Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DE019567
NIDCR NIH HHS - United States
UL1 TR000124
NCATS NIH HHS - United States
R01 AR066124
NIAMS NIH HHS - United States
R01 AR062651
NIAMS NIH HHS - United States
UL1 TR001881
NCATS NIH HHS - United States
PubMed
29360984
PubMed Central
PMC5886260
DOI
10.1093/hmg/ddy031
PII: 4816205
Knihovny.cz E-zdroje
- MeSH
- achondroplazie genetika patofyziologie MeSH
- buňky NIH 3T3 MeSH
- chondrocyty metabolismus MeSH
- chrupavka metabolismus MeSH
- cilie patologie fyziologie MeSH
- ciliopatie genetika patofyziologie MeSH
- fenotyp MeSH
- fibroblastové růstové faktory metabolismus MeSH
- lidé MeSH
- myši MeSH
- primární buněčná kultura MeSH
- receptor fibroblastových růstových faktorů, typ 3 genetika metabolismus MeSH
- růstová ploténka metabolismus MeSH
- signální transdukce fyziologie MeSH
- thanatoforní dysplazie genetika patofyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- FGFR3 protein, human MeSH Prohlížeč
- fibroblastové růstové faktory MeSH
- receptor fibroblastových růstových faktorů, typ 3 MeSH
Cilia project from almost every cell integrating extracellular cues with signaling pathways. Constitutive activation of FGFR3 signaling produces the skeletal disorders achondroplasia (ACH) and thanatophoric dysplasia (TD), but many of the molecular mechanisms underlying these phenotypes remain unresolved. Here, we report in vivo evidence for significantly shortened primary cilia in ACH and TD cartilage growth plates. Using in vivo and in vitro methodologies, our data demonstrate that transient versus sustained activation of FGF signaling correlated with different cilia consequences. Transient FGF pathway activation elongated cilia, while sustained activity shortened cilia. FGF signaling extended primary cilia via ERK MAP kinase and mTORC2 signaling, but not through mTORC1. Employing a GFP-tagged IFT20 construct to measure intraflagellar (IFT) speed in cilia, we showed that FGF signaling affected IFT velocities, as well as modulating cilia-based Hedgehog signaling. Our data integrate primary cilia into canonical FGF signal transduction and uncover a FGF-cilia pathway that needs consideration when elucidating the mechanisms of physiological and pathological FGFR function, or in the development of FGFR therapeutics.
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Department of Cell Biology Erasmus MC 3000 CA Rotterdam The Netherlands
Department of Human Genetics David Geffen School of Medicine at UCLA Los Angeles CA 90095 USA
Department of Orthopaedic Surgery David Geffen School of Medicine at UCLA Los Angeles CA 90095 USA
Department of Rehabilitation Medicine 3rd Military Medical University Chongqing 400042 China
Institute of Animal Physiology and Genetics Czech Academy of Sciences 60200 Brno Czech Republic
Institute of Experimental Biology Faculty of Sciences Masaryk University 62500 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Lechtreck K.F. (2015) IFT-cargo interactions and protein transport in cilia. Trends Biochem. Sci., 40, 765–778. PubMed PMC
Goetz S.C., Anderson K.V. (2010) The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet., 11, 331–344. PubMed PMC
Huangfu D., Liu A., Rakeman A.S., Murcia N.S., Niswander L., Anderson K.V. (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426, 83–87. PubMed
Corbit K.C., Aanstad P., Singla V., Norman A.R., Stainier D.Y.R., Reiter J.F. (2005) Vertebrate Smoothened functions at the primary cilium. Nature, 437, 1018–1021. PubMed
Tukachinsky H., Lopez L.V., Salic A. (2010) A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J. Cell Biol., 191, 415–428. PubMed PMC
Dai P., Akimaru H., Tanaka Y., Maekawa T., Nakafuku M., Ishii S. (1999) Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J. Biol. Chem., 274, 8143–8152. PubMed
Bowers M., Eng L., Lao Z., Turnbull R.K., Bao X., Riedel E., Mackem S., Joyner A.L. (2012) Limb anterior-posterior polarity integrates activator and repressor functions of GLI2 as well as GLI3. Dev. Biol., 370, 110–124. PubMed PMC
Itoh N., Ornitz D.M. (2011) Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem., 149, 121–130. PubMed PMC
Bonafe L., Cormier-Daire V., Hall C., Lachman R., Mortier G., Mundlos S., Nishimura G., Sangiorgi L., Savarirayan R., Sillence D.. et al. (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. Part A, 167, 2869–2892. PubMed
Foldynova-Trantirkova S., Wilcox W.R., Krejci P. (2012) Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum. Mutat., 33, 29–41. PubMed PMC
Chen L., Li C., Qiao W., Xu X., Deng C. (2001) A Ser(365)–>Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum. Mol. Genet., 10, 457–465. PubMed
Chen L., Adar R., Yang X., Monsonego E.O., Li C., Hauschka P.V., Yayon A., Deng C.X. (1999) Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J. Clin. Invest., 104, 1517–1525. PubMed PMC
Gavine P.R., Mooney L., Kilgour E., Thomas A.P., Al-Kadhimi K., Beck S., Rooney C., Coleman T., Baker D., Mellor M.J.. et al. (2012) AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor tyrosine kinase family. Cancer Res., 72, 2045–2056. PubMed
Sheeba C.J., Andrade R.P., Duprez D., Palmeirim I. (2010) Comprehensive analysis of fibroblast growth factor receptor expression patterns during chick forelimb development. Int. J. Dev. Biol., 54, 1517–1526. PubMed
Buchtova M., Chaloupkova R., Zakrzewska M., Vesela I., Cela P., Barathova J., Gudernova I., Zajickova R., Trantirek L., Martin J.. et al. (2015) Instability restricts signaling of multiple fibroblast growth factors. Cell. Mol. Life Sci., 72, 2445–2459. PubMed PMC
Dvorak P., Dvorakova D., Koskova S., Vodinska M., Najvirtova M., Krekac D., Hampl A. (2005) Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells, 23, 1200–1211. PubMed
Eiselleova L., Matulka K., Kriz V., Kunova M., Schmidtova Z., Neradil J., Tichy B., Dvorakova D., Pospisilova S., Hampl A.. et al. (2009) A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells, 27, 1847–1857. PubMed PMC
Vanova T., Konecna Z., Zbonakova Z., La Venuta G., Zoufalova K., Jelinkova S., Varecha M., Rotrekl V., Krejci P., Nickel W.. et al. (2017) Tyrosine kinase expressed in hepatocellular carcinoma, TEC, controls pluripotency and early cell fate decisions of human pluripotent stem cells via regulation of fibroblast growth factor-2 secretion. Stem Cells, 35, 2050–2059. PubMed
Gudernova I., Vesela I., Balek L., Buchtova M., Dosedelova H., Kunova M., Pivnicka J., Jelinkova I., Roubalova L., Kozubik A.. et al. (2016) Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes. Hum. Mol. Genet., 25, 9–23. PubMed
Garcia-Maya M., Anderson A.A., Kendal C.E., Kenny A.V., Edwards-Ingram L.C., Holladay A., Saffell J.L. (2006) Ligand concentration is a driver of divergent signaling and pleiotropic cellular responses to FGF. J. Cell. Physiol., 206, 386–393. PubMed
Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., Goldfarb M. (1996) Receptor specificity of the fibroblast growth factor family. J. Biol. Chem., 271, 15292–15297. PubMed
Gharbi S.I., Zvelebil M.J., Shuttleworth S.J., Hancox T., Saghir N., Timms J.F., Waterfield M.D. (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochem. J., 404, 15–21. PubMed PMC
Mukhopadhyay S., Frias M.A., Chatterjee A., Yellen P., Foster D.A. (2016) The enigma of rapamycin dosage. Mol. Cancer Ther., 15, 347–353. PubMed PMC
Barrett S.D., Bridges A.J., Dudley D.T., Saltiel A.R., Fergus J.H., Flamme C.M., Delaney A.M., Kaufman M., LePage S., Leopold W.R.. et al. (2008) The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901. Bioorg. Med. Chem. Lett., 18, 6501–6504. PubMed
Pike K.G., Morris J., Ruston L., Pass S.L., Greenwood R., Williams E.J., Demeritt J., Culshaw J.D., Gill K., Pass M.. et al. (2015) Discovery of AZD3147: a potent, selective dual inhibitor of mTORC1 and mTORC2. J. Med. Chem., 58, 2326–2349. PubMed
Marshall W.F., Qin H., Rodrigo Brenni M., Rosenbaum J.L. (2005) Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol. Biol. Cell, 16, 270–278. PubMed PMC
Broekhuis J.R., Verhey K.J., Jansen G. (2014) Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One, 9, e108470. PubMed PMC
Follit J.A., Tuft R.A., Fogarty K.E., Pazour G.J. (2006) The intraflagellar transport protein IFT20 is associated with the golgi complex and is required for cilia assembly. Mol. Biol. Cell, 17, 3781–3792. PubMed PMC
Wang Y., Zhou Z., Walsh C.T., McMahon A.P. (2009) Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc. Natl. Acad. Sci. U. S. A, 106, 2623–2628. PubMed PMC
Chen J.K., Taipale J., Young K.E., Maiti T., Beachy P.A. (2002) Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci., 99, 14071–14076. PubMed PMC
Huangfu D., Anderson K.V. (2005) Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci., 102, 11325–11330. PubMed PMC
Humke E.W., Dorn K.V., Milenkovic L., Scott M.P., Rohatgi R. (2010) The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev., 24, 670–682. PubMed PMC
Corbit K.C., Shyer A.E., Dowdle W.E., Gaulden J., Singla V., Reiter J.F., Chuang P.-T., Reiter J.F. (2008) Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol., 10, 70–76. PubMed
Neugebauer J.M., Amack J.D., Peterson A.G., Bisgrove B.W., Yost H.J. (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature, 458, 651–654. PubMed PMC
Horakova D., Cela P., Krejci P., Balek L., Moravcova Balkova S., Matalova E., Buchtova M. (2014) Effect of FGFR inhibitors on chicken limb development. Dev. Growth Differ., 56, 555–572. PubMed
Darnell D.K., Kaur S., Stanislaw S., Davey S., Konieczka J.H., Yatskievych T.A., Antin P.B. (2007) GEISHA: an in situ hybridization gene expression resource for the chicken embryo. Cytogenet. Genome Res., 117, 30–35. PubMed
Ekerot M., Stavridis M.P., Delavaine L., Mitchell M.P., Staples C., Owens D.M., Keenan I.D., Dickinson R.J., Storey K.G., Keyse S.M. (2008) Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem. J., 412, 287–298. PubMed PMC
Cardenas-Rodriguez M., Irigoín F., Osborn D.P.S., Gascue C., Katsanis N., Beales P.L., Badano J.L. (2013) The Bardet–Biedl syndrome-related protein CCDC28B modulates mTORC2 function and interacts with SIN1 to control cilia length independently of the mTOR complex. Hum. Mol. Genet., 22, 4031–4042. PubMed PMC
Yuan S., Li J., Diener D.R., Choma M.A., Rosenbaum J.L., Sun Z. (2012) Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc. Natl. Acad. Sci.USA, 109, 2021–2026. PubMed PMC
Wann A.K.T., Knight M.M. (2012) Primary cilia elongation in response to interleukin-1 mediates the inflammatory response. Cell. Mol. Life Sci., 69, 2967–2977. PubMed PMC
Duran I., Taylor S.P., Zhang W., Martin J., Forlenza K.N., Spiro R.P., Nickerson D.A., Bamshad M., Cohn D.H., Krakow D. (2016) Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome. Sci. Rep., 6, 34232. PubMed PMC
Taylor S.P., Dantas T.J., Duran I., Wu S., Lachman R.S., Bamshad M.J., Shendure J., Nickerson D.A., Nelson S.F., Cohn D.H.. et al. (2015) Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat. Commun., 6, 7092. PubMed PMC
Niewiadomski P., Kong J.H., Ahrends R., Ma Y., Humke E.W., Khan S., Teruel M.N., Novitch B.G., Rohatgi R. (2014) Gli Protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep, 6, 168–181. PubMed PMC
te Welscher P., Zuniga A., Kuijper S., Drenth T., Goedemans H.J., Meijlink F., Zeller R. (2002) Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science, 298, 827–830. PubMed
Teven C.M., Farina E.M., Rivas J., Reid R.R. (2014) Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis., 1, 199–213. PubMed PMC
Vortkamp A., Lee K., Lanske B., Segre G.V., Kronenberg H.M., Tabin C.J. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science, 273, 613–622. PubMed
Li C., Chen L., Iwata T., Kitagawa M., Fu X.Y., Deng C.X. (1999) A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum. Mol. Genet., 8, 35–44. PubMed
Tanner Y., Grose R.P. (2016) Dysregulated FGF signalling in neoplastic disorders. Semin. Cell Dev. Biol., 53, 126–135. PubMed
Krejci P., Aklian A., Kaucka M., Sevcikova E., Prochazkova J., Masek J.K., Mikolka P., Pospisilova T., Spoustova T., Weis M.. et al. (2012) Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS One, 7, e35826. PubMed PMC
Paige Taylor S., Kunova Bosakova M., Varecha M., Balek L., Barta T., Trantirek L., Jelinkova I., Duran I., Vesela I., Forlenza K.N.. et al. (2016) An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum. Mol. Genet., 25, 3998–4011. PubMed PMC
Toral-Barza L., Zhang W.G., Lamison C., Larocque J., Gibbons J., Yu K. (2005) Characterization of the cloned full-length and a truncated human target of rapamycin: activity, specificity, and enzyme inhibition as studied by a high capacity assay. Biochem. Biophys. Res. Commun., 332, 304–310. PubMed
Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling
Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling
Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling