdes, J.M., Christou-Savina S., Xiong Y., Moede T., Moruzzi N., Karlsson-Edlund P., Leibiger B., Leibiger I.B., Östenson C.-G., Beales P.L., and Berggren P.-O.. 2014. Ciliary dysfunction impairs beta-cell insulin secretion and promotes development of type 2 diabetes in rodents. Nat. Commun. 5:5308. 10.1038/ncomms6308 PubMed DOI

Ghossoub, R., Lindbæk L., Molla-Herman A., Schmitt A., Christensen S.T., and Benmerah A.. 2016. Morphological and functional characterization of the ciliary pocket by electron and fluorescence microscopy. Methods Mol. Biol. 1454:35–51. 10.1007/978-1-4939-3789-9_3 PubMed DOI

Gorlin, R.J., Anderson V.E., and Scott C.R.. 1961. Hypertrophied frenuli, oligophrenia, familial trembling and anomalies of the hand. Report of four cases in one family and a forme fruste in another. N. Engl. J. Med. 264:486–489. 10.1056/NEJM196103092641004 PubMed DOI

Goswami, M., Rajwar A.S., and Verma M.. 2016. Orocraniofacial findings of a pediatric patient with Joubert syndrome. Int. J. Clin. Pediatr. Dent. 9:379–383. 10.5005/jp-journals-10005-1394 PubMed DOI PMC

Guan, Y.T., Zhang C., Zhang H.Y., Wei W.L., Yue W., Zhao W., and Zhang D.H.. 2023. Primary cilia: Structure, dynamics, and roles in cancer cells and tumor microenvironment. J. Cell. Physiol. 238:1788–1807. 10.1002/jcp.31092 PubMed DOI

Gudernova, I., Foldynova-Trantirkova S., Ghannamova B.E., Fafilek B., Varecha M., Balek L., Hruba E., Jonatova L., Jelinkova I., Kunova Bosakova M., et al. 2017. One reporter for in-cell activity profiling of majority of protein kinase oncogenes. Elife. 6:e21536. 10.7554/eLife.21536 PubMed DOI PMC

Hadari, Y.R., Gotoh N., Kouhara H., Lax I., and Schlessinger J.. 2001. Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc. Natl. Acad. Sci. USA. 98:8578–8583. 10.1073/pnas.161259898 PubMed DOI PMC

Haugsten, E.M., Sørensen V., Brech A., Olsnes S., and Wesche J.. 2005. Different intracellular trafficking of FGF1 endocytosed by the four homologous FGF receptors. J. Cell Sci. 118:3869–3881. 10.1242/jcs.02509 PubMed DOI

Haugsten, E.M., Zakrzewska M., Brech A., Pust S., Olsnes S., Sandvig K., and Wesche J.. 2011. Clathrin- and dynamin-independent endocytosis of FGFR3--implications for signalling. PLoS One. 6:e21708. 10.1371/journal.pone.0021708 PubMed DOI PMC

Haugsten, E.M., Sørensen V., Kunova Bosakova M., de Souza G.A., Krejci P., Wiedlocha A., and Wesche J.. 2016. Proximity labeling reveals molecular determinants of FGFR4 endosomal transport. J. Proteome Res. 15:3841–3855. 10.1021/acs.jproteome.6b00652 PubMed DOI

He, Q., Wang G., Dasgupta S., Dinkins M., Zhu G., and Bieberich E.. 2012. Characterization of an apical ceramide-enriched compartment regulating ciliogenesis. Mol. Biol. Cell. 23:3156–3166. 10.1091/mbc.E12-02-0079 PubMed DOI PMC

Hildreth, K.L., Wu J.H., Barak L.S., Exum S.T., Kim L.K., Peppel K., and Freedman N.J.. 2004. Phosphorylation of the platelet-derived growth factor receptor-beta by G protein-coupled receptor kinase-2 reduces receptor signaling and interaction with the Na(+)/H(+) exchanger regulatory factor. J. Biol. Chem. 279:41775–41782. 10.1074/jbc.M403274200 PubMed DOI

Honda, A., Kita T., Seshadri S.V., Misaki K., Ahmed Z., Ladbury J.E., Richardson G.P., Yonemura S., and Ladher R.K.. 2018. FGFR1-mediated protocadherin-15 loading mediates cargo specificity during intraflagellar transport in inner ear hair-cell kinocilia. Proc. Natl. Acad. Sci. USA. 115:8388–8393. 10.1073/pnas.1719861115 PubMed DOI PMC

Huang, L., Pu Y., Alam S., Birch L., and Prins G.S.. 2005. The role of Fgf10 signaling in branching morphogenesis and gene expression of the rat prostate gland: Lobe-specific suppression by neonatal estrogens. Dev. Biol. 278:396–414. 10.1016/j.ydbio.2004.11.020 PubMed DOI

Hupfeld, C.J., and Olefsky J.M.. 2007. Regulation of receptor tyrosine kinase signaling by GRKs and beta-arrestins. Annu. Rev. Physiol. 69:561–577. 10.1146/annurev.physiol.69.022405.154626 PubMed DOI

Ishikawa, H., Thompson J., Yates J.R. III, and Marshall W.F.. 2012. Proteomic analysis of mammalian primary cilia. Curr. Biol. 22:414–419. 10.1016/j.cub.2012.01.031 PubMed DOI PMC

Janich, P., and Corbeil D.. 2007. GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett. 581:1783–1787. 10.1016/j.febslet.2007.03.065 PubMed DOI

Jenkins, P.M., McEwen D.P., and Martens J.R.. 2009. Olfactory cilia: Linking sensory cilia function and human disease. Chem. Senses. 34:451–464. 10.1093/chemse/bjp020 PubMed DOI PMC

Jenks, A.D., Vyse S., Wong J.P., Kostaras E., Keller D., Burgoyne T., Shoemark A., Tsalikis A., de la Roche M., Michaelis M., et al. 2018. Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23:3042–3055. 10.1016/j.celrep.2018.05.016 PubMed DOI PMC

Jiang, J. 2022. Hedgehog signaling mechanism and role in cancer. Semin. Cancer Biol. 85:107–122. 10.1016/j.semcancer.2021.04.003 PubMed DOI PMC

Jin, H., White S.R., Shida T., Schulz S., Aguiar M., Gygi S.P., Bazan J.F., and Nachury M.V.. 2010. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell. 141:1208–1219. 10.1016/j.cell.2010.05.015 PubMed DOI PMC

Jonassen, J.A., San Agustin J., Follit J.A., and Pazour G.J.. 2008. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183:377–384. 10.1083/jcb.200808137 PubMed DOI PMC

Jones, M.R., Dilai S., Lingampally A., Chao C.-M., Danopoulos S., Carraro G., Mukhametshina R., Wilhelm J., Baumgart-Vogt E., Al Alam D., et al. 2019. A comprehensive analysis of fibroblast growth factor receptor 2b signaling on epithelial tip progenitor cells during early mouse lung branching morphogenesis. Front. Genet. 9:746. 10.3389/fgene.2018.00746 PubMed DOI PMC

Jung, E., Choi T.I., Lee J.E., Kim C.H., and Kim J.. 2020. ESCRT subunit CHMP4B localizes to primary cilia and is required for the structural integrity of the ciliary membrane. FASEB J. 34:1331–1344. 10.1096/fj.201901778R PubMed DOI

Katoh, M. 2019. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat. Rev. Clin. Oncol. 16:105–122. 10.1038/s41571-018-0115-y PubMed DOI

Katoh, Y., and Katoh M.. 2006. FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells. Int. J. Mol. Med. 17:529–532. 10.3892/ijmm.17.3.529 PubMed DOI

Kawakami, Y., Esteban C.R., Matsui T., Rodríguez-León J., Kato S., and Izpisúa Belmonte J.C.. 2004. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8 expression and limb outgrowth in vertebrate embryos. Development. 131:4763–4774. 10.1242/dev.01331 PubMed DOI

Kim, J., Kato M., and Beachy P.A.. 2009. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc. Natl. Acad. Sci. USA. 106:21666–21671. 10.1073/pnas.0912180106 PubMed DOI PMC

Kohli, P., Höhne M., Jüngst C., Bertsch S., Ebert L.K., Schauss A.C., Benzing T., Rinschen M.M., and Schermer B.. 2017. The ciliary membrane-associated proteome reveals actin-binding proteins as key components of cilia. EMBO Rep. 18:1521–1535. 10.15252/embr.201643846 PubMed DOI PMC

Kolch, W. 2000. Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351:289–305. 10.1042/bj3510289 PubMed DOI PMC

Kostas, M., Haugsten E.M., Zhen Y., Sørensen V., Szybowska P., Fiorito E., Lorenz S., Jones N., de Souza G.A., Wiedlocha A., and Wesche J.. 2018. Protein tyrosine phosphatase receptor type G (PTPRG) controls fibroblast growth factor receptor (FGFR) 1 activity and influences sensitivity to FGFR kinase inhibitors. Mol. Cell. Proteomics. 17:850–870. 10.1074/mcp.RA117.000538 PubMed DOI PMC

Kunova Bosakova, M., Varecha M., Hampl M., Duran I., Nita A., Buchtova M., Dosedelova H., Machat R., Xie Y., Ni Z., et al. 2018. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum. Mol. Genet. 27:1093–1105. 10.1093/hmg/ddy031 PubMed DOI PMC

Kunova Bosakova, M., Nita A., Gregor T., Varecha M., Gudernova I., Fafilek B., Barta T., Basheer N., Abraham S.P., Balek L., et al. 2019. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc. Natl. Acad. Sci. USA. 116:4316–4325. 10.1073/pnas.1800338116 PubMed DOI PMC

Leitch, C.C., and Zaghloul N.A.. 2014. BBS4 is necessary for ciliary localization of TrkB receptor and activation by BDNF. PLoS One. 9:e98687. 10.1371/journal.pone.0098687 PubMed DOI PMC

Leitch, C.C., Lodh S., Prieto-Echagüe V., Badano J.L., and Zaghloul N.A.. 2014. Basal body proteins regulate Notch signaling through endosomal trafficking. J. Cell Sci. 127:2407–2419. 10.1242/jcs.130344 PubMed DOI PMC

Lemmon, M.A., and Schlessinger J.. 2010. Cell signaling by receptor tyrosine kinases. Cell. 141:1117–1134. 10.1016/j.cell.2010.06.011 PubMed DOI PMC

Lenferink, A.E., Pinkas-Kramarski R., van de Poll M.L., van Vugt M.J., Klapper L.N., Tzahar E., Waterman H., Sela M., van Zoelen E.J., and Yarden Y.. 1998. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 17:3385–3397. 10.1093/emboj/17.12.3385 PubMed DOI PMC

Levental, I., and Veatch S.. 2016. The continuing mystery of lipid rafts. J. Mol. Biol. 428:4749–4764. 10.1016/j.jmb.2016.08.022 PubMed DOI PMC

Li, C., Scott D.A., Hatch E., Tian X., and Mansour S.L.. 2007. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development. 134:167–176. 10.1242/dev.02701 PubMed DOI PMC

Li, X., Martinez-Ledesma E., Zhang C., Gao F., Zheng S., Ding J., Wu S., Nguyen N., Clifford S.C., Wen P.Y., et al. 2019. TIE2–FGFR1 interaction induces adaptive PI3K inhibitor resistance by upregulating Aurora A/PlK1/CDK1 signaling in glioblastoma. Cancer Res. 79:5088–5101. 10.1158/0008-5472.CAN-19-0325 PubMed DOI

Lin, C.C., Melo F.A., Ghosh R., Suen K.M., Stagg L.J., Kirkpatrick J., Arold S.T., Ahmed Z., and Ladbury J.E.. 2012. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell. 149:1514–1524. 10.1016/j.cell.2012.04.033 PubMed DOI

Lin, A.E., Traum A.Z., Sahai I., Keppler-Noreuil K., Kukolich M.K., Adam M.P., Westra S.J., and Arts H.H.. 2013. Sensenbrenner syndrome (cranioectodermal dysplasia): Clinical and molecular analyses of 39 patients including two new patients. Am. J. Med. Genet. A. 161A:2762–2776. 10.1002/ajmg.a.36265 PubMed DOI

Loktev, A.V., and Jackson P.K.. 2013. Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5:1316–1329. 10.1016/j.celrep.2013.11.011 PubMed DOI

Long, H., and Huang K.. 2020. Transport of ciliary membrane proteins. Front. Cell Dev. Biol. 7:381. 10.3389/fcell.2019.00381 PubMed DOI PMC

Lonic, A., Barry E.F., Quach C., Kobe B., Saunders N., and Guthridge M.A.. 2008. Fibroblast growth factor receptor 2 phosphorylation on serine 779 couples to 14-3-3 and regulates cell survival and proliferation. Mol. Cell. Biol. 28:3372–3385. 10.1128/MCB.01837-07 PubMed DOI PMC

Ma, R., Li W.-P., Rundle D., Kong J., Akbarali H.I., and Tsiokas L.. 2005. PKD2 functions as an epidermal growth factor-activated plasma membrane channel. Mol. Cell. Biol. 25:8285–8298. 10.1128/MCB.25.18.8285-8298.2005 PubMed DOI PMC

Manzanares, D., Monzon M.E., Savani R.C., and Salathe M.. 2007. Apical oxidative hyaluronan degradation stimulates airway ciliary beating via RHAMM and RON. Am. J. Respir. Cell Mol. Biol. 37:160–168. 10.1165/rcmb.2006-0413OC PubMed DOI PMC

Maria, B.L., Boltshauser E., Palmer S.C., and Tran T.X.. 1999. Clinical features and revised diagnostic criteria in Joubert syndrome. J. Child Neurol. 14:583–590, discussion:590–1. 10.1177/088307389901400906 PubMed DOI

Martin, L., Kaci N., Estibals V., Goudin N., Garfa-Traore M., Benoist-Lasselin C., Dambroise E., and Legeai-Mallet L.. 2018. Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia. Hum. Mol. Genet. 27:1–13. 10.1093/hmg/ddx374 PubMed DOI

May, E.A., Kalocsay M., D’Auriac I.G., Schuster P.S., Gygi S.P., Nachury M.V., and Mick D.U.. 2021. Time-resolved proteomics profiling of the ciliary Hedgehog response. J. Cell Biol. 220:e202007207. 10.1083/jcb.202007207 PubMed DOI PMC

McDonell, L.M., Kernohan K.D., Boycott K.M., and Sawyer S.L.. 2015. Receptor tyrosine kinase mutations in developmental syndromes and cancer: Two sides of the same coin. Hum. Mol. Genet. 24:R60–R66. 10.1093/hmg/ddv254 PubMed DOI PMC

Merrill, A.E., Sarukhanov A., Krejci P., Idoni B., Camacho N., Estrada K.D., Lyons K.M., Deixler H., Robinson H., Chitayat D., et al. 2012. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am. J. Hum. Genet. 90:550–557. 10.1016/j.ajhg.2012.02.005 PubMed DOI PMC

Métayé, T., Gibelin H., Perdrisot R., and Kraimps J.L.. 2005. Pathophysiological roles of G-protein-coupled receptor kinases. Cell. Signal. 17:917–928. 10.1016/j.cellsig.2005.01.002 PubMed DOI

Michos, O., Cebrian C., Hyink D., Grieshammer U., Williams L., D’Agati V., Licht J.D., Martin G.R., and Costantini F.. 2010. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 6:e1000809. 10.1371/journal.pgen.1000809 PubMed DOI PMC

Mick, D.U., Rodrigues R.B., Leib R.D., Adams C.M., Chien A.S., Gygi S.P., and Nachury M.V.. 2015. Proteomics of primary cilia by proximity labeling. Dev. Cell. 35:497–512. 10.1016/j.devcel.2015.10.015 PubMed DOI PMC

Milenkovic, L., Scott M.P., and Rohatgi R.. 2009. Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J. Cell Biol. 187:365–374. 10.1083/jcb.200907126 PubMed DOI PMC

Mill, P., Christensen S.T., and Pedersen L.B.. 2023. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat. Rev. Genet. 24:421–441. 10.1038/s41576-023-00587-9 PubMed DOI PMC

Mohammadi, M., Honegger A.M., Rotin D., Fischer R., Bellot F., Li W., Dionne C.A., Jaye M., Rubinstein M., and Schlessinger J.. 1991. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol. Cell. Biol. 11:5068–5078. 10.1128/mcb.11.10.5068-5078.1991 PubMed DOI PMC

Molla-Herman, A., Ghossoub R., Blisnick T., Meunier A., Serres C., Silbermann F., Emmerson C., Romeo K., Bourdoncle P., Schmitt A., et al. 2010. The ciliary pocket: An endocytic membrane domain at the base of primary and motile cilia. J. Cell Sci. 123:1785–1795. 10.1242/jcs.059519 PubMed DOI

Mossine, V.V., Waters J.K., Hannink M., and Mawhinney T.P.. 2013. piggyBac transposon plus insulators overcome epigenetic silencing to provide for stable signaling pathway reporter cell lines. PLoS One. 8:e85494. 10.1371/journal.pone.0085494 PubMed DOI PMC

Mukhopadhyay, S., Wen X., Chih B., Nelson C.D., Lane W.S., Scales S.J., and Jackson P.K.. 2010. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24:2180–2193. 10.1101/gad.1966210 PubMed DOI PMC

Murphy, L.O., MacKeigan J.P., and Blenis J.. 2004. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol. Cell. Biol. 24:144–153. 10.1128/MCB.24.1.144-153.2004 PubMed DOI PMC

Nachury, M.V., and Mick D.U.. 2019. Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20:389–405. 10.1038/s41580-019-0116-4 PubMed DOI PMC

Nechipurenko, I.V. 2020. The enigmatic role of lipids in cilia signaling. Front. Cell Dev. Biol. 8:777. 10.3389/fcell.2020.00777 PubMed DOI PMC

Neugebauer, J.M., Amack J.D., Peterson A.G., Bisgrove B.W., and Yost H.J.. 2009. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 458:651–654. 10.1038/nature07753 PubMed DOI PMC

Nielsen, B.S., Malinda R.R., Schmid F.M., Pedersen S.F., Christensen S.T., and Pedersen L.B.. 2015. PDGFRβ and oncogenic mutant PDGFRα D842V promote disassembly of primary cilia through a PLCγ- and AURKA-dependent mechanism. J. Cell Sci. 128:3543–3549. 10.1242/jcs.173559 PubMed DOI

Nita, A., Abraham S.P., Krejci P., and Bosakova M.. 2021. Oncogenic FGFR fusions produce centrosome and cilia defects by ectopic signaling. Cells. 10:1445. 10.3390/cells10061445 PubMed DOI PMC

Ohuchi, H., Hori Y., Yamasaki M., Harada H., Sekine K., Kato S., and Itoh N.. 2000. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 277:643–649. 10.1006/bbrc.2000.3721 PubMed DOI

Ornitz, D.M., and Itoh N.. 2015. The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4:215–266. 10.1002/wdev.176 PubMed DOI PMC

Ornitz, D.M., and Marie P.J.. 2019. Fibroblast growth factors in skeletal development. Curr. Top. Dev. Biol. 133:195–234. 10.1016/bs.ctdb.2018.11.020 PubMed DOI

Ornitz, D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., and Goldfarb M.. 1996. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271:15292–15297. 10.1074/jbc.271.25.15292 PubMed DOI

Orr-Urtreger, A., Bedford M.T., Burakova T., Arman E., Zimmer Y., Yayon A., Givol D., and Lonai P.. 1993. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol. 158:475–486. 10.1006/dbio.1993.1205 PubMed DOI

Paige Taylor, S., Kunova Bosakova M., Varecha M., Balek L., Barta T., Trantirek L., Jelinkova I., Duran I., Vesela I., Forlenza K.N., et al. 2016. An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum. Mol. Genet. 25:3998–4011. 10.1093/hmg/ddw240 PubMed DOI PMC

Pan, J., You Y., Huang T., and Brody S.L.. 2007. RhoA-mediated apical actin enrichment is required for ciliogenesis and promoted by Foxj1. J. Cell Sci. 120:1868–1876. 10.1242/jcs.005306 PubMed DOI

Partridge, E.A., Le Roy C., Di Guglielmo G.M., Pawling J., Cheung P., Granovsky M., Nabi I.R., Wrana J.L., and Dennis J.W.. 2004. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science. 306:120–124. 10.1126/science.1102109 PubMed DOI

Pedersen, L.B., Veland I.R., Schrøder J.M., and Christensen S.T.. 2008. Assembly of primary cilia. Dev. Dyn. 237:1993–2006. 10.1002/dvdy.21521 PubMed DOI

Perez-Pinera, P., Ousterout D.G., Brown M.T., and Gersbach C.A.. 2012. Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res. 40:3741–3752. 10.1093/nar/gkr1214 PubMed DOI PMC

Pir, M.S., Begar E., Yenisert F., Demirci H.C., Korkmaz M.E., Karaman A., Tsiropoulou S., Firat-Karalar E.N., Blacque O.E., Oner S.S., et al. 2024. CilioGenics: An integrated method and database for predicting novel ciliary genes. Nucleic Acids Res. 52:8127–8145. 10.1093/nar/gkae554 PubMed DOI PMC

Pusapati, G.V., Kong J.H., Patel B.B., Gouti M., Sagner A., Sircar R., Luchetti G., Ingham P.W., Briscoe J., and Rohatgi R.. 2018. G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog. Sci. Signal. 11:5749. 10.1126/scisignal.aao5749 PubMed DOI PMC

Quadri, N., and Upadhyai P.. 2023. Primary cilia in skeletal development and disease. Exp. Cell Res. 431:113751. 10.1016/j.yexcr.2023.113751 PubMed DOI

Rattner, J.B., Sciore P., Ou Y., van der Hoorn F.A., and Lo I.K.Y.. 2010. Primary cilia in fibroblast-like type B synoviocytes lie within a cilium pit: A site of endocytosis. Histol. Histopathol. 25:865–875. 10.14670/HH-25.865 PubMed DOI

Rauchman, M.I., Nigam S.K., Delpire E., and Gullans S.R.. 1993. An osmotically tolerant inner medullary collecting duct cell line from an SV40 transgenic mouse. Am. J. Physiol. 265:F416–F424. 10.1152/ajprenal.1993.265.3.F416 PubMed DOI

Ray, A.T., Mazot P., Brewer J.R., Catela C., Dinsmore C.J., and Soriano P.. 2020. FGF signaling regulates development by processes beyond canonical pathways. Genes Dev. 34:1735–1752. 10.1101/gad.342956.120 PubMed DOI PMC

Reardon, W., Winter R.M., Rutland P., Pulleyn L.J., Jones B.M., and Malcolm S.. 1994. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat. Genet. 8:98–103. 10.1038/ng0994-98 PubMed DOI

Reddi, A.L., Ying G., Duan L., Chen G., Dimri M., Douillard P., Druker B.J., Naramura M., Band V., and Band H.. 2007. Binding of Cbl to a phospholipase Cgamma1-docking site on platelet-derived growth factor receptor beta provides a dual mechanism of negative regulation. J. Biol. Chem. 282:29336–29347. 10.1074/jbc.M701797200 PubMed DOI

Revest, J.M., Suniara R.K., Kerr K., Owen J.J., and Dickson C.. 2001. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 167:1954–1961. 10.4049/jimmunol.167.4.1954 PubMed DOI

Ridyard, M.S., and Robbins S.M.. 2003. Fibroblast growth factor-2-induced signaling through lipid raft-associated fibroblast growth factor receptor substrate 2 (FRS2). J. Biol. Chem. 278:13803–13809. 10.1074/jbc.M210245200 PubMed DOI

Robertson, S.C., Meyer A.N., Hart K.C., Galvin B.D., Webster M.K., and Donoghue D.J.. 1998. Activating mutations in the extracellular domain of the fibroblast growth factor receptor 2 function by disruption of the disulfide bond in the third immunoglobulin-like domain. Proc. Natl. Acad. Sci. USA. 95:4567–4572. 10.1073/pnas.95.8.4567 PubMed DOI PMC

Robinson, D.R., Wu Y.M., and Lin S.F.. 2000. The protein tyrosine kinase family of the human genome. Oncogene. 19:5548–5557. 10.1038/sj.onc.1203957 PubMed DOI

Rohatgi, R., Milenkovic L., and Scott M.P.. 2007. Patched1 regulates hedgehog signaling at the primary cilium. Science. 317:372–376. 10.1126/science.1139740 PubMed DOI

Rohwedder, A., Knipp S., Roberts L.D., and Ladbury J.E.. 2021. Composition of receptor tyrosine kinase-mediated lipid micro-domains controlled by adaptor protein interaction. Sci. Rep. 11:6160. 10.1038/s41598-021-85578-8 PubMed DOI PMC

Roy, A., and Patra S.K.. 2023. Lipid raft facilitated receptor organization and signaling: A functional rheostat in embryonic development, stem cell biology and cancer. Stem Cell Rev. Rep. 19:2–25. 10.1007/s12015-022-10448-3 PubMed DOI

Saari, J., Lovell M.A., Yu H.-C., and Bellus G.A.. 2015. Compound heterozygosity for a frame shift mutation and a likely pathogenic sequence variant in the planar cell polarity—ciliogenesis gene WDPCP in a girl with polysyndactyly, coarctation of the aorta, and tongue hamartomas. Am. J. Med. Genet. A. 167A:421–427. 10.1002/ajmg.a.36852 PubMed DOI

Samad, S.S., Schwartz J.M., and Francavilla C.. 2024. Functional selectivity of Receptor Tyrosine Kinases regulates distinct cellular outputs. Front. Cell Dev. Biol. 11:1348056. 10.3389/fcell.2023.1348056 PubMed DOI PMC

Saraon, P., Pathmanathan S., Snider J., Lyakisheva A., Wong V., and Stagljar I.. 2021. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene. 40:4079–4093. 10.1038/s41388-021-01841-2 PubMed DOI

Schmid, F.M., Schou K.B., Vilhelm M.J., Holm M.S., Breslin L., Farinelli P., Larsen L.A., Andersen J.S., Pedersen L.B., and Christensen S.T.. 2018. IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases. J. Cell Biol. 217:151–161. 10.1083/jcb.201611050 PubMed DOI PMC

Schneider, L., Clement C.A., Teilmann S.C., Pazour G.J., Hoffmann E.K., Satir P., and Christensen S.T.. 2005. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15:1861–1866. 10.1016/j.cub.2005.09.012 PubMed DOI

Schneider, L., Cammer M., Lehman J., Nielsen S.K., Guerra C.F., Veland I.R., Stock C., Hoffmann E.K., Yoder B.K., Schwab A., et al. 2010. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell. Physiol. Biochem. 25:279–292. 10.1159/000276562 PubMed DOI PMC

Sempou, E., Lakhani O.A., Amalraj S., and Khokha M.K.. 2018. Candidate heterotaxy gene FGFR4 is essential for patterning of the left-right organizer in Xenopus. Front. Physiol. 9:1705. 10.3389/fphys.2018.01705 PubMed DOI PMC

Shams, I., Rohmann E., Eswarakumar V.P., Lew E.D., Yuzawa S., Wollnik B., Schlessinger J., and Lax I.. 2007. Lacrimo-auriculo-dento-digital syndrome is caused by reduced activity of the fibroblast growth factor 10 (FGF10)-FGF receptor 2 signaling pathway. Mol. Cell. Biol. 27:6903–6912. 10.1128/MCB.00544-07 PubMed DOI PMC

Shinde, S.R., Mick D.U., Aoki E., Rodrigues R.B., Gygi S.P., and Nachury M.V.. 2023. The ancestral ESCRT protein TOM1L2 selects ubiquitinated cargoes for retrieval from cilia. Dev. Cell. 58:677–693.e9. 10.1016/j.devcel.2023.03.003 PubMed DOI PMC

Silva, D.F., and Cavadas C.. 2023. Primary cilia shape hallmarks of health and aging. Trends Mol. Med. 29:567–579. 10.1016/j.molmed.2023.04.001 PubMed DOI

Singh, S.K., Gui M., Koh F., Yip M.C.J., and Brown A.. 2020. Structure and activation mechanism of the BBSome membrane protein trafficking complex. Elife. 9:e53322. 10.7554/eLife.53322 PubMed DOI PMC

Sørensen, V., Wiedlocha A., Haugsten E.M., Khnykin D., Wesche J., and Olsnes S.. 2006. Different abilities of the four FGFRs to mediate FGF-1 translocation are linked to differences in the receptor C-terminal tail. J. Cell Sci. 119:4332–4341. 10.1242/jcs.03209 PubMed DOI

Starks, R.D., Beyer A.M., Guo D.F., Boland L., Zhang Q., Sheffield V.C., and Rahmouni K.. 2015. Regulation of insulin receptor trafficking by bardet biedl syndrome proteins. PLoS Genet. 11:e1005311. 10.1371/journal.pgen.1005311 PubMed DOI PMC

Stehbens, S.J., Ju R.J., Adams M.N., Perry S.R., Haass N.K., Bryant D.M., and Pollock P.M.. 2018. FGFR2-activating mutations disrupt cell polarity to potentiate migration and invasion in endometrial cancer cell models. J. Cell Sci. 131:jcs213678. 10.1242/jcs.213678 PubMed DOI

Stichelbout, M., Dieux-Coeslier A., Clouqueur E., Collet C., and Petit F.. 2016. A new case of bent bone dysplasia--FGFR2 type and review of the literature. Am. J. Med. Genet. A. 170:785–789. 10.1002/ajmg.a.37473 PubMed DOI

Su, X., Wu M., Yao G., El-Jouni W., Luo C., Tabari A., and Zhou J.. 2015. Regulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site. J. Cell Sci. 128:4063–4073. 10.1242/jcs.160556 PubMed DOI PMC

Subbiah, V., Sahai V., Maglic D., Bruderek K., Touré B.B., Zhao S., Valverde R., O’Hearn P.J., Moustakas D.T., Schönherr H., et al. 2023. RLY-4008, the first highly selective FGFR2 inhibitor with activity across FGFR2 alterations and resistance mutations. Cancer Discov. 13:2012–2031. 10.1158/2159-8290.CD-23-0475 PubMed DOI PMC

Suchors, C., and Kim J.. 2022. Canonical hedgehog pathway and noncanonical GLI transcription factor activation in cancer. Cells. 11:2523. 10.3390/cells11162523 PubMed DOI PMC

Sun, S., Fisher R.L., Bowser S.S., Pentecost B.T., and Sui H.. 2019. Three-dimensional architecture of epithelial primary cilia. Proc. Natl. Acad. Sci. USA. 116:9370–9379. 10.1073/pnas.1821064116 PubMed DOI PMC

Tam, B.M., Moritz O.L., Hurd L.B., and Papermaster D.S.. 2000. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis. J. Cell Biol. 151:1369–1380. 10.1083/jcb.151.7.1369 PubMed DOI PMC

Teilmann, S.C., and Christensen S.T.. 2005. Localization of the angiopoietin receptors Tie-1 and Tie-2 on the primary cilia in the female reproductive organs. Cell Biol. Int. 29:340–346. 10.1016/j.cellbi.2005.03.006 PubMed DOI

Thal, D.M., Homan K.T., Chen J., Wu E.K., Hinkle P.M., Huang Z.M., Chuprun J.K., Song J., Gao E., Cheung J.Y., et al. 2012. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem. Biol. 7:1830–1839. 10.1021/cb3003013 PubMed DOI PMC

Turner, N., and Grose R.. 2010. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer. 10:116–129. 10.1038/nrc2780 PubMed DOI

Uytingco, C.R., Green W.W., and Martens J.R.. 2019. Olfactory loss and dysfunction in ciliopathies: Molecular mechanisms and potential therapies. Curr. Med. Chem. 26:3103–3119. 10.2174/0929867325666180105102447 PubMed DOI PMC

Veland, I.R., Montjean R., Eley L., Pedersen L.B., Schwab A., Goodship J., Kristiansen K., Pedersen S.F., Saunier S., and Christensen S.T.. 2013. Inversin/Nephrocystin-2 is required for fibroblast polarity and directional cell migration. PLoS One. 8:e60193. 10.1371/journal.pone.0060193 PubMed DOI PMC

Vieira, O.V., Gaus K., Verkade P., Fullekrug J., Vaz W.L.C., and Simons K.. 2006. FAPP2, cilium formation, and compartmentalization of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells. Proc. Natl. Acad. Sci. USA. 103:18556–18561. 10.1073/pnas.0608291103 PubMed DOI PMC

Wagner, S., Bader M.L., Drew D., and de Gier J.-W.. 2006. Rationalizing membrane protein overexpression. Trends Biotechnol. 24:364–371. 10.1016/j.tibtech.2006.06.008 PubMed DOI

Walczak-Sztulpa, J., Eggenschwiler J., Osborn D., Brown D.A., Emma F., Klingenberg C., Hennekam R.C., Torre G., Garshasbi M., Tzschach A., et al. 2010. Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am. J. Hum. Genet. 86:949–956. 10.1016/j.ajhg.2010.04.012 PubMed DOI PMC

Wang, J., and Deretic D.. 2014. Molecular complexes that direct rhodopsin transport to primary cilia. Prog. Retin. Eye Res. 38:1–19. 10.1016/j.preteyeres.2013.08.004 PubMed DOI PMC

Wang, Q., Taschner M., Ganzinger K.A., Kelley C., Villasenor A., Heymann M., Schwille P., Lorentzen E., and Mizuno N.. 2018. Membrane association and remodeling by intraflagellar transport protein IFT172. Nat. Commun. 9:4684. 10.1038/s41467-018-07037-9 PubMed DOI PMC

Wei, Q., Zhang Y., Li Y., Zhang Q., Ling K., and Hu J.. 2012. The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 14:950–957. 10.1038/ncb2560 PubMed DOI PMC

Wei, Q., Ling K., and Hu J.. 2015. The essential roles of transition fibers in the context of cilia. Curr. Opin. Cell Biol. 35:98–105. 10.1016/j.ceb.2015.04.015 PubMed DOI PMC

Wheway, G., Nazlamova L., and Hancock J.T.. 2018. Signaling through the primary cilium. Front. Cell Dev. Biol. 6:8. 10.3389/fcell.2018.00008 PubMed DOI PMC

Wilkie, A.O.M., Slaney S.F., Oldridge M., Poole M.D., Ashworth G.J., Hockley A.D., Hayward R.D., David D.J., Pulleyn L.J., Rutland P., et al. 1995. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat. Genet. 9:165–172. 10.1038/ng0295-165 PubMed DOI

Yang, H., and Huang K.. 2020. Dissecting the vesicular trafficking function of IFT subunits. Front. Cell Dev. Biol. 7:352. 10.3389/fcell.2019.00352 PubMed DOI PMC

Ye, F., Nager A.R., and Nachury M.V.. 2018. BBSome trains remove activated GPCRs from cilia by enabling passage through the transition zone. J. Cell Biol. 217:1847–1868. 10.1083/jcb.201709041 PubMed DOI PMC

Yin, F., Chen Q., Shi Y., Xu H., Huang J., Qing M., Zhong L., Li J., Xie L., and Zeng X.. 2021. Activation of EGFR-Aurora A induces loss of primary cilia in oral squamous cell carcinoma. Oral Dis. 28:621–630. 10.1111/odi.13791 PubMed DOI

Youn, Y.H., and Han Y.-G.. 2018. Primary cilia in brain development and diseases. Am. J. Pathol. 188:11–22. 10.1016/j.ajpath.2017.08.031 PubMed DOI PMC

Yuan, X., Liu M., Cao X., and Yang S.. 2019. Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. Int. J. Biol. Sci. 15:2087–2099. 10.7150/ijbs.27231 PubMed DOI PMC

Zhang, Y., and Beachy P.A.. 2023. Cellular and molecular mechanisms of Hedgehog signalling. Nat. Rev. Mol. Cell Biol. 24:668–687. 10.1038/s41580-023-00591-1 PubMed DOI PMC

Zhang, K., Da Silva F., Seidl C., Wilsch-Bräuninger M., Herbst J., Huttner W.B., and Niehrs C.. 2023. Primary cilia are WNT-transducing organelles whose biogenesis is controlled by a WNT-PP1 axis. Dev. Cell. 58:139–154.e8. 10.1016/j.devcel.2022.12.006 PubMed DOI

Zhu, D., Shi S., Wang H., and Liao K.. 2009. Growth arrest induces primary-cilium formation and sensitizes IGF-1-receptor signaling during differentiation induction of 3T3-L1 preadipocytes. J. Cell Sci. 122:2760–2768. 10.1242/jcs.046276 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...