Sprouty2/4 deficiency disrupts early signaling centers impacting chondrogenesis in the mouse forelimb

. 2025 Mar ; 9 (3) : ziaf002. [epub] 20250110

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39906257

The FGF signaling pathway plays an important role in the regulation of limb development, controlling cell migration, proliferation, differentiation, and apoptosis. Sprouty proteins act as antagonists of the FGF pathway and control the extent of FGF signaling as part of a negative feedback loop. Sprouty2/4 deficient mice evince defects in endochondral bone formation and digit patterning in their forelimbs, with pathogenesis recently related to ciliopathies. To understand the mechanisms behind these pathologies, the limb defects in Sprouty2+/-;Sprouty4-/- male and female mice were characterized and correlated to the dynamic expression patterns of Sprouty2 and Sprouty4, and the impact on the main signaling centers of the limb bud was assessed. Sprouty2 and Sprouty4 exhibited dynamic expressions during limb development. Interestingly, despite similar expression patterns in all limbs, the hindlimbs did not evince any obvious alterations in development, while the forelimbs showed consistent phenotypes of variable severity. Prenatally as well as postnatally, the left forelimb was significantly more severely affected than the right one. A broad variety of pathologies was present in the autopodium of the forelimb, including changes in digit number, size, shape, and number of bones, hand clefts, and digit fusions. Ectopic ossification of bones and abnormal bone fusions detected in micro-CT scans were frequently observed in the digital as well as in the carpal and metacarpal areas. Sprouty2+/-;Sprouty4-/- limb buds showed patchy loss of Fgf8 expression in the apical ectodermal ridge, and a loss of tissue underlying these regions. The zone of polarizing activity was also impacted, with lineage analysis highlighting a change in the contribution of Sonic hedgehog expressing cells. These findings support the link between Sproutys and Hedgehog signaling during limb development and highlight the importance of Sprouty2 and Sprouty4 in controlling early signaling centers in the limb.

Zobrazit více v PubMed

Ohuchi  H, Nakagawa  T, Yamamoto  A, et al.  The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development. 1997;124(11):2235–2244. 10.1242/dev.124.11.2235 PubMed DOI

Sekine  K, Ohuchi  H, Fujiwara  M, et al.  Fgf10 is essential for limb and lung formation [published correction appears in Nat Genet. 2019 May;51(5):921]. Nat Genet. 1999;21(1):138–141. 10.1038/5096 PubMed DOI

Lewandoski  M, Sun  X, Martin  GR. Fgf8 signalling from the AER is essential for normal limb development. Nat Genet. 2000;26(4):460–463. 10.1038/82609 PubMed DOI

Riddle  RD, Johnson  RL, Laufer  E, Tabin  C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell. 1993;75(7):1401–1416. 10.1016/0092-8674(93)90626-2 PubMed DOI

Masuya  H, Sagai  T, Wakana  S, Moriwaki  K, Shiroishi  T. A duplicated zone of polarizing activity in polydactylous mouse mutants. Genes Dev. 1995;9(13):1645–1653. 10.1101/gad.9.13.1645 PubMed DOI

Xu  X, Weinstein  M, Li  C, et al.  Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development. 1998;125(4):753–765. 10.1242/dev.125.4.753 PubMed DOI

Hacohen  N, Kramer  S, Sutherland  D, Hiromi  Y, Krasnow  MA. Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell. 1998;92(2):253–263. 10.1016/S0092-8674(00)80919-8 PubMed DOI

de Maximy  AA, Nakatake  Y, Moncada  S, Itoh  N, Thiery  JP, Bellusci  S. Cloning and expression pattern of a mouse homologue of drosophila sprouty in the mouse embryo. Mech Dev. 1999;81(1-2):213–216. 10.1016/S0925-4773(98)00241-X PubMed DOI

Leeksma  OC, Van Achterberg  TA, Tsumura  Y, et al.  Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem. 2002;269(10):2546–2556. 10.1046/j.1432-1033.2002.02921.x PubMed DOI

Reich  A, Sapir  A, Shilo  B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development. 1999;126(18):4139–4147. 10.1242/dev.126.18.4139 PubMed DOI

Hashimoto  S, Nakano  H, Singh  G, Katyal  S. Expression of Spred and Sprouty in developing rat lung. Mech Dev. 2002;119(Suppl 1):S303–S309. 10.1016/S0925-4773(03)00132-1 PubMed DOI

Tummers  M, Thesleff  I. The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol. 2009;312B(4):309–319. 10.1002/jez.b.21280 PubMed DOI

Chambers  D, Mason  I. Expression of sprouty2 during early development of the chick embryo is coincident with known sites of FGF signalling. Mech Dev. 2000;91(1-2):361–364. 10.1016/S0925-4773(99)00288-9 PubMed DOI

Minowada  G, Jarvis  LA, Chi  CL, et al.  Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development. 1999;126(20):4465–4475. 10.1242/dev.126.20.4465 PubMed DOI

Eloy-Trinquet  S, Wang  H, Edom-Vovard  F, Duprez  D. Fgf signaling components are associated with muscles and tendons during limb development. Dev Dyn. 2009;238(5):1195–1206. 10.1002/dvdy.21946 PubMed DOI

Taniguchi  K, Ayada  T, Ichiyama  K, et al.  Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun. 2007;352(4):896–902. 10.1016/j.bbrc.2006.11.107 PubMed DOI

Lochovska  K, Peterkova  R, Pavlikova  Z, Hovorakova  M. Sprouty gene dosage influences temporal-spatial dynamics of primary enamel knot formation. BMC Dev Biol. 2015;15(1):21. 10.1186/s12861-015-0070-0 PubMed DOI PMC

Joo  A, Long  R, Cheng  Z, Alexander  C, Chang  W, Klein  OD. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling. Bone. 2016;88:170–179. 10.1016/j.bone.2016.04.023 PubMed DOI PMC

Hruba  E, Kavkova  M, Dalecka  L, et al.  Loss of Sprouty produces a ciliopathic skeletal phenotype in mice through upregulation of hedgehog Signaling. J Bone Miner Res. 2021;36(11):2258–2274. 10.1002/jbmr.4427 PubMed DOI

Lettice  LA, Williamson  I, Wiltshire  JH, et al.  Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev Cell. 2012;22(2):459–467. 10.1016/j.devcel.2011.12.010 PubMed DOI PMC

Harfe  BD, Scherz  PJ, Nissim  S, Tian  H, McMahon  AP, Tabin  CJ. Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell. 2004;118(4):517–528. 10.1016/j.cell.2004.07.024 PubMed DOI

Pickering  J, Towers  M. Inhibition of Shh signalling in the chick wing gives insights into digit patterning and evolution. Development. 2016;143(19):3514–3521. 10.1242/dev.137398 PubMed DOI PMC

Chiang  C, Litingtung  Y, Lee  E, et al.  Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature. 1996;383(6599):407–413. 10.1038/383407a0 PubMed DOI

Zhu  J, Nakamura  E, Nguyen  MT, Bao  X, Akiyama  H, Mackem  S. Uncoupling sonic hedgehog control of pattern and expansion of the developing limb bud. Dev Cell. 2008;14(4):624–632. 10.1016/j.devcel.2008.01.008 PubMed DOI PMC

Peterka  M, Lesot  H, Peterková  R. Body weight in mouse embryos specifies staging of tooth development. Connect Tissue Res. 2002;43(2-3):186–190. 10.1080/03008200290000673 PubMed DOI

Behringer  R, Gertsenstein  M, Nagy  KV, Nagy  A. Manipulating the Mouse Embryo: A Laboratory Manual. 4th ed. New York, USA: Cold Spring Harbor Laboratory Press; 2014.

Zuniga  A. Next generation limb development and evolution: old questions, new perspectives. Development. 2015;142(22):3810–3820. 10.1242/dev.125757 PubMed DOI

Green  RM, Fish  JL, Young  NM, et al.  Developmental nonlinearity drives phenotypic robustness. Nat Commun. 2017;8(1):1970. 10.1038/s41467-017-02037-7 PubMed DOI PMC

Sulaiman  FA, Nishimoto  S, Murphy  GR, et al.  Tbx5 buffers inherent left/right asymmetry ensuring symmetric forelimb formation. PLoS Genet. 2016;12(12):e1006521. 10.1371/journal.pgen.1006521 PubMed DOI PMC

Zbasnik  N, Dolan  K, Buczkowski  SA, et al.  Fgf8 dosage regulates jaw shape and symmetry through pharyngeal-cardiac tissue relationships. Dev Dyn. 2022;251(10):1711–1727. 10.1002/dvdy.501 PubMed DOI PMC

Levin  M. Left-right asymmetry in embryonic development: a comprehensive review [published correction appears in Mech dev. 2005 Apr;122(4):621]. Mech Dev. 2005;122(1):3–25. 10.1016/j.mod.2004.08.006 PubMed DOI

Boettger  T, Wittler  L, Kessel  M. FGF8 functions in the specification of the right body side of the chick. Curr Biol. 1999;9(5):277–280. 10.1016/S0960-9822(99)80119-5 PubMed DOI

Shinohara  K, Kawasumi  A, Takamatsu  A, et al.  Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo. Nat Commun. 2012;3(1):622. Published 2012 Jan 10. 10.1038/ncomms1624 PubMed DOI

Shimizu  H, Yokoyama  S, Asahara  H. Growth and differentiation of the developing limb bud from the perspective of chondrogenesis. Develop Growth Differ. 2007;49(6):449–454. 10.1111/j.1440-169X.2007.00945.x PubMed DOI

Kantaputra  PN, Carlson  BM. Genetic regulatory pathways of split-hand/foot malformation. Clin Genet. 2019;95(1):132–139. 10.1111/cge.13434 PubMed DOI

Chrisman  K, Kenney  R, Comin  J, et al.  Gestational ethanol exposure disrupts the expression of FGF8 and sonic hedgehog during limb patterning. Birth Defects Res A Clin Mol Teratol. 2004;70(4):163–171. 10.1002/bdra.20019 PubMed DOI

Bell  SM, Schreiner  CM, Goetz  JA, Robbins  DJ, Scott  WJ  Jr. Shh signaling in limb bud ectoderm: potential role in teratogen-induced postaxial ectrodactyly. Dev Dyn. 2005;233(2):313–325. 10.1002/dvdy.20409 PubMed DOI

Klein  OD, Minowada  G, Peterkova  R, et al.  Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell. 2006;11(2):181–190. 10.1016/j.devcel.2006.05.014 PubMed DOI PMC

Huangfu  D, Liu  A, Rakeman  AS, Murcia  NS, Niswander  L, Anderson  KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83–87. 10.1038/nature02061 PubMed DOI

Neugebauer  JM, Amack  JD, Peterson  AG, Bisgrove  BW, Yost  HJ. FGF signalling during embryo development regulates cilia length in diverse epithelia [published correction appears in nature. 2010 Jan 21;463(7279):384]. Nature. 2009;458(7238):651–654. 10.1038/nature07753 PubMed DOI PMC

Kunova Bosakova  M, Varecha  M, Hampl  M, et al.  Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum Mol Genet. 2018;27(6):1093–1105. 10.1093/hmg/ddy031 PubMed DOI PMC

Zhang  W, Taylor  SP, Ennis  HA, et al.  Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39(1):152–166. 10.1002/humu.23362 PubMed DOI PMC

Song  B, Haycraft  CJ, Seo  HS, Yoder  BK, Serra  R. Development of the post-natal growth plate requires intraflagellar transport proteins. Dev Biol. 2007;305(1):202–216. 10.1016/j.ydbio.2007.02.003 PubMed DOI PMC

Coveney  CR, Samvelyan  HJ, Miotla-Zarebska  J, et al.  Ciliary IFT88 protects coordinated adolescent growth plate ossification from disruptive physiological mechanical forces. J Bone Miner Res. 2022;37(6):1081–1096. 10.1002/jbmr.4502 PubMed DOI PMC

Toydemir  RM, Brassington  AE, Bayrak-Toydemir  P, et al.  A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am J Hum Genet. 2006;79(5):935–941. 10.1086/508433 PubMed DOI PMC

de Alvaro  C, Martinez  N, Rojas  JM, Lorenzo  M. Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Mol Biol Cell. 2005;16(9):4454–4461. 10.1091/mbc.e05-05-0419 PubMed DOI PMC

Lagha  M, Kormish  JD, Rocancourt  D, et al.  Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program. Genes Dev. 2008;22(13):1828–1837. 10.1101/gad.477908 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace