Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 DE027557
NIDCR NIH HHS - United States
PubMed
35818799
PubMed Central
PMC9403750
DOI
10.1242/dmm.049611
PII: 275968
Knihovny.cz E-zdroje
- Klíčová slova
- talpid2, C2CD3, Ciliopathies, FGF, Micrognathia, Primary cilia,
- MeSH
- cilie metabolismus MeSH
- ciliopatie * farmakoterapie genetika metabolismus MeSH
- fenotyp MeSH
- intracelulární signální peptidy a proteiny metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- mikrognacie * metabolismus patologie MeSH
- proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- intracelulární signální peptidy a proteiny MeSH
- membránové proteiny MeSH
- proteiny MeSH
- SPRY2 protein, human MeSH Prohlížeč
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. Although pharmacological intervention with the U.S. Food and Drug Administration (FDA)-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target SPRY2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in molecular, cellular and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Department of Experimental Biology Faculty of Science Masaryk University Brno 625 00 Czech Republic
Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH 45229 USA
Zobrazit více v PubMed
Abbott, U., Taylor, L. and Abplanalp, H. (1959). A 2nd talpid-like mutation in the fowl. In Poultry Science, Vol. 38, pp. 1185-1185: Oxford OX2 6DP, England: Oxford Univ Press GREAT CLARENDON ST.
Abbott, Ü., Taylor, L. W. and Abplanalp, H. (1960). Studies with talpid2, an embryonic lethal of the fowl. J. Hered. 51, 194-202. 10.1093/oxfordjournals.jhered.a106988 DOI
Abramson, Z. R., Susarla, S. M., Lawler, M. E., Peacock, Z. S., Troulis, M. J. and Kaban, L. B. (2013). Effects of mandibular distraction osteogenesis on three-dimensional airway anatomy in children with congenital micrognathia. J. Oral Maxillofac. Surg. 71, 90-97. 10.1016/j.joms.2012.03.014 PubMed DOI
Adel Al-Lami, H., Barrell, W. B. and Liu, K. J. (2016). Micrognathia in mouse models of ciliopathies. Biochem. Soc. Trans. 44, 1753-1759. 10.1042/BST20160241 PubMed DOI
Blau, J. E. and Collins, M. T. (2015). The PTH-vitamin D-FGF23 axis. Rev. Endocr. Metab. Disord. 16, 165-174. 10.1007/s11154-015-9318-z PubMed DOI
Bodenner, D., Redman, C. and Riggs, A. (2007). Teriparatide in the management of osteoporosis. Clin. Interv. Aging 2, 499-507. 10.2147/CIA.S241 PubMed DOI PMC
Bonatto Paese, C. L., Brooks, E. C., Aarnio-Peterson, M. and Brugmann, S. A. (2021). Ciliopathic micrognathia is caused by aberrant skeletal differentiation and remodeling. Development 148, dev194175. 10.1242/dev.194175 PubMed DOI PMC
Breik, O., Umapathysivam, K., Tivey, D. and Anderson, P. (2016). Feeding and reflux in children after mandibular distraction osteogenesis for micrognathia: a systematic review. Int. J. Pediatr. Otorhinolaryngol. 85, 128-135. 10.1016/j.ijporl.2016.03.033 PubMed DOI
Briscoe, J. and Therond, P. P. (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416-429. 10.1038/nrm3598 PubMed DOI
Bueker, E. D. and Platner, W. S. (1956). Effect of cholinergic drugs on development of chick embryo. Proc. Soc. Exp. Biol. Med. 91, 539-543. 10.3181/00379727-91-22320 PubMed DOI
Chang, C. F., Schock, E. N., O'Hare, E. A., Dodgson, J., Cheng, H. H., Muir, W. M., Edelmann, R. E., Delany, M. E. and Brugmann, S. A. (2014). The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2. Development 141, 3003-3012. 10.1242/dev.105924 PubMed DOI PMC
Chopra, K. and Malhan, N. (2020). Teriparatide for the treatment of medication-related osteonecrosis of the jaw. Am. J. Ther. 28, e469-e477. 10.1097/MJT.0000000000001182 PubMed DOI
Corbit, K. C., Aanstad, P., Singla, V., Norman, A. R., Stainier, D. Y. and Reiter, J. F. (2005). Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018-1021. 10.1038/nature04117 PubMed DOI
Cordido, A., Cernadas, E., Fernández-Delgado, M. and García-Gonzalez, M. A. (2020). CystAnalyser: a new software tool for the automatic detection and quantification of cysts in Polycystic Kidney and Liver Disease, and other cystic disorders. PLoS Comput. Biol. 16, e1008337. 10.1371/journal.pcbi.1008337 PubMed DOI PMC
Delaine-Smith, R. M., Sittichokechaiwut, A. and Reilly, G. C. (2014). Primary cilia respond to fluid shear stress and mediate flow-induced calcium deposition in osteoblasts. FASEB J. 28, 430-439. 10.1096/fj.13-231894 PubMed DOI PMC
Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. and Clapham, D. E. (2013). Primary cilia are specialized calcium signalling organelles. Nature 504, 311-314. 10.1038/nature12833 PubMed DOI PMC
Delling, M., Indzhykulian, A. A., Liu, X., Li, Y., Xie, T., Corey, D. P. and Clapham, D. E. (2016). Primary cilia are not calcium-responsive mechanosensors. Nature 531, 656-660. 10.1038/nature17426 PubMed DOI PMC
Dos Santos Ferreira, L., Abreu, L. G., Calderipe, C. B., Martins, M. D., Schuch, L. F. and Vasconcelos, A. C. U. (2021). Is teriparatide therapy effective for medication-related osteonecrosis of the jaw? A systematic review and meta-analysis. Osteoporos. Int. 32, 2449-2459. 10.1007/s00198-021-06078-z PubMed DOI
Ealba, E. L., Jheon, A. H., Hall, J., Curantz, C., Butcher, K. D. and Schneider, R. A. (2015). Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Dev. Biol. 408, 151-163. 10.1016/j.ydbio.2015.10.001 PubMed DOI PMC
Eckert, A. W., Maurer, P., Meyer, L., Kriwalsky, M. S., Rohrberg, R., Schneider, D., Bilkenroth, U. and Schubert, J. (2007). Bisphosphonate-related jaw necrosis--severe complication in maxillofacial surgery. Cancer Treat. Rev. 33, 58-63. 10.1016/j.ctrv.2006.09.003 PubMed DOI
Elbadawi, A., Musto, L. A. and Lilien, O. M. (1981). Combined alizarin red-reticulum stain for tissue localization of calcium deposits. Am. J. Clin. Pathol. 75, 355-356. 10.1093/ajcp/75.3.355 PubMed DOI
Elliott, K. H., Millington, G. and Brugmann, S. A. (2018). A novel role for cilia-dependent sonic hedgehog signaling during submandibular gland development. Dev. Dyn. 247, 818-831. 10.1002/dvdy.24627 PubMed DOI PMC
Gal-Moscovici, A. and Sprague, S. M. (2007). Osteoporosis and chronic kidney disease. Semin. Dial. 20, 423-430. 10.1111/j.1525-139X.2007.00319.x PubMed DOI
Goetz, S. C. and Anderson, K. V. (2010). The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331-344. 10.1038/nrg2774 PubMed DOI PMC
Grau, L., Gitomer, B., McNair, B., Wolf, M., Harris, P., Brosnahan, G., Torres, V., Steinman, T., Yu, A., Chapman, A.et al. (2020). Interactions between FGF23 and genotype in autosomal dominant polycystic kidney disease. Kidney360 1, 648-656. 10.34067/KID.0001692020 PubMed DOI PMC
Gutierrez-Cerecedo, L. E., Vergara-Lopez, A., Rosas-Barrientos, J. V. and Guillen-Gonzalez, M. A. (2016). Reduction in requirements of oral calcium and 1-25 dihydroxy vitamin D in patients with post-surgical hypoparathyroidism treated with teriparatide (PTH1-34). Gac. Med. Mex. 152, 322-328. PubMed
Hamburger, V. and Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49-92. 10.1002/jmor.1050880104 PubMed DOI
Hebert, K., House, J. D. and Guenter, W. (2005). Effect of dietary folic acid supplementation on egg folate content and the performance and folate status of two strains of laying hens. Poult. Sci. 84, 1533-1538. 10.1093/ps/84.10.1533 PubMed DOI
Hodges, J. H. (1946). The effect on the chick embryo of the simultaneous inoculation of stool, streptomycin, and penicillin. Science 104, 460-461. 10.1126/science.104.2707.460 PubMed DOI
Hoey, D. A., Chen, J. C. and Jacobs, C. R. (2012). The primary cilium as a novel extracellular sensor in bone. Front Endocrinol (Lausanne) 3, 75. 10.3389/fendo.2012.00075 PubMed DOI PMC
Holloway, J. L., Ma, H., Rai, R. and Burdick, J. A. (2014). Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release 191, 63-70. 10.1016/j.jconrel.2014.05.053 PubMed DOI PMC
Horner, V. L. and Caspary, T. (2011). Disrupted dorsal neural tube BMP signaling in the cilia mutant Arl13b hnn stems from abnormal Shh signaling. Dev. Biol. 355, 43-54. 10.1016/j.ydbio.2011.04.019 PubMed DOI PMC
Iwasaki-Ishizuka, Y., Yamato, H., Nii-Kono, T., Kurokawa, K. and Fukagawa, M. (2005). Downregulation of parathyroid hormone receptor gene expression and osteoblastic dysfunction associated with skeletal resistance to parathyroid hormone in a rat model of renal failure with low turnover bone. Nephrol. Dial. Transplant. 20, 1904-1911. 10.1093/ndt/gfh876 PubMed DOI
Jevon, M., Hirayama, T., Brown, M. A., Wass, J. A. H., Sabokbar, A., Ostelere, S. and Athenasou, N. A. (2003). Osteoclast formation from circulating precursors in osteoporosis. Scand. J. Rheumatol. 32, 95-100. 10.1080/03009740310000102 PubMed DOI
Kahn, M. (2014). Can we safely target the WNT pathway? Nat. Rev. Drug Discov. 13, 513-532. 10.1038/nrd4233 PubMed DOI PMC
Karnofsky, D. A. and Lacon, C. R. (1964). Effects of drugs on the skeletal development of the chick embryo. Clin. Orthop. Relat. Res. 33, 59-70. 10.1097/00003086-196400330-00006 PubMed DOI
Kawane, T., Qin, X., Jiang, Q., Miyazaki, T., Komori, H., Yoshida, C. A., Matsuura-Kawata, V., Sakane, C., Matsuo, Y., Nagai, K.et al. (2018). Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci. Rep. 8, 13551. 10.1038/s41598-018-31853-0 PubMed DOI PMC
Kawata, K., Narita, K., Washio, A., Kitamura, C., Nishihara, T., Kubota, S. and Takeda, S. (2021). Odontoblast differentiation is regulated by an interplay between primary cilia and the canonical Wnt pathway. Bone 150, 116001. 10.1016/j.bone.2021.116001 PubMed DOI
Kue, C. S., Tan, K. Y., Lam, M. L. and Lee, H. B. (2015). Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs. Exp. Anim. 64, 129-138. 10.1538/expanim.14-0059 PubMed DOI PMC
Kunova Bosakova, M., Varecha, M., Hampl, M., Duran, I., Nita, A., Buchtova, M., Dosedelova, H., Machat, R., Xie, Y., Ni, Z.et al. (2018). Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum. Mol. Genet. 27, 1093-1105. 10.1093/hmg/ddy031 PubMed DOI PMC
Kunova Bosakova, M., Nita, A., Gregor, T., Varecha, M., Gudernova, I., Fafilek, B., Barta, T., Basheer, N., Abraham, S. P., Balek, L.et al. (2019). Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc. Natl. Acad. Sci. USA 116, 4316-4325. 10.1073/pnas.1800338116 PubMed DOI PMC
Kwon, Y. D. and Kim, D. Y. (2016). Role of teriparatide in medication-related osteonecrosis of the jaws (MRONJ). Dent J (Basel) 4, 41. 10.3390/dj4040041 PubMed DOI PMC
Leder, B. Z. (2017). Parathyroid hormone and parathyroid hormone-related protein analogs in osteoporosis therapy. Curr. Osteoporos Rep. 15, 110-119. 10.1007/s11914-017-0353-4 PubMed DOI PMC
Lee, K. L., Guevarra, M. D., Nguyen, A. M., Chua, M. C., Wang, Y. and Jacobs, C. R. (2015). The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 4, 7. 10.1186/s13630-015-0016-y PubMed DOI PMC
Lievremont, M., Potus, J. and Guillou, B. (1982). Use of alizarin red S for histochemical staining of Ca2+ in the mouse; some parameters of the chemical reaction in vitro. Acta Anat (Basel) 114, 268-280. 10.1159/000145596 PubMed DOI
Lin, T. L. and Matsui, W. (2012). Hedgehog pathway as a drug target: Smoothened inhibitors in development. Onco Targets Ther 5, 47-58. 10.2147/OTT.S21957 PubMed DOI PMC
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. 10.1006/meth.2001.1262 PubMed DOI
Lu, Y. and Feng, J. Q. (2011). FGF23 in skeletal modeling and remodeling. Curr. Osteoporos Rep. 9, 103-108. 10.1007/s11914-011-0053-4 PubMed DOI PMC
Malone, A. M., Anderson, C. T., Tummala, P., Kwon, R. Y., Johnston, T. R., Stearns, T. and Jacobs, C. R. (2007). Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc. Natl. Acad. Sci. USA 104, 13325-13330. 10.1073/pnas.0700636104 PubMed DOI PMC
Millington, G., Elliott, K. H., Chang, Y. T., Chang, C. F., Dlugosz, A. and Brugmann, S. A. (2017). Cilia-dependent GLI processing in neural crest cells is required for tongue development. Dev. Biol. 424, 124-137. 10.1016/j.ydbio.2017.02.021 PubMed DOI PMC
Mina, M., Havens, B. and Velonis, D. A. (2007). FGF signaling in mandibular skeletogenesis. Orthod. Craniofac. Res. 10, 59-66. 10.1111/j.1601-6343.2007.00385.x PubMed DOI
Monsen, E. R. (1989). The 10th edition of the Recommended dietary allowances: what's new in the 1989 RDAs? J. Am. Diet Assoc. 89, 1748-1752. 10.1016/S0002-8223(21)02462-7 PubMed DOI
Motch Perrine, S. M., Wu, M., Stephens, N. B., Kriti, D., van Bakel, H., Jabs, E. W. and Richtsmeier, J. T. (2019). Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Dis Model. Mech. 12, dmm038513. 10.1242/dmm.038513 PubMed DOI PMC
Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W. and Yost, H. J. (2009). FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651-654. 10.1038/nature07753 PubMed DOI PMC
Paul, J., Cherian, K. E., Kapoor, N. and Paul, T. V. (2019). Treating osteoporosis: a near miss in an unusual case of FGF-23 mediated bone loss. BMJ Case Rep. 12, e228375. 10.1136/bcr-2018-228375 PubMed DOI PMC
Perlyn, C. A., Schmelzer, R. E., Sutera, S. P., Kane, A. A., Govier, D. and Marsh, J. L. (2002). Effect of distraction osteogenesis of the mandible on upper airway volume and resistance in children with micrognathia. Plast. Reconstr. Surg. 109, 1809-1818. 10.1097/00006534-200205000-00005 PubMed DOI
Plotnikova, O. V., Pugacheva, E. N. and Golemis, E. A. (2009). Primary cilia and the cell cycle. Methods Cell Biol. 94, 137-160. 10.1016/S0091-679X(08)94007-3 PubMed DOI PMC
Rayman, S., Almas, K. and Dincer, E. (2009). Bisphosphonate-related jaw necrosis: a team approach management and prevention. Int. J. Dent. Hyg. 7, 90-95. 10.1111/j.1601-5037.2008.00331.x PubMed DOI
Reiter, J. F. and Leroux, M. R. (2017). Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533-547. 10.1038/nrm.2017.60 PubMed DOI PMC
Robel, E. J. (1993). Evaluation of egg injection of folic acid and effect of supplemental folic acid on hatchability and poult weight. Poult. Sci. 72, 546-553. 10.3382/ps.0720546 PubMed DOI
Ryley, J. F. (1968). Chick embryo infections for the evaluation of anticoccidial drugs. Parasitology 58, 215-220. 10.1017/S0031182000073558 PubMed DOI
Sasai, N. and Briscoe, J. (2012). Primary cilia and graded Sonic Hedgehog signaling. Wiley Interdiscip Rev. Dev. Biol. 1, 753-772. 10.1002/wdev.43 PubMed DOI
Saternos, H., Ley, S. and AbouAlaiwi, W. (2020). Primary cilia and calcium signaling interactions. Int. J. Mol. Sci. 21, 7109. 10.3390/ijms21197109 PubMed DOI PMC
Satterwhite, J., Heathman, M., Miller, P. D., Marin, F., Glass, E. V. and Dobnig, H. (2010). Pharmacokinetics of teriparatide (rhPTH[1-34]) and calcium pharmacodynamics in postmenopausal women with osteoporosis. Calcif. Tissue Int. 87, 485-492. 10.1007/s00223-010-9424-6 PubMed DOI PMC
Scales, S. J. and de Sauvage, F. J. (2009). Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 30, 303-312. 10.1016/j.tips.2009.03.007 PubMed DOI
Schock, E. N., Chang, C. F., Struve, J. N., Chang, Y. T., Chang, J., Delany, M. E. and Brugmann, S. A. (2015). Using the avian mutant talpid(2) as a disease model for understanding the oral-facial phenotypes of oral-facial-digital syndrome. Dis. Model. Mech. 8, U855-U547. 10.1242/dmm.020222 PubMed DOI PMC
Shigetani, Y., Nobusada, Y. and Kuratani, S. (2000). Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev. Biol. 228, 73-85. 10.1006/dbio.2000.9932 PubMed DOI
Silva, B. C. and Bilezikian, J. P. (2015). Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 22, 41-50. 10.1016/j.coph.2015.03.005 PubMed DOI PMC
Sim, I. W., Borromeo, G. L., Tsao, C., Hardiman, R., Hofman, M. S., Papatziamos Hjelle, C., Siddique, M., Cook, G. J. R., Seymour, J. F. and Ebeling, P. R. (2020). Teriparatide promotes bone healing in medication-related osteonecrosis of the jaw: a placebo-controlled, randomized trial. J. Clin. Oncol. 38, 2971-2980. 10.1200/JCO.19.02192 PubMed DOI
Tabler, J. M., Barrell, W. B., Szabo-Rogers, H. L., Healy, C., Yeung, Y., Perdiguero, E. G., Schulz, C., Yannakoudakis, B. Z., Mesbahi, A., Wlodarczyk, B.et al. (2013). Fuz mutant mice reveal shared mechanisms between ciliopathies and FGF-related syndromes. Dev. Cell 25, 623-635. 10.1016/j.devcel.2013.05.021 PubMed DOI PMC
Takashi, Y., Sawatsubashi, S., Endo, I., Ohnishi, Y., Abe, M., Matsuhisa, M., Kawanami, D., Matsumoto, T. and Fukumoto, S. (2021). Skeletal FGFR1 signaling is necessary for regulation of serum phosphate level by FGF23 and normal life span. Biochem. Biophys. Rep. 27, 101107. 10.1016/j.bbrep.2021.101107 PubMed DOI PMC
Tanaka, S. (2001). Osteoporosis in rheumatoid arthritis: role of osteoclast differentiation and cytokines. Clin. Calcium 11, 598-601. PubMed
Tasnim, N., Dutta, P., Nayeem, J., Masud, P., Ferdousi, A., Ghosh, A. S., Hossain, M., Rajia, S., Kubra, K. T., Sakibuzzaman, M.et al. (2021). Osteoporosis, an Inevitable circumstance of chronic kidney disease: a systematic review. Cureus 13, e18488. 10.7759/cureus.18488 PubMed DOI PMC
Teitelbaum, S. I. (1996). The osteoclast and osteoporosis. Mt. Sinai J. Med. 63, 399-402. PubMed
Terao, F., Takahashi, I., Mitani, H., Haruyama, N., Sasano, Y., Suzuki, O. and Takano-Yamamoto, T. (2011). Fibroblast growth factor 10 regulates Meckel's cartilage formation during early mandibular morphogenesis in rats. Dev. Biol. 350, 337-347. 10.1016/j.ydbio.2010.11.029 PubMed DOI
Tomonari, H., Takada, H., Hamada, T., Kwon, S., Sugiura, T. and Miyawaki, S. (2017). Micrognathia with temporomandibular joint ankylosis and obstructive sleep apnea treated with mandibular distraction osteogenesis using skeletal anchorage: a case report. Head Face Med. 13, 20. 10.1186/s13005-017-0150-4 PubMed DOI PMC
Tsai, J. N., Lee, H., David, N. L., Eastell, R. and Leder, B. Z. (2019). Combination denosumab and high dose teriparatide for postmenopausal osteoporosis (DATA-HD): a randomised, controlled phase 4 trial. Lancet Diabetes Endocrinol. 7, 767-775. 10.1016/S2213-8587(19)30255-4 PubMed DOI PMC
Vidal, A. (1953). Effect of thyroxin on development of chick embryo. Ann. Endocrinol. (Paris) 14, 437-443. PubMed
Wallingford, J. B. and Mitchell, B. (2011). Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev. 25, 201-213. 10.1101/gad.2008011 PubMed DOI PMC
Waters, A. M. and Beales, P. L. (2011). Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26, 1039-1056. 10.1007/s00467-010-1731-7 PubMed DOI PMC
Xiao, Z., Huang, J., Cao, L., Liang, Y., Han, X. and Quarles, L. D. (2014). Osteocyte-specific deletion of Fgfr1 suppresses FGF23. PLoS One 9, e104154. 10.1371/journal.pone.0104154 PubMed DOI PMC
Xie, Y., Su, N., Yang, J., Tan, Q., Huang, S., Jin, M., Ni, Z., Zhang, B., Zhang, D., Luo, F.et al. (2020). FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 5, 181. 10.1038/s41392-020-00222-7 PubMed DOI PMC
Yu, W. and Su, J. (2020). The effects of different doses of teriparatide on bisphosphonate-related osteonecrosis of the jaw in mice. Oral Dis. 26, 609-620. 10.1111/odi.13275 PubMed DOI
Yuan, X., Liu, M., Cao, X. and Yang, S. (2019). Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. Int. J. Biol. Sci. 15, 2087-2099. 10.7150/ijbs.27231 PubMed DOI PMC
Zhang, Z., Wlodarczyk, B. J., Niederreither, K., Venugopalan, S., Florez, S., Finnell, R. H. and Amendt, B. A. (2011). Fuz regulates craniofacial development through tissue specific responses to signaling factors. PLoS One 6, e24608. 10.1371/journal.pone.0024608 PubMed DOI PMC
Zhou, X., Pu, D., Liu, R., Li, X., Wen, X., Zhang, L., Chen, L., Deng, M. and Liu, L. (2013). The Fgfr2(S252W/+) mutation in mice retards mandible formation and reduces bone mass as in human Apert syndrome. Am. J. Med. Genet. A 161A, 983-992. 10.1002/ajmg.a.35824 PubMed DOI
Zosen, D., Hadera, M. G., Lumor, J. S., Andersen, J. M. and Paulsen, R. E. (2021). Chicken embryo as animal model to study drug distribution to the developing brain. J. Pharmacol. Toxicol. Methods 112, 107105. 10.1016/j.vascn.2021.107105 PubMed DOI
Zuniga, J., Fuenzalida, M., Guerrero, A., Illanes, J., Dabancens, A., Diaz, E. and Lemus, D. (2003). Effects of steroidal and non steroidal drugs on the neovascularization response induced by tumoral TA3 supernatant on CAM from chick embryo. Biol. Res. 36, 233-240. 10.4067/S0716-97602003000200013 PubMed DOI