Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
Grant support
LTAUSA19030
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34207779
PubMed Central
PMC8227969
DOI
10.3390/cells10061445
PII: cells10061445
Knihovny.cz E-resources
- Keywords
- FGFR, FGFR fusion, cancer, centrosome, centrosome cycle, cilia, fibroblast growth factor receptor, neoplastic transformation, oncogenic driver, primary cilia,
- MeSH
- Centrosome metabolism MeSH
- Cilia * metabolism pathology MeSH
- Humans MeSH
- Cell Transformation, Neoplastic pathology MeSH
- Neoplasms * metabolism pathology MeSH
- Oncogene Fusion MeSH
- Receptors, Fibroblast Growth Factor metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Receptors, Fibroblast Growth Factor MeSH
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Institute of Animal Physiology and Genetics of the CAS 60200 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
See more in PubMed
Reiter J.F., Leroux M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 2017;18:533–547. doi: 10.1038/nrm.2017.60. PubMed DOI PMC
Kopinke D., Norris A.M., Mukhopadhyay S. Developmental and regenerative paradigms of cilia regulated hedgehog signaling. Semin. Cell Dev. Biol. 2021;110:89–103. doi: 10.1016/j.semcdb.2020.05.029. PubMed DOI PMC
Ford M.J., Yeyati P.L., Mali G.R., Keighren M.A., Waddell S.H., Mjoseng H.K., Douglas A.T., Hall E.A., Sakaue-Sawano A., Miyawaki A., et al. A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Dev. Cell. 2018;47:509–523.e5. doi: 10.1016/j.devcel.2018.10.027. PubMed DOI PMC
Paridaen J.T.M.L., Wilsch-Bräuninger M., Huttner W.B. Asymmetric Inheritance of Centrosome-Associated Primary Cilium Membrane Directs Ciliogenesis after Cell Division. Cell. 2013;155:333–344. doi: 10.1016/j.cell.2013.08.060. PubMed DOI
Plotnikova O.V., Pugacheva E.N., Golemis E.A. Primary Cilia and the Cell Cycle. 1st ed. Volume 94. Elsevier; Amsterdam, The Netherlands: 2009. PubMed PMC
Ke Y.-N., Yang W.-X. Primary cilium: An elaborate structure that blocks cell division? Gene. 2014;547:175–185. doi: 10.1016/j.gene.2014.06.050. PubMed DOI
Pugacheva E.N., Jablonski S.A., Hartman T.R., Henske E.P., Golemis E.A. HEF1-Dependent Aurora A Activation Induces Disassembly of the Primary Cilium. Cell. 2007;129:1351–1363. doi: 10.1016/j.cell.2007.04.035. PubMed DOI PMC
Inoko A., Matsuyama M., Goto H., Ohmuro-Matsuyama Y., Hayashi Y., Enomoto M., Ibi M., Urano T., Yonemura S., Kiyono T., et al. Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J. Cell Biol. 2012;197:391–405. doi: 10.1083/jcb.201106101. PubMed DOI PMC
Wang G., Chen Q., Zhang X., Zhang B., Zhuo X., Liu J., Jiang Q., Zhang C. PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry. J. Cell Sci. 2013;126:1355–1365. doi: 10.1242/jcs.114918. PubMed DOI
Cappello P., Blaser H., Gorrini C., Lin D.C.C., Elia A.J., Wakeham A., Haider S., Boutros P.C., Mason J.M., Miller N.A., et al. Role of Nek2 on centrosome duplication and aneuploidy in breast cancer cells. Oncogene. 2014;33:2375–2384. doi: 10.1038/onc.2013.183. PubMed DOI
Dere R., Perkins A.L., Bawa-Khalfe T., Jonasch D., Walker C.L. β-Catenin links von Hippel-Lindau to Aurora kinase A and loss of primary cilia in renal cell carcinoma. J. Am. Soc. Nephrol. 2015;26:553–564. doi: 10.1681/ASN.2013090984. PubMed DOI PMC
Egeberg D.L., Lethan M., Manguso R., Schneider L., Awan A., Jørgensen T.S., Byskov A.G., Pedersen L.B., Christensen S.T. Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia. 2012;1:15. doi: 10.1186/2046-2530-1-15. PubMed DOI PMC
Sarkisian M.R., Li W., Di Cunto F., D’Mello S.R., LoTurco J.J. Citron-kinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the flathead mutant rat. J. Neurosci. 2002;22:1–5. doi: 10.1523/JNEUROSCI.22-08-j0001.2002. PubMed DOI PMC
Miyamoto T., Hosoba K., Ochiai H., Royba E., Izumi H., Sakuma T., Yamamoto T., Dynlacht B.D., Matsuura S. The Microtubule-Depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep. 2015;10:664–673. doi: 10.1016/j.celrep.2015.01.003. PubMed DOI PMC
Michaud E.J., Yoder B.K. The primary cilium in cell signaling and cancer. Cancer Res. 2006;66:6463–6467. doi: 10.1158/0008-5472.CAN-06-0462. PubMed DOI
Frett B., Brown R.V., Ma M., Hu W., Han H., Li H.Y. Therapeutic melting pot of never in mitosis gene a related kinase 2 (Nek2): A perspective on Nek2 as an oncology target and recent advancements in Nek2 small molecule inhibition. J. Med. Chem. 2014;57:5835–5844. doi: 10.1021/jm401719n. PubMed DOI PMC
Gradilone S.A., Habringer S., Masyuk T.V., Howard B.N., Masyuk A.I., Larusso N.F. HDAC6 is overexpressed in cystic cholangiocytes and its inhibition reduces cystogenesis. Am. J. Pathol. 2014;184:600–608. doi: 10.1016/j.ajpath.2013.11.027. PubMed DOI PMC
Lorenzo Pisarello M., Masyuk T.V., Gradilone S.A., Masyuk A.I., Ding J.F., Lee P.Y., LaRusso N.F. Combination of a Histone Deacetylase 6 Inhibitor and a Somatostatin Receptor Agonist Synergistically Reduces Hepatorenal Cystogenesis in an Animal Model of Polycystic Liver Disease. Am. J. Pathol. 2018;188:981–994. doi: 10.1016/j.ajpath.2017.12.016. PubMed DOI PMC
Sarkisian M.R., Siebzehnrubl D., Hoang-Minh L., Deleyrolle L., Silver D.J., Siebzehnrubl F.A., Guadiana S.M., Srivinasan G., Semple-Rowland S., Harrison J.K., et al. Detection of primary cilia in human glioblastoma. J. Neurooncol. 2014;117:15–24. doi: 10.1007/s11060-013-1340-y. PubMed DOI PMC
Gradilone S.A., Radtke B.N., Bogert P.S., Huang B.Q., Gajdos G.B., LaRusso N.F. HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 2013;73:2259–2270. doi: 10.1158/0008-5472.CAN-12-2938. PubMed DOI PMC
Xiang W., Guo F., Cheng W., Zhang J., Huang J., Wang R., Ma Z., Xu K. HDAC6 inhibition suppresses chondrosarcoma by restoring the expression of primary cilia. Oncol. Rep. 2017;38:229–236. doi: 10.3892/or.2017.5694. PubMed DOI
Higgins M., Obaidi I., McMorrow T. Primary cilia and their role in cancer (Review) Oncol. Lett. 2019;17:3041–3047. doi: 10.3892/ol.2019.9942. PubMed DOI PMC
Peixoto E., Richard S., Pant K., Biswas A., Gradilone S.A. The primary cilium: Its role as a tumor suppressor organelle. Biochem. Pharmacol. 2020;175:113906. doi: 10.1016/j.bcp.2020.113906. PubMed DOI PMC
Kiseleva A.A., Nikonova A.S., Golemis E.A. Patterns of Ciliation and Ciliary Signaling in Cancer. Rev. Physiol. Biochem. Pharmacol. 2020 doi: 10.1007/112_2020_36. PubMed DOI PMC
Sabanovic B., Giulietti M., Piva F. Role of primary cilium in pancreatic ductal adenocarcinoma (Review) Int. J. Oncol. 2020;57:1095–1102. doi: 10.3892/ijo.2020.5121. PubMed DOI
Moser J.J., Fritzler M.J., Rattner J.B. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells. BMC Cancer. 2009;9:1–12. doi: 10.1186/1471-2407-9-448. PubMed DOI PMC
Seeley E.S., Carrière C., Goetze T., Longnecker D.S., Korc M. Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 2009;69:422–430. doi: 10.1158/0008-5472.CAN-08-1290. PubMed DOI PMC
Tian H., Callahan C.A., Dupree K.J., Darbonne W.C., Ahn C.P., Scales S.J., De Sauvage F.J. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc. Natl. Acad. Sci. USA. 2009;106:4254–4259. doi: 10.1073/pnas.0813203106. PubMed DOI PMC
Yuan K., Frolova N., Xie Y., Wang D., Cook L., Kwon Y.J., Steg A.D., Serra R., Frost A.R. Primary cilia are decreased in breast cancer: Analysis of a collection of human breast cancer cell lines and tissues. J. Histochem. Cytochem. 2010;58:857–870. doi: 10.1369/jhc.2010.955856. PubMed DOI PMC
Nobutani K., Shimono Y., Yoshida M., Mizutani K., Minami A., Kono S., Mukohara T., Yamasaki T., Itoh T., Takao S., et al. Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells. 2014;19:141–152. doi: 10.1111/gtc.12122. PubMed DOI
Menzl I., Lebeau L., Pandey R., Hassounah N.B., Li F.W., Nagle R., Weihs K., McDermott K.M. Loss of primary cilia occurs early in breast cancer development. Cilia. 2014;3:7. doi: 10.1186/2046-2530-3-7. PubMed DOI PMC
Hassounah N.B., Nunez M., Fordyce C., Roe D., Nagle R., Bunch T., McDermott K.M. Inhibition of ciliogenesis promotes Hedgehog signaling, tumorigenesis, and metastasis in breast cancer. Mol. Cancer Res. 2017;15:1421–1430. doi: 10.1158/1541-7786.MCR-17-0034. PubMed DOI PMC
Hassounah N.B., Nagle R., Saboda K., Roe D.J., Dalkin B.L., McDermott K.M. Primary Cilia Are Lost in Preinvasive and Invasive Prostate Cancer. PLoS ONE. 2013;8:e68521. doi: 10.1371/journal.pone.0068521. PubMed DOI PMC
Fu W., Asp P., Canter B., Dynlacht B.D. Primary cilia control hedgehog signaling during muscle differentiation and are deregulated in rhabdomyosarcoma. Proc. Natl. Acad. Sci. USA. 2014;111:9151–9156. doi: 10.1073/pnas.1323265111. PubMed DOI PMC
Ho L., Ali S.A., Al-Jazrawe M., Kandel R., Wunder J.S., Alman B.A. Primary cilia attenuate hedgehog signalling in neoplastic chondrocytes. Oncogene. 2013;32:5388–5396. doi: 10.1038/onc.2012.588. PubMed DOI PMC
Jackman W.R., Yoo J.J., Stock D.W. Hedgehog signaling is required at multiple stages of zebrafish tooth development. BMC Dev. Biol. 2010;10 doi: 10.1186/1471-213X-10-119. PubMed DOI PMC
Cobourne M.T., Sharpe P.T. Sonic Hedgehog Signaling and the Developing Tooth. Curr. Top. Dev. Biol. 2004;65:255–287. doi: 10.1016/S0070-2153(04)65010-1. PubMed DOI
Rallis A., Navarro J.A., Rass M., Hu A., Birman S., Schneuwly S., Thérond P.P. Hedgehog Signaling Modulates Glial Proteostasis and Lifespan. Cell Rep. 2020;30:2627–2643.e5. doi: 10.1016/j.celrep.2020.02.006. PubMed DOI
Petrova R., Joyner A.L. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development. 2014;141:3445–3457. doi: 10.1242/dev.083691. PubMed DOI PMC
Büller N.V.J.A., Rosekrans S.L., Westerlund J., van den Brink G.R. Hedgehog signaling and maintenance of homeostasis in the intestinal epithelium. Physiology. 2012;27:148–155. doi: 10.1152/physiol.00003.2012. PubMed DOI
Heemskerk J., DiNardo S. Drosophila hedgehog acts as a morphogen in cellular patterning. Cell. 1994;76:449–460. doi: 10.1016/0092-8674(94)90110-4. PubMed DOI
Chapouly C., Guimbal S., Hollier P.L., Renault M.A. Role of hedgehog signaling in vasculature development, differentiation, and maintenance. Int. J. Mol. Sci. 2019;20:3076. doi: 10.3390/ijms20123076. PubMed DOI PMC
Ehlen H.W.A., Buelens L.A., Vortkamp A. Hedgehog signaling in skeletal develoment. Birth Defects Res. Part C Embryo Today Rev. 2006;78:267–279. doi: 10.1002/bdrc.20076. PubMed DOI
Hebrok M. Hedgehog signaling in pancreas development. Mech. Dev. 2003;120:45–57. doi: 10.1016/S0925-4773(02)00331-3. PubMed DOI
Katoh Y., Katoh M. Hedgehog Target Genes: Mechanisms of Carcinogenesis Induced by Aberrant Hedgehog Signaling Activation. Curr. Mol. Med. 2009;9:873–886. doi: 10.2174/156652409789105570. PubMed DOI
Jeng K.S., Chang C.F., Lin S.S. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci. 2020;21:758. doi: 10.3390/ijms21030758. PubMed DOI PMC
Haycraft C.J., Banizs B., Aydin-Son Y., Zhang Q., Michaud E.J., Yoder B.K. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 2005;1:e10053. doi: 10.1371/journal.pgen.0010053. PubMed DOI PMC
Tukachinsky H., Lopez L.V., Salic A. A mechanism for vertebrate Hedgehog signaling: Recruitment to cilia and dissociation of SuFu-Gli protein complexes. J. Cell Biol. 2010;191:415–428. doi: 10.1083/jcb.201004108. PubMed DOI PMC
Dai P., Akimaru H., Tanaka Y., Maekawa T., Nakafuku M., Ishii S. Sonic hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J. Biol. Chem. 1999;274:8143–8152. doi: 10.1074/jbc.274.12.8143. PubMed DOI
Su Y., Ospina J.K., Zhang J., Michelson A.P., Schoen A.M., Zhu A.J. Sequential phosphorylation of smoothened transduces graded hedgehog signaling. Sci. Signal. 2011;4:1–15. doi: 10.1126/scisignal.2001747. PubMed DOI PMC
Rohatgi R., Milenkovic L., Scott M.P. Patched1 Regulates Hedgehog Signaling at the Primary Cilium. Science. 2007;317:372–376. doi: 10.1126/science.1139740. PubMed DOI
Han Y.G., Kim H.J., Dlugosz A.A., Ellison D.W., Gilbertson R.J., Alvarez-Buylla A. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 2009;15:1062–1065. doi: 10.1038/nm.2020. PubMed DOI PMC
Barakat M.T., Humke E.W., Scott M.P. Kif3a is necessary for initiation and maintenance of medulloblastoma. Carcinogenesis. 2013;34:1382–1392. doi: 10.1093/carcin/bgt041. PubMed DOI PMC
Wong S.Y., Seol A.D., So P.-L., Ermilov A.N., Bichakjian C.K., Epstein E.H., Dlugosz A.A., Reiter J.F. Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis. Nat. Med. 2009;15:1055–1061. doi: 10.1038/nm.2011. PubMed DOI PMC
Li L., Grausam K.B., Wang J., Lun M.P., Ohli J., Lidov H.G.W., Calicchio M.L., Zeng E., Salisbury J.L., Wechsler-Reya R.J., et al. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat. Cell Biol. 2016;18:418–430. doi: 10.1038/ncb3327. PubMed DOI PMC
Guen V.J., Chavarria T.E., Kröger C., Ye X., Weinberg R.A., Lees J.A. EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc. Natl. Acad. Sci. USA. 2017;114:E10532–E10539. doi: 10.1073/pnas.1711534114. PubMed DOI PMC
Lee P.L., Johnson D.E., Cousens L.S., Fried V.A., Williams L.T. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science. 1989;245:57–60. doi: 10.1126/science.2544996. PubMed DOI
Kornbluth S., Paulson K.E., Hanafusa H. Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries. Mol. Cell. Biol. 1988;8:5541–5544. doi: 10.1128/MCB.8.12.5541. PubMed DOI PMC
Keegan K., Johnson D.E., Williams L.T., Hayman M.J. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc. Natl. Acad. Sci. USA. 1991;88:1095–1099. doi: 10.1073/pnas.88.4.1095. PubMed DOI PMC
Partanen J., Makela T.P., Eerola E., Korhonen J., Hirvonen H., Claesson-Welsh L., Alitalo K. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J. 1991;10:1347–1354. doi: 10.1002/j.1460-2075.1991.tb07654.x. PubMed DOI PMC
Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., Gao G., Goldfarb M. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 1996;271:15292–15297. doi: 10.1074/jbc.271.25.15292. PubMed DOI
Ornitz D.M., Itoh N. Fibroblast growth factors. Genome Biol. 2001;2:reviews3005.1. doi: 10.1186/gb-2001-2-3-reviews3005. PubMed DOI PMC
Ornitz D.M., Marie P.J. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev. 2015;29:1463–1486. doi: 10.1101/gad.266551.115. PubMed DOI PMC
Turner N., Grose R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer. 2010;10:116–129. doi: 10.1038/nrc2780. PubMed DOI
Plotnikov A.N., Schlessinger J., Hubbard S.R., Mohammadi M. Structural Basis for FGF Receptor Dimerization and Activation et al Dimerization of the extracellular domains leads to juxtaposition of the cytoplasmic domains and. Cell. 1999;98:641–650. doi: 10.1016/S0092-8674(00)80051-3. PubMed DOI
Eswarakumar V.P., Lax I., Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–149. doi: 10.1016/j.cytogfr.2005.01.001. PubMed DOI
Schlessinger J., Plotnikov A.N., Ibrahimi O.A., Eliseenkova A.V., Yeh B.K., Yayon A., Linhardt R.J., Mohammadi M. Crystal Structure of a Ternary FGF-FGFR-Heparin Complex Reveals a Dual Role for Heparin in FGFR Binding and Dimerization. Mol. Cell. 2000;6:743–750. doi: 10.1016/S1097-2765(00)00073-3. PubMed DOI
Luo Y., Ye S., Kan M., McKeehan W.L. Control of Fibroblast Growth Factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J. Biol. Chem. 2006;281:21052–21061. doi: 10.1074/jbc.M601559200. PubMed DOI
Goetz R., Beenken A., Ibrahimi O.A., Kalinina J., Olsen S.K., Eliseenkova A.V., Xu C., Neubert T.A., Zhang F., Linhardt R.J., et al. Molecular Insights into the Klotho-Dependent, Endocrine Mode of Action of Fibroblast Growth Factor 19 Subfamily Members. Mol. Cell. Biol. 2007;27:3417–3428. doi: 10.1128/MCB.02249-06. PubMed DOI PMC
Goetz R., Ohnishi M., Ding X., Kurosu H., Wang L., Akiyoshi J., Ma J., Gai W., Sidis Y., Pitteloud N., et al. Klotho Coreceptors Inhibit Signaling by Paracrine Fibroblast Growth Factor 8 Subfamily Ligands. Mol. Cell. Biol. 2012;32:1944–1954. doi: 10.1128/MCB.06603-11. PubMed DOI PMC
Lin B.C., Wang M., Blackmore C., Desnoyers L.R. Liver-specific activities of FGF19 require klotho beta. J. Biol. Chem. 2007;282:27277–27284. doi: 10.1074/jbc.M704244200. PubMed DOI
Quarto N., Amalric F. Heparan sulfate proteoglycans as transducers of FGF-2 signalling. J. Cell Sci. 1994;107:3201–3212. doi: 10.1242/jcs.107.11.3201. PubMed DOI
Zhang Z., Coomans C., David G. Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: Evidence in support of the “cooperative end structures” model. J. Biol. Chem. 2001;276:41921–41929. doi: 10.1074/jbc.M106608200. PubMed DOI
Ornitz D.M., Yayon A., Flanagan J.G., Svahn C.M., Levi E., Leder P. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol. 1992;12:240–247. doi: 10.1128/MCB.12.1.240. PubMed DOI PMC
Spivak-Kroizman T., Lemmon M.A., Dikic I., Ladbury J.E., Pinchasi D., Huang J., Jaye M., Crumley G., Schlessinger J., Lax I. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell. 1994;79:1015–1024. doi: 10.1016/0092-8674(94)90032-9. PubMed DOI
Rapraeger A.C., Krufka A., Olwin B.B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991;252:1705–1708. doi: 10.1126/science.1646484. PubMed DOI
Kuro-o M. The Klotho proteins in health and disease. Nat. Rev. Nephrol. 2019;15:27–44. doi: 10.1038/s41581-018-0078-3. PubMed DOI
Hu M.C., Shiizaki K., Kuro-O M., Moe O.W. Fibroblast growth factor 23 and klotho: Physiology and pathophysiology of an endocrine network of mineral metabolism. Annu. Rev. Physiol. 2013;75:503–533. doi: 10.1146/annurev-physiol-030212-183727. PubMed DOI PMC
Tacer K.F., Bookout A.L., Ding X., Kurosu H., John G.B., Wang L., Goetz R., Mohammadi M., Kuro-o M., Mangelsdorf D.J., et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol. 2010;24:2050–2064. doi: 10.1210/me.2010-0142. PubMed DOI PMC
Arman E., Haffner-Krausz R., Gorivodsky M., Lonai P. Fgfr2 is required for limb outgrowth and lung-branching morphogenesis. Proc. Natl. Acad. Sci. USA. 1999;96:11895–11899. doi: 10.1073/pnas.96.21.11895. PubMed DOI PMC
Danopoulos S., Thornton M.E., Grubbs B.H., Frey M.R., Warburton D., Bellusci S., Al Alam D. Discordant roles for FGF ligands in lung branching morphogenesis between human and mouse. J. Pathol. 2019;247:254–265. doi: 10.1002/path.5188. PubMed DOI PMC
McDougall K., Kubu C., Verdi J.M., Meakin S.O. Developmental expression patterns of the signaling adapters FRS-2 and FRS-3 during early embryogenesis. Mech. Dev. 2001;103:145–148. doi: 10.1016/S0925-4773(01)00337-9. PubMed DOI
Weinstein M., Xu X., Ohyama K., Deng C.X. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development. 1998;125:3615–3623. doi: 10.1242/dev.125.18.3615. PubMed DOI
Dudley A.T., Godin R.E., Robertson E.J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 1999;13:1601–1613. doi: 10.1101/gad.13.12.1601. PubMed DOI PMC
Kastner S., Elias M.C., Rivera A.J., Yablonka-Reuveni Z. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J. Histochem. Cytochem. 2000;48:1079–1096. doi: 10.1177/002215540004800805. PubMed DOI
Walker K.A., Sims-Lucas S., Bates C.M. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr. Nephrol. 2016;31:885–895. doi: 10.1007/s00467-015-3151-1. PubMed DOI PMC
Colvin J.S., Bohne B.A., Harding G.W., McEwen D.G., Ornitz D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet. 1996;12:390–397. doi: 10.1038/ng0496-390. PubMed DOI
Shimada T., Kakitani M., Yamazaki Y., Hasegawa H., Takeuchi Y., Fujita T., Fukumoto S., Tomizuka K., Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 2004;113:561–568. doi: 10.1172/JCI200419081. PubMed DOI PMC
Zhou M., Luo J., Chen M., Yang H., Learned R.M., DePaoli A.M., Tian H., Ling L. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. J. Hepatol. 2017;66:1182–1192. doi: 10.1016/j.jhep.2017.01.027. PubMed DOI
Tomlinson E., Fu L., John L., Hultgren B., Huang X., Renz M., Stephan J.P., Tsai S.P., Powell-Braxton L., French D., et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143:1741–1747. doi: 10.1210/endo.143.5.8850. PubMed DOI
Potthoff M.J., Boney-Montoya J., Choi M., He T., Sunny N.E., Satapati S., Suino-Powell K., Xu H.E., Gerard R.D., Finck B.N., et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 2011;13:729–738. doi: 10.1016/j.cmet.2011.03.019. PubMed DOI PMC
Quarles L.D. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat. Rev. Endocrinol. 2012;8:276–286. doi: 10.1038/nrendo.2011.218. PubMed DOI PMC
Xie Y., Su N., Yang J., Tan Q., Huang S., Jin M., Ni Z., Zhang B., Zhang D., Luo F., et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 2020;5 doi: 10.1038/s41392-020-00222-7. PubMed DOI PMC
Floss T., Arnold H.H., Braun T. A role for FGF-6 in skeletal muscle regeneration. Genes Dev. 1997;11:2040–2051. doi: 10.1101/gad.11.16.2040. PubMed DOI PMC
Schmid G.J., Kobayashi C., Sandell L.J., Ornitz D.M. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev. Dyn. 2009;238:766–774. doi: 10.1002/dvdy.21882. PubMed DOI PMC
Nakajima A., Nakajima F., Shimizu S., Ogasawara A., Wanaka A., Moriya H., Einhorn T.A., Yamazaki M. Spatial and temporal gene expression for fibroblast growth factor type I receptor (FGFR1) during fracture healing in the rat. Bone. 2001;29:458–466. doi: 10.1016/S8756-3282(01)00604-4. PubMed DOI
Goebel S., Lienau J., Rammoser U., Seefried L., Wintgens K.F., Seufert J., Duda G., Jakob F., Ebert R. FGF23 is a putative marker for bone healing and regeneration. J. Orthop. Res. 2009;27:1141–1146. doi: 10.1002/jor.20857. PubMed DOI
Hurley M.M., Adams D.J., Wang L., Jiang X., Burt P.M., Du E., Xiao L. Accelerated fracture healing in transgenic mice overexpressing an anabolic isoform of fibroblast growth factor 2. J. Cell. Biochem. 2016;117:599–611. doi: 10.1002/jcb.25308. PubMed DOI
Kunova Bosakova M., Varecha M., Hampl M., Duran I., Nita A., Buchtova M., Dosedelova H., Machat R., Xie Y., Ni Z., et al. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum. Mol. Genet. 2018;27:1093–1105. doi: 10.1093/hmg/ddy031. PubMed DOI PMC
Martin L., Kaci N., Estibals V., Goudin N., Garfa-Traore M., Benoist-Lasselin C., Dambroise E., Legeai-Mallet L. Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia. Hum. Mol. Genet. 2018;27:1–13. doi: 10.1093/hmg/ddx374. PubMed DOI
Kunova Bosakova M., Nita A., Gregor T., Varecha M., Gudernova I., Fafilek B., Barta T., Basheer N., Abraham S.P., Balek L., et al. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc. Natl. Acad. Sci. USA. 2019;116:4316–4325. doi: 10.1073/pnas.1800338116. PubMed DOI PMC
Katoh M., Nakagama H. FGF Receptors: Cancer Biology and Therapeutics. Med. Res. Rev. 2014;34:280–300. doi: 10.1002/med.21288. PubMed DOI
Katoh M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat. Rev. Clin. Oncol. 2019;16:105–122. doi: 10.1038/s41571-018-0115-y. PubMed DOI
Dutt A., Salvesen H.B., Chen T.H., Ramos A.H., Onofrio R.C., Hatton C., Nicoletti R., Winckler W., Grewal R., Hanna M., et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl. Acad. Sci. USA. 2008;105:8713–8717. doi: 10.1073/pnas.0803379105. PubMed DOI PMC
Thomas A., Lee J.H., Abdullaev Z., Park K.S., Pineda M., Saidkhodjaeva L., Miettinen M., Wang Y., Pack S.D., Giaccone G. Characterization of fibroblast growth factor receptor 1 in small-cell lung cancer. J. Thorac. Oncol. 2014;9:567–571. doi: 10.1097/JTO.0000000000000089. PubMed DOI PMC
Rosty C., Aubriot M.H., Cappellen D., Bourdin J., Cartier I., Thiery J.P., Sastre-Garau X., Radvanyi F. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation. Mol. Cancer. 2005;4:2–9. doi: 10.1186/1476-4598-4-15. PubMed DOI PMC
Neugebauer J.M., Amack J.D., Peterson A.G., Bisgrove B.W., Yost H.J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 2009;458:651–654. doi: 10.1038/nature07753. PubMed DOI PMC
Essner J.J., Amack J.D., Nyholm M.K., Harris E.B., Yost H.J. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development. 2005;132:1247–1260. doi: 10.1242/dev.01663. PubMed DOI
Yamauchi H., Miyakawa N., Miyake A., Itoh N. Fgf4 is required for left-right patterning of visceral organs in zebrafish. Dev. Biol. 2009;332:177–185. doi: 10.1016/j.ydbio.2009.05.568. PubMed DOI
Liu D.-W.W., Hsu C.-H.H., Tsai S.-M.M., Hsiao C.-D., Wang W.-P.P. A Variant of Fibroblast Growth Factor Receptor 2 (Fgfr2) Regulates Left-Right Asymmetry in Zebrafish. PLoS ONE. 2011;6:e21793. doi: 10.1371/journal.pone.0021793. PubMed DOI PMC
Sempou E., Lakhani O.A., Amalraj S., Khokha M.K. Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left-Right Organizer in Xenopus. Front. Physiol. 2018;9:1–9. doi: 10.3389/fphys.2018.01705. PubMed DOI PMC
Hong S.K., Dawid I.B. FGF-dependent left-right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc. Natl. Acad. Sci. USA. 2009;106:2230–2235. doi: 10.1073/pnas.0812880106. PubMed DOI PMC
Neugebauer J.M., Cadwallader A.B., Amack J.D., Bisgrove B.W., Joseph Yost H. Differential roles for 3-OSTs in the regulation of cilia length and motility. Development. 2013;140:3892–3902. doi: 10.1242/dev.096388. PubMed DOI PMC
Caron A., Xu X., Lin X. Wnt/β-catenin signaling directly regulates Foxj1 expression and ciliogenesis in zebrafish Kupffer’s vesicle. Development. 2012;139:514–524. doi: 10.1242/dev.071746. PubMed DOI PMC
Bonnafe E., Touka M., AitLounis A., Baas D., Barras E., Ucla C., Moreau A., Flamant F., Dubruille R., Couble P., et al. The Transcription Factor RFX3 Directs Nodal Cilium Development and Left-Right Asymmetry Specification. Mol. Cell. Biol. 2004;24:4417–4427. doi: 10.1128/MCB.24.10.4417-4427.2004. PubMed DOI PMC
Bisgrove B.W., Snarr B.S., Emrazian A., Yost H.J. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer’s vesicle are required for specification of the zebrafish left-right axis. Dev. Biol. 2005;287:274–288. doi: 10.1016/j.ydbio.2005.08.047. PubMed DOI
Honda A., Kita T., Seshadri S.V., Misaki K., Ahmed Z., Ladbury J.E., Richardson G.P., Yonemura S., Ladher R.K. FGFR1-mediated protocadherin-15 loading mediates cargo specificity during intraflagellar transport in inner ear hair-cell kinocilia. Proc. Natl. Acad. Sci. USA. 2018;115:8388–8393. doi: 10.1073/pnas.1719861115. PubMed DOI PMC
Yuan X., Liu M., Cao X., Yang S. Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. Int. J. Biol. Sci. 2019;15:2087–2099. doi: 10.7150/ijbs.27231. PubMed DOI PMC
Taylor S.P., Bosakova M.K., Varecha M., Balek L., Barta T., Trantirek L., Jelinkova I., Duran I., Vesela I., Forlenza K.N., et al. An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum. Mol. Genet. 2016;25:3998–4011. doi: 10.1093/hmg/ddw240. PubMed DOI PMC
Moon H., Song J., Shin J.O., Lee H., Kim H.K., Eggenschwiller J.T., Bok J., Ko H.W. Intestinal cell kinase, aprotein associated with endocrine-cerebro-osteodysplasia syndrome is a key regulator of cilia length and Hedgehog signaling. Proc. Natl. Acad. Sci. USA. 2014;111:8541–8546. doi: 10.1073/pnas.1323161111. PubMed DOI PMC
Chaya T., Omori Y., Kuwahara R., Furukawa T. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 2014;33:1227–1242. doi: 10.1002/embj.201488175. PubMed DOI PMC
Tong Y., Park S.H., Wu D., Xu W., Guillot S.J., Jin L., Li X., Wang Y., Lin C.-S., Fu Z. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome. FEBS Lett. 2017;591:1247–1257. doi: 10.1002/1873-3468.12644. PubMed DOI PMC
Ding M., Jin L., Xie L., Park S.H., Tong Y., Wu D., Chhabra A.B., Fu Z., Li X. A Murine Model for Human ECO Syndrome Reveals a Critical Role of Intestinal Cell Kinase in Skeletal Development. Calcif. Tissue Int. 2018;102:348–357. doi: 10.1007/s00223-017-0355-3. PubMed DOI PMC
Okamoto S., Chaya T., Omori Y., Kuwahara R., Kubo S., Sakaguchi H., Furukawa T. Ick ciliary kinase is essential for planar cell polarity formation in inner ear hair cells and hearing function. J. Neurosci. 2017;37:2073–2085. doi: 10.1523/JNEUROSCI.3067-16.2017. PubMed DOI PMC
Berman S.A., Wilson N.F., Haas N.A., Lefebvre P.A. A Novel MAP Kinase Regulates Flagellar Length in Chlamydomonas. Curr. Biol. 2003;13:1145–1149. doi: 10.1016/S0960-9822(03)00415-9. PubMed DOI
Burghoorn J., Dekkers M.P.J., Rademakers S., De Jong T., Willemsen R., Jansen G. Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 2007;104:7157–7162. doi: 10.1073/pnas.0606974104. PubMed DOI PMC
Rousseau F., El Ghouzzi V., Delezoide A.L., Legeai-Mallet L., Le Merrer M., Munnich A., Bonaventure J. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1) Hum. Mol. Genet. 1996;5:509–512. doi: 10.1093/hmg/5.4.509. PubMed DOI
Tavormina P.L., Shiang R., Thompson L.M., Zhu Y.Z., Wilkin D.J., Lachman R.S., Wilcox W.R., Rimoin D.L., Cohn D.H., Wasmuth J.J. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat. Genet. 1995;9:321–328. doi: 10.1038/ng0395-321. PubMed DOI
Tavormina P.L., Rimoin D.L., Cohn D.H., Zhu Y.Z., Shiang R., Wasmuth J.J. Another mutation that results in the substitution of an unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia type I. Hum. Mol. Genet. 1995;4:2175–2177. doi: 10.1093/hmg/4.11.2175. PubMed DOI
Shiang R., Thompson L.M., Zhu Y.Z., Church D.M., Fielder T.J., Bocian M., Winokur S.T., Wasmuth J.J. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78:335–342. doi: 10.1016/0092-8674(94)90302-6. PubMed DOI
Bellus G.A., Hefferon T.W., De Luna R.I.O., Hecht J.T., Horton W.A., Machado M., Kaitila I., McIntosh I., Francomano C.A. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. Hum. Genet. 1995;56:368–373. PubMed PMC
Van Rhijn B.W.G., van Tilborg A.A.G., Lurkin I., Bonaventure J., de Vries A., Thiery J.P., van der Kwast T.H., Zwarthoff E.C. Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders. Eur. J. Hum. Genet. 2002;10:819–824. doi: 10.1038/sj.ejhg.5200883. PubMed DOI
Gallo L.H., Nelson K.N., Meyer A.N., Donoghue D.J. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev. 2015;26:425–449. doi: 10.1016/j.cytogfr.2015.03.003. PubMed DOI
Bernard-Pierrot I., Brams A., Dunois-Lardé C., Caillault A., Diez de Medina S.G., Cappellen D., Graff G., Thiery J.P., Chopin D., Ricol D., et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27:740–747. doi: 10.1093/carcin/bgi290. PubMed DOI
Greulich H., Pollock P.M. Targeting mutant fibroblast growth factor receptors in cancer. Trends Mol. Med. 2011;17:283–292. doi: 10.1016/j.molmed.2011.01.012. PubMed DOI PMC
Shinmura K., Kato H., Matsuura S., Inoue Y., Igarashi H., Nagura K., Nakamura S., Maruyama K., Tajima M., Funai K., et al. A novel somatic FGFR3 mutation in primary lung cancer. Oncol. Rep. 2014;31:1219–1224. doi: 10.3892/or.2014.2984. PubMed DOI
Naski M.C., Colvin J.S., Coffin J.D., Ornitz D.M. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development. 1998;125:4977–4988. doi: 10.1242/dev.125.24.4977. PubMed DOI
Chen J., Chien K.R. Complexity in simplicity: Monogenic disorders and c complex cardiomyopathies. J. Clin. Invest. 1999;103:1483–1485. doi: 10.1172/JCI7297. PubMed DOI PMC
Chen L., Li C., Qiao W., Xu X., Deng C. A Ser365→Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates lhh/PTHrP signals and causes severe achondroplasia. Hum. Mol. Genet. 2001;10:457–465. doi: 10.1093/hmg/10.5.457. PubMed DOI
Wren K.N., Craft J.M., Tritschler D., Schauer A., Patel D.K., Smith E.F., Porter M.E., Kner P., Lechtreck K.F. A Differential Cargo-Loading Model of Ciliary Length Regulation by IFT. Curr. Biol. 2013;23:2463–2471. doi: 10.1016/j.cub.2013.10.044. PubMed DOI PMC
Zhou S., Xie Y., Tang J., Huang J., Huang Q., Xu W., Wang Z., Luo F., Wang Q., Chen H., et al. FGFR3 Deficiency Causes Multiple Chondroma-like Lesions by Upregulating Hedgehog Signaling. PLoS Genet. 2015;11:e1005214. doi: 10.1371/journal.pgen.1005214. PubMed DOI PMC
Du E., Lu C., Sheng F., Li C., Li H., Ding N., Chen Y., Zhang T., Yang K., Xu Y. Analysis of potential genes associated with primary cilia in bladder cancer. Cancer Manag. Res. 2018;10:3047–3056. doi: 10.2147/CMAR.S175419. PubMed DOI PMC
Lee K.H.S., Johmura Y., Yu L.R., Park J.E., Gao Y., Bang J.K., Zhou M., Veenstra T.D., Yeon Kim B., Lee K.H.S. Identification of a novel Wnt5a-CK1ε-Dvl2-Plk1-mediated primary cilia disassembly pathway. EMBO J. 2012;31:3104–3117. doi: 10.1038/emboj.2012.144. PubMed DOI PMC
Hsu Y.C., Kao C.Y., Chung Y.F., Lee D.C., Liu J.W., Chiu I.M. Activation of Aurora A kinase through the FGF1/FGFR signaling axis sustains the stem cell characteristics of glioblastoma cells. Exp. Cell Res. 2016;344:153–166. doi: 10.1016/j.yexcr.2016.04.012. PubMed DOI
Li X., Martinez-Ledesma E., Zhang C., Gao F., Zheng S., Ding J., Wu S., Nguyen N., Clifford S.C., Wen P.Y., et al. TIE2–FGFR1 interaction induces adaptive PI3K inhibitor resistance by upregulating Aurora A/PlK1/CDK1 signaling in glioblastoma. Cancer Res. 2019;79:5088–5101. doi: 10.1158/0008-5472.CAN-19-0325. PubMed DOI
Montaudon E., Nikitorowicz-Buniak J., Sourd L., Morisset L., El Botty R., Huguet L., Dahmani A., Painsec P., Nemati F., Vacher S., et al. PLK1 inhibition exhibits strong anti-tumoral activity in CCND1-driven breast cancer metastases with acquired palbociclib resistance. Nat. Commun. 2020;11 doi: 10.1038/s41467-020-17697-1. PubMed DOI PMC
Sánchez I., Dynlacht B.D. Cilium assembly and disassembly. Nat. Cell Biol. 2016;18:711–717. doi: 10.1038/ncb3370. PubMed DOI PMC
Werner S., Pimenta-Marques A., Bettencourt-Dias M. Maintaining centrosomes and cilia. J. Cell Sci. 2017;130:3789–3800. doi: 10.1242/jcs.203505. PubMed DOI
Wu Y.M., Su F., Kalyana-Sundaram S., Khazanov N., Ateeq B., Cao X., Lonigro R.J., Vats P., Wang R., Lin S.F., et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013;3:636–647. doi: 10.1158/2159-8290.CD-13-0050. PubMed DOI PMC
L’Hôte C.G.M., Knowles M.A. Cell responses to FGFR3 signalling: Growth, differentiation and apoptosis. Exp. Cell Res. 2005;304:417–431. doi: 10.1016/j.yexcr.2004.11.012. PubMed DOI
Pepper M.S., Ferrara N., Orci L., Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 1992;189:824–831. doi: 10.1016/0006-291X(92)92277-5. PubMed DOI
Lieu C., Heymach J., Overman M., Tran H., Kopetz S. Beyond VEGF: Inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin. Cancer Res. 2011;17:6130–6139. doi: 10.1158/1078-0432.CCR-11-0659. PubMed DOI PMC
Helsten T., Elkin S., Arthur E., Tomson B.N., Carter J., Kurzrock R. The FGFR landscape in cancer: Analysis of 4,853 tumors by next-generation sequencing. Clin. Cancer Res. 2016;22:259–267. doi: 10.1158/1078-0432.CCR-14-3212. PubMed DOI
Dienstmann R., Rodon J., Prat A., Perez-Garcia J., Adamo B., Felip E., Cortes J., Iafrate A.J., Nuciforo P., Tabernero J. Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann. Oncol. 2014;25:552–563. doi: 10.1093/annonc/mdt419. PubMed DOI PMC
Kim S., Dubrovska A., Salamone R.J., Walker J.R., Grandinetti K.B., Bonamy G.M.C., Orth A.P., Elliott J., Porta D.G., Garcia-Echeverria C., et al. FGFR2 Promotes Breast Tumorigenicity through Maintenance of Breast Tumor-Initiating Cells. PLoS ONE. 2013;8:e51671. doi: 10.1371/journal.pone.0051671. PubMed DOI PMC
Tsimafeyeu I., Demidov L., Stepanova E., Wynn N., Ta H. Overexpression of fibroblast growth factor receptors FGFR1 and FGFR2 in renal cell carcinoma. Scand. J. Urol. Nephrol. 2011;45:190–195. doi: 10.3109/00365599.2011.552436. PubMed DOI
Giri D., Ropiquet F., Ittmann M. Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin. Cancer Res. 1999;5:1063–1071. PubMed
Di Martino E., Tomlinson D.C., Knowles M.A. A decade of FGF receptor research in bladder cancer: Past, present, and future challenges. Adv. Urol. 2012;2012 doi: 10.1155/2012/429213. PubMed DOI PMC
Byron S.A., Gartside M., Powell M.A., Wellens C.L., Gao F., Mutch D.G., Goodfellow P.J., Pollock P.M. Fgfr2 point mutations in 466 endometrioid endometrial tumors: Relationship with msi, kras, pik3ca, ctnnb1 mutations and clinicopathological features. PLoS ONE. 2012;7:e30801. doi: 10.1371/annotation/0bfaecca-0f87-43fe-97cc-f2ae3ddeb6d5. PubMed DOI PMC
Cappellen D., De Oliveira C., Ricol D., de Medina S., Bourdin J., Sastre-Garau X., Chopin D., Thiery J.P., Radvanyi F. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 1999;23:18–20. doi: 10.1038/12615. PubMed DOI
Ahmed Z., Schüller A.C., Suhling K., Tregidgo C., Ladbury J.E. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem. J. 2008;413:37–49. doi: 10.1042/BJ20071594. PubMed DOI
Neilson K.M., Friesel R. Ligand-independent activation of fibroblast growth factor receptors by point mutations in the extracellular, transmembrane, and kinase domains. J. Biol. Chem. 1996;271:25049–25057. doi: 10.1074/jbc.271.40.25049. PubMed DOI
Krook M.A., Reeser J.W., Ernst G., Barker H., Wilberding M., Li G., Chen H.Z., Roychowdhury S. Fibroblast growth factor receptors in cancer: Genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br. J. Cancer. 2021;124:880–892. doi: 10.1038/s41416-020-01157-0. PubMed DOI PMC
Ibrahimi O.A., Yeh B.K., Eliseenkova A.V., Zhang F., Olsen S.K., Igarashi M., Aaronson S.A., Linhardt R.J., Mohammadi M. Analysis of Mutations in Fibroblast Growth Factor (FGF) and a Pathogenic Mutation in FGF Receptor (FGFR) Provides Direct Evidence for the Symmetric Two-End Model for FGFR Dimerization. Mol. Cell. Biol. 2005;25:671–684. doi: 10.1128/MCB.25.2.671-684.2005. PubMed DOI PMC
Webster M.K., D’Avis P.Y., Robertson S.C., Donoghue D.J. Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol. Cell. Biol. 1996;16:4081–4087. doi: 10.1128/MCB.16.8.4081. PubMed DOI PMC
Naski M.C., Wang Q., Xu J., Ornitz D.M. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat. Genet. 1996;13:233–237. doi: 10.1038/ng0696-233. PubMed DOI
Bellus G.A., Bamshad M.J., Przylepa K.A., Dorst J., Lee R.R., Hurko O., Jabs E.W., Curry C.J.R., Wilcox W.R., Lachman R.S., et al. Severe achondroplasia with developmental delay and Acanthosis nigricans (SADDAN): Phenotypic analysis of a new skeletal dysplasia caused by a Lys650Met mutation in fibroblast growth factor receptor 3. Am. J. Med. Genet. 1999;85:53–65. doi: 10.1002/(SICI)1096-8628(19990702)85:1<53::AID-AJMG10>3.0.CO;2-F. PubMed DOI
Foth M., Ahmad I., Van Rhijn B.W.G., Van Der Kwast T., Bergman A.M., King L., Ridgway R., Leung H.Y., Fraser S., Sansom O.J., et al. Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with Pten loss in mice. J. Pathol. 2014;233:148–158. doi: 10.1002/path.4334. PubMed DOI PMC
Ahmad I., Singh L.B., Foth M., Morris C.A., Taketo M.M., Wu X.R., Leung H.Y., Sansom O.J., Iwata T. K-Ras and β-catenin mutations cooperate with Fgfr3 mutations in mice to promote tumorigenesis in the skin and lung, but not in the bladder. DMM Dis. Model. Mech. 2011;4:548–555. doi: 10.1242/dmm.006874. PubMed DOI PMC
Mertens F., Johansson B., Fioretos T., Mitelman F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer. 2015;15:371–381. doi: 10.1038/nrc3947. PubMed DOI
Schram A.M., Chang M.T., Jonsson P., Drilon A. Fusions in solid tumours: Diagnostic strategies, targeted therapy, and acquired resistance. Nat. Rev. Clin. Oncol. 2017;14:735–748. doi: 10.1038/nrclinonc.2017.127. PubMed DOI PMC
De Luca A., Abate R.E., Rachiglio A.M., Maiello M.R., Esposito C., Schettino C., Izzo F., Nasti G., Normanno N. FGFR fusions in cancer: From diagnostic approaches to therapeutic intervention. Int. J. Mol. Sci. 2020;21:6856. doi: 10.3390/ijms21186856. PubMed DOI PMC
Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review) Int. J. Mol. Med. 2016;38:3–15. doi: 10.3892/ijmm.2016.2620. PubMed DOI PMC
Wang Y., Ding X., Wang S., Moser C.D., Shaleh H.M., Mohamed E.A., Chaiteerakij R., Allotey L.K., Chen G., Miyabe K., et al. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein. Cancer Lett. 2016;380:163–173. doi: 10.1016/j.canlet.2016.05.017. PubMed DOI PMC
Arai Y., Totoki Y., Hosoda F., Shirota T., Hama N., Nakamura H., Ojima H., Furuta K., Shimada K., Okusaka T., et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59:1427–1434. doi: 10.1002/hep.26890. PubMed DOI
Ochiai M., Yoshihara Y., Maru Y., Tetsuya M., Izumiya M., Imai T., Hippo Y. Kras-driven heterotopic tumor development from hepatobiliary organoids. Carcinogenesis. 2019 doi: 10.1093/carcin/bgz024. PubMed DOI
Sia D., Losic B., Moeini A., Cabellos L., Hao K., Revill K., Bonal D., Miltiadous O., Zhang Z., Hoshida Y., et al. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nat. Commun. 2015;6 doi: 10.1038/ncomms7087. PubMed DOI
Li F., Meyer A.N., Peiris M.N., Nelson K.N., Donoghue D.J. Oncogenic fusion protein FGFR2-PPHLN1: Requirements for biological activation, and efficacy of inhibitors. Transl. Oncol. 2020;13:100853. doi: 10.1016/j.tranon.2020.100853. PubMed DOI PMC
Williams S.V., Hurst C.D., Knowles M.A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 2013;22:795–803. doi: 10.1093/hmg/dds486. PubMed DOI PMC
Nakanishi Y., Akiyama N., Tsukaguchi T., Fujii T., Satoh Y., Ishii N., Aoki M. Mechanism of Oncogenic Signal Activation by the Novel Fusion Kinase FGFR3-BAIAP2L1. Mol. Cancer Ther. 2015;14:704–712. doi: 10.1158/1535-7163.MCT-14-0927-T. PubMed DOI
Ren M., Cowell J.K. Constitutive Notch pathway activation in murine ZMYM2-FGFR1-induced T-cell lymphomas associated with atypical myeloproliferative disease. Blood. 2011;117:6837–6847. doi: 10.1182/blood-2010-07-295725. PubMed DOI PMC
Agerstam H., Järås M., Andersson A., Johnels P., Hansen N., Lassen C., Rissler M., Gisselsson D., Olofsson T., Richter J., et al. Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice. Blood. 2010;116:2103–2111. doi: 10.1182/blood-2009-05-217182. PubMed DOI
Chase A., Grand F.H., Cross N.C.P.P. Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood. 2007;110:3729–3734. doi: 10.1182/blood-2007-02-074286. PubMed DOI
Peiris M.N., Meyer A.N., Nelson K.N., Bisom-Rapp E.W., Donoghue D.J. Oncogenic fusion protein BCR-FGFR1 requires the breakpoint cluster region-mediated oligomerization and chaperonin Hsp90 for activation. Haematologica. 2020;105:1262–1273. doi: 10.3324/haematol.2019.220871. PubMed DOI PMC
Oliveira D.M., Mirante T., Mignogna C., Scrima M., Migliozzi S., Rocco G., Franco R., Corcione F., Viglietto G., Malanga D., et al. Simultaneous identification of clinically relevant single nucleotide variants, copy number alterations and gene fusions in solid tumors by targeted next-generation sequencing. Oncotarget. 2018;9:22749–22768. doi: 10.18632/oncotarget.25229. PubMed DOI PMC
Di Stefano A.L., Fucci A., Frattini V., Labussiere M., Mokhtari K., Zoppoli P., Marie Y., Bruno A., Boisselier B., Giry M., et al. Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin. Cancer Res. 2015;21:3307–3317. doi: 10.1158/1078-0432.CCR-14-2199. PubMed DOI PMC
Singh D., Chan J.M., Zoppoli P., Niola F., Sullivan R., Castano A., Liu E.M., Reichel J., Porrati P., Pellegatta S., et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012;337:1231–1235. doi: 10.1126/science.1220834. PubMed DOI PMC
Costa R., Carneiro B.A., Taxter T., Tavora F.A., Kalyan A., Pai S.A., Chae Y.K., Giles F.J. FGFR3-TACC3 fusion in solid tumors: Mini review. Oncotarget. 2016;7:55924–55938. doi: 10.18632/oncotarget.10482. PubMed DOI PMC
Weinstein J.N., Akbani R., Broom B.M., Wang W., Verhaak R.G.W., McConkey D., Lerner S., Morgan M., Creighton C.J., Smith C., et al. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–322. doi: 10.1038/nature12965. PubMed DOI PMC
Guo G., Sun X., Chen C., Wu S., Huang P., Li Z., Dean M., Huang Y., Jia W., Zhou Q., et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat. Genet. 2013;45:1459–1463. doi: 10.1038/ng.2798. PubMed DOI PMC
Bao Z.S., Chen H.M., Yang M.Y., Zhang C.B., Yu K., Ye W.L., Hu B.Q., Yan W., Zhang W., Akers J., et al. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas. Genome Res. 2014;24:1765–1773. doi: 10.1101/gr.165126.113. PubMed DOI PMC
Wang R., Wang L., Li Y., Hu H., Shen L., Shen X., Pan Y., Ye T., Zhang Y., Luo X., et al. FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin. Cancer Res. 2014;20:4107–4114. doi: 10.1158/1078-0432.CCR-14-0284. PubMed DOI
Kim Y., Hammerman P.S., Kim J., Yoon J.A., Lee Y., Sun J.M., Wilkerson M.D., Pedamallu C.S., Cibulskis K., Yoo Y.K., et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. J. Clin. Oncol. 2014;32:121–128. doi: 10.1200/JCO.2013.50.8556. PubMed DOI PMC
Javle M., Rashid A., Churi C., Kar S., Zuo M., Eterovic A.K., Nogueras-Gonzalez G.M., Janku F., Shroff R.T., Aloia T.A., et al. Molecular characterization of gallbladder cancer using somatic mutation profiling. Hum. Pathol. 2014;45:701–708. doi: 10.1016/j.humpath.2013.11.001. PubMed DOI PMC
Yuan L., Liu Z.H., Lin Z.R., Xu L.H., Zhong Q., Zeng M.S. Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma. Cancer Biol. Ther. 2014;15:1613–1621. doi: 10.4161/15384047.2014.961874. PubMed DOI PMC
Carneiro B.A., Elvin J.A., Kamath S.D., Ali S.M., Paintal A.S., Restrepo A., Berry E., Giles F.J., Johnson M.L. FGFR3-TACC3: A novel gene fusion in cervical cancer. Gynecol. Oncol. Rep. 2015;13:53–56. doi: 10.1016/j.gore.2015.06.005. PubMed DOI PMC
Lawrence M.S., Sougnez C., Lichtenstein L., Cibulskis K., Lander E., Gabriel S.B., Getz G., Ally A., Balasundaram M., Birol I., et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–582. doi: 10.1038/nature14129. PubMed DOI PMC
Majewski I.J., Mittempergher L., Davidson N.M., Bosma A., Willems S.M., Horlings H.M., De Rink I., Greger L., Hooijer G.K.J., Peters D., et al. Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J. Pathol. 2013;230:270–276. doi: 10.1002/path.4209. PubMed DOI
Mizukami T., Sakai K., Naruki S., Taniyama T., Horie Y., Izawa N., Tsuda T., Fujino T., Boku N., Yasuda H., et al. Identification of a FGFR3-TACC3 fusion in esophageal cancer. Ann. Oncol. 2017;28:437–438. doi: 10.1093/annonc/mdw550. PubMed DOI
Capelletti M., Dodge M.E., Ercan D., Hammerman P.S., Park S.-I., Kim J., Sasaki H., Jablons D.M., Lipson D., Young L., et al. Identification of recurrent FGFR3-TACC3 fusion oncogenes from lung adenocarcinoma. Clin. Cancer Res. 2014;20:6551–6558. doi: 10.1158/1078-0432.CCR-14-1337. PubMed DOI
Nelson K.N., Meyer A.N., Siari A., Campos A.R., Motamedchaboki K., Donoghue D.J. Oncogenic gene fusion FGFR3-TACC3 Is regulated by tyrosine phosphorylation. Mol. Cancer Res. 2016;14:458–469. doi: 10.1158/1541-7786.MCR-15-0497. PubMed DOI
Nelson K.N., Meyer A.N., Wang C.G., Donoghue D.J. Oncogenic driver FGFR3-TACC3 is dependent on membrane trafficking and ERK signaling. Oncotarget. 2018;9:34306–34319. doi: 10.18632/oncotarget.26142. PubMed DOI PMC
Parker B.C., Annala M.J., Cogdell D.E., Granberg K.J., Sun Y., Ji P., Li X., Gumin J., Zheng H., Hu L., et al. The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J. Clin. Invest. 2013;123:855–865. doi: 10.1172/JCI67144. PubMed DOI PMC
Sievers P., Stichel D., Schrimpf D., Sahm F., Koelsche C., Reuss D.E., Wefers A.K., Reinhardt A., Huang K., Ebrahimi A., et al. FGFR1:TACC1 fusion is a frequent event in molecularly defined extraventricular neurocytoma. Acta Neuropathol. 2018;136:293–302. doi: 10.1007/s00401-018-1882-3. PubMed DOI
Bale T.A. FGFR- gene family alterations in low-grade neuroepithelial tumors. Acta Neuropathol. Commun. 2020;8:21. doi: 10.1186/s40478-020-00898-6. PubMed DOI PMC
Zhang J., Wu G., Miller C.P., Tatevossian R.G., Dalton J.D., Tang B., Orisme W., Punchihewa C., Parker M., Qaddoumi I., et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat. Genet. 2013;45:602–612. doi: 10.1038/ng.2611. PubMed DOI PMC
Shi E., Chmielecki J., Tang C.M., Wang K., Heinrich M.C., Kang G., Corless C.L., Hong D., Fero K.E., Murphy J.D., et al. FGFR1 and NTRK3 actionable alterations in “Wild-Type” gastrointestinal stromal tumors. J. Transl. Med. 2016;14:1–11. doi: 10.1186/s12967-016-1075-6. PubMed DOI PMC
Lucas C.H.G., Gupta R., Doo P., Lee J.C., Cadwell C.R., Ramani B., Hofmann J.W., Sloan E.A., Kleinschmidt-Demasters B.K., Lee H.S., et al. Comprehensive analysis of diverse low-grade neuroepithelial tumors with FGFR1 alterations reveals a distinct molecular signature of rosette-forming glioneuronal tumor. Acta Neuropathol. Commun. 2020;8:1–17. doi: 10.1186/s40478-020-01027-z. PubMed DOI PMC
Sievers P., Schrimpf D., Stichel D., Reuss D.E., Hasselblatt M., Hagel C., Staszewski O., Hench J., Frank S., Brandner S., et al. Posterior fossa pilocytic astrocytomas with oligodendroglial features show frequent FGFR1 activation via fusion or mutation. Acta Neuropathol. 2020;139:403–406. doi: 10.1007/s00401-019-02097-7. PubMed DOI
Daoud E.V., Patel A., Gagan J., Raisanen J.M., Snipes G.J., Mantilla E., Krothapally R., Hatanpaa K.J., Pan E. Spinal Cord Pilocytic Astrocytoma With FGFR1-TACC1 Fusion and Anaplastic Transformation. J. Neuropathol. Exp. Neurol. 2021;80:283–285. doi: 10.1093/jnen/nlaa122. PubMed DOI
Devereaux K.A., Weiel J.J., Mills A.M., Kunder C.A., Longacre T.A. Neurofibrosarcoma Revisited: An Institutional Case Series of Uterine Sarcomas Harboring Kinase-related Fusions With Report of a Novel FGFR1-TACC1 Fusion. Am. J. Surg. Pathol. 2021;45:638–652. doi: 10.1097/PAS.0000000000001644. PubMed DOI
Borad M.J., Champion M.D., Egan J.B., Liang W.S., Fonseca R., Bryce A.H., McCullough A.E., Barrett M.T., Hunt K., Patel M.D., et al. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma. PLoS Genet. 2014;10:e1004135. doi: 10.1371/journal.pgen.1004135. PubMed DOI PMC
Ying X., Tu J., Wang W., Li X., Xu C., Ji J. FGFR2-BICC1: A subtype of FGFR2 oncogenic fusion variant in cholangiocarcinoma and the response to sorafenib. Onco. Targets. Ther. 2019;12:9303–9307. doi: 10.2147/OTT.S218796. PubMed DOI PMC
Ross J.S., Wang K., Gay L., Al-Rohil R., Rand J.V., Jones D.M., Lee H.J., Sheehan C.E., Otto G.A., Palmer G., et al. New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-Generation Sequencing. Oncologist. 2014;19:235–242. doi: 10.1634/theoncologist.2013-0352. PubMed DOI PMC
Mazzaferro V., El-Rayes B.F., Droz dit Busset M., Cotsoglou C., Harris W.P., Damjanov N., Masi G., Rimassa L., Personeni N., Braiteh F., et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br. J. Cancer. 2019;120:165–171. doi: 10.1038/s41416-018-0334-0. PubMed DOI PMC
Scheiter A., Keil F., Lüke F., Grosse J., Verloh N., Opitz S., Schlosser S., Kandulski A., Pukrop T., Dietmaier W., et al. Identification and In-Depth Analysis of the Novel FGFR2-NDC80 Fusion in a Cholangiocarcinoma Patient: Implication for Therapy. Curr. Oncol. 2021;28:112. doi: 10.3390/curroncol28020112. PubMed DOI PMC
Seo J.S., Ju Y.S., Lee W.C., Shin J.Y., Lee J.K., Bleazard T., Lee J., Jung Y.J., Kim J.O., Shin J.Y., et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22:2109–2119. doi: 10.1101/gr.145144.112. PubMed DOI PMC
Qin A., Johnson A., Ross J.S., Miller V.A., Ali S.M., Schrock A.B., Gadgeel S.M. Detection of Known and Novel FGFR Fusions in Non–Small Cell Lung Cancer by Comprehensive Genomic Profiling. J. Thorac. Oncol. 2019;14:54–62. doi: 10.1016/j.jtho.2018.09.014. PubMed DOI
Tabernero J., Bahleda R., Dienstmann R., Infante J.R., Mita A., Italiano A., Calvo E., Moreno V., Adamo B., Gazzah A., et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 2015;33:3401–3408. doi: 10.1200/JCO.2014.60.7341. PubMed DOI
Popovici C., Zhang B., Grégoire M.J., Jonveaux P., Lafage-Pochitaloff M., Birnbaum D., Pébusque M.J. The t(6;8)(q27;p11) translocation in a stem cell myeloproliferative disorder fuses a novel gene, FOP, to Fibroblast Growth Factor Receptor 1. Blood. 1999;93:1381–1389. doi: 10.1182/blood.V93.4.1381. PubMed DOI
Sohal J., Chase A., Mould S., Corcoran M., Oscier D., Iqbal S., Parker S., Welborn J., Harris R.I., Martinelli G., et al. Identification of four new translocations involvingFGFR1 in myeloid disorders. Genes, Chromosom. Cancer. 2001;32:155–163. doi: 10.1002/gcc.1177. PubMed DOI
Vannier J.P., Bizet M., Bastard C., Bernard A., Ducastelle T., Tron P. Simultaneous occurrence of a T-cell lymphoma and a chronic myelogenous leukemia with an unusual karyotype. Leuk. Res. 1984;8:647–657. doi: 10.1016/0145-2126(84)90013-4. PubMed DOI
Vizmanos J.L., Hernández R., Vidal M.J., Larráyoz M.J., Odero M.D., Marín J., Ardanaz M.T., Calasanz M.J., Cross N.C.P. Clinical variability of patients with the t(6;8)(q27;p12) and FGFR1OP-FGFR1 fusion: Two further cases. Hematol. J. 2004;5:534–537. doi: 10.1038/sj.thj.6200561. PubMed DOI
Chaffanet M., Popovici C., Leroux D., Jacrot M., Adélaïde J., Dastugue N., Grégoire M.J., Hagemeijer A., Lafage-Pochitaloff M., Birnbaum D., et al. t(6;8), t(8;9) and t(8;13) translocations associated with stem cell myeloproliferative disorders have close or identical breakpoints in chromosome region 8p11-12. Oncogene. 1998;16:945–949. doi: 10.1038/sj.onc.1201601. PubMed DOI
Onozawa M., Ohmura K., Ibata M., Iwasaki J., Okada K., Kasahara I., Yamaguchi K., Kubota K., Fujisawa S., Shigematsu A., et al. The 8p11 myeloproliferative syndrome owing to rare FGFR1OP2-FGFR1 fusion. Eur. J. Haematol. 2011;86:347–349. doi: 10.1111/j.1600-0609.2010.01568.x. PubMed DOI
Macdonald D., Aguiar R.C., Mason P.J., Goldman J.M., Cross N.C. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: A review. Leukemia. 1995;9:1628–1630. PubMed
Macdonald D., Reiter A., Cross N.C.P. The 8p11 myeloproliferative syndrome: A distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002;107:101–107. doi: 10.1159/000046639. PubMed DOI
Friedhoff F., Rajendra B., Moody R., Alapatt T. Novel reciprocal translocation between chromosomes 8 and 9 found in a patient with myeloproliferative disorder. Cancer Genet. Cytogenet. 1983;9:391–394. doi: 10.1016/0165-4608(83)90088-2. PubMed DOI
Yamamoto K., Kawano H., Nishikawa S., Yakushijin K., Okamura A., Matsui T. A biphenotypic transformation of 8p11 myeloproliferative syndrome with CEP1/FGFR1 fusion gene. Eur. J. Haematol. 2006;77:349–354. doi: 10.1111/j.1600-0609.2006.00723.x. PubMed DOI
Park T.S., Song J., Kim J.S., Yang W.I., Song S., Kim S.J., Suh B., Choi J.R. 8p11 myeloproliferative syndrome preceded by t(8;9)(p11;q33), CEP110/FGFR1 fusion transcript: Morphologic, molecular, and cytogenetic characterization of myeloid neoplasms associated with eosinophilia and FGFR1 abnormality. Cancer Genet. Cytogenet. 2008;181:93–99. doi: 10.1016/j.cancergencyto.2007.11.011. PubMed DOI
Mozziconacci M.J., Carbuccia N., Prebet T., Charbonnier A., Murati A., Vey N., Chaffanet M., Birnbaum D. Common features of myeloproliferative disorders with t(8;9)(p12;q33) and CEP110-FGFR1 fusion: Report of a new case and review of the literature. Leuk. Res. 2008;32:1304–1308. doi: 10.1016/j.leukres.2007.11.012. PubMed DOI
Zhou L., Fu W., Yuan Z., Hou J. Complete molecular remission after interferon alpha treatment in a case of 8p11 myeloproliferative syndrome. Leuk. Res. 2010;34:e306–e307. doi: 10.1016/j.leukres.2010.06.027. PubMed DOI
Hu S., He Y., Zhu X., Li J., He H. Myeloproliferative disorders with t(8;9)(p12;q33): A case report and review of the literature. Pediatr. Hematol. Oncol. 2011;28:140–146. doi: 10.3109/08880018.2010.528170. PubMed DOI
Yamamoto S., Ebihara Y., Mochizuki S., Kawakita T., Kato S., Ooi J., Takahashi S., Tojo A., Yusa N., Furukawa Y., et al. Quantitative polymerase chain reaction detection of CEP110-FGFR1 fusion gene in a patient with 8p11 myeloproliferative syndrome. Leuk. Lymphoma. 2013;54:2068–2069. doi: 10.3109/10428194.2013.767455. PubMed DOI
Sarah O.-O., Anthony A., Titilope A., Alani S. The 8p12 myeloproliferative syndrome. Niger. Med. J. 2014;55:176. doi: 10.4103/0300-1652.129669. PubMed DOI PMC
Wehrli M., Oppliger Leibundgut E., Gattiker H.H., Manz M.G., Müller A.M.S., Goede J.S. Response to Tyrosine Kinase Inhibitors in Myeloproliferative Neoplasia with 8p11 Translocation and CEP110-FGFR1 Rearrangement. Oncologist. 2017;22:480–483. doi: 10.1634/theoncologist.2016-0354. PubMed DOI PMC
Sarthy J.F., Reddivalla N., Radhi M., Chastain K. Pediatric 8p11 eosinophilic myeloproliferative syndrome (EMS): A case report and review of the literature. Pediatr. Blood Cancer. 2017;64:1–8. doi: 10.1002/pbc.26310. PubMed DOI
Chen M., Wang K., Cai X., Zhang X., Chao H., Chen S., Shen H., Wang Q., Zhang R. Myeloid/lymphoid neoplasm with CEP110-FGFR1 fusion: An analysis of 16 cases show common features and poor prognosis. Hematology. 2021;26:153–159. doi: 10.1080/16078454.2020.1854493. PubMed DOI
Oscier D.G., Mufti G.J., Gardiner A., Hamblin T.J. Reciprocal translocation between chromosomes 8 and 9 in atypical chronic myeloid leukaemia. J. Med. Genet. 1985;22:398–401. doi: 10.1136/jmg.22.5.398. PubMed DOI PMC
Yamamoto S., Otsu M., Matsuzaka E., Konishi C., Takagi H., Hanada S., Mochizuki S., Nakauchi H., Imai K., Tsuji K., et al. Screening of drugs to treat 8p11 myeloproliferative syndrome using patient-derived induced pluripotent stem cells with fusion gene CEP110-FGFR1. PLoS ONE. 2015;10:e0120841. doi: 10.1371/journal.pone.0120841. PubMed DOI PMC
Brown L.M., Bartolo R.C., Davidson N.M., Schmidt B., Brooks I., Challis J., Petrovic V., Khuong-Quang D.A., Mechinaud F., Khaw S.L., et al. Targeted therapy and disease monitoring in CNTRL-FGFR1-driven leukaemia. Pediatr. Blood Cancer. 2019;66:1–5. doi: 10.1002/pbc.27897. PubMed DOI
Lewis J.P., Welborn J.L., Meyers F.J., Levy N.B., Roschak T. Mast cell disease followed by leukemia with clonal evolution. Leuk. Res. 1987;11:769–773. doi: 10.1016/0145-2126(87)90060-9. PubMed DOI
Jotterand Bellomo M., Mühlematter D., Wicht M., Delacrétaz F., Schmidt P.M. t(8;9)(p11;q32) in atypical chronic myeloid leukaemia: A new cytogenetic-clinicopathologic association? Br. J. Haematol. 1992;81:307–308. doi: 10.1111/j.1365-2141.1992.tb08225.x. PubMed DOI
Van den Berg H., Kroes W., van der Schoot C.E., Dee R., Pals S.T., Bouts T.H., Slater R.M. A young child with acquired t(8;9)(p11;q34): Additional proof that 8p11 is involved in mixed myeloid/T lymphoid malignancies. Leukemia. 1996;10:1252–1253. PubMed
Nakayama H., Inamitsu T., Ohga S., Kai T., Suda M., Matsuzaki A., Ueda K. Chronic myelomonocytic leukaemia with t(8;9)(p11;q34) in childhood: An example of the 8p11 myeloproliferative disorder? Br. J. Haematol. 1996;92:692–695. doi: 10.1046/j.1365-2141.1996.00386.x. PubMed DOI
Vandergoten P., Janssen M., Madoe V., Vanstraelen D. A myeloproliferative disorder with eosinophilia, a translocation t(8; 9)(p22;23) and a cerebellar degeneration in regression with interferon alpha therapy. Acta Haematol. 1998;100:8.
Guasch G., Mack G.J., Popovici C., Dastugue N., Birnbaum D., Rattner J.B., Pébusque M.J. FGFR1 is fused to the centrosome-associated protein CEP110 in the 8p12 stem cell myeloproliferative disorder with t(8;9)(p12;q33) Blood. 2000;95:1788–1796. doi: 10.1182/blood.V95.5.1788.005k15_1788_1796. PubMed DOI
Heiss S., Erdel M., Gunsilius E., Nachbaur D., Tzankov A. Myelodysplastic/myeloproliferative disease with erythropoietic hyperplasia (erythroid preleukemia) and the unique translocation (8;9)(p23;p24): First description of a case. Hum. Pathol. 2005;36:1148–1151. doi: 10.1016/j.humpath.2005.07.020. PubMed DOI
Chen J., Williams I.R., Lee B.H., Duclos N., Huntly B.J.P., Donoghue D.J., Gilliland D.G. Constitutively activated FGFR3 mutants signal through PLCγ-dependent and -independent pathways for hematopoietic transformation. Blood. 2005;106:328–337. doi: 10.1182/blood-2004-09-3686. PubMed DOI PMC
Yamaguchi T., Kakefuda R., Tajima N., Sowa Y., Sakai T. Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo. Int. J. Oncol. 2011;39:23–31. doi: 10.3892/ijo.2011.1015. PubMed DOI
Guagnano V., Furet P., Spanka C., Bordas V., Le Douget M., Stamm C., Brueggen J., Jensen M.R., Schnell C., Schmid H., et al. Discovery of 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl- piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), A potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem. 2011;54:7066–7083. doi: 10.1021/jm2006222. PubMed DOI
Liu P.C.C., Koblish H., Wu L., Bowman K., Diamond S., DiMatteo D., Zhang Y., Hansbury M., Rupar M., Wen X., et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE. 2020;15:e231877. doi: 10.1371/journal.pone.0231877. PubMed DOI PMC
Hood F.E., Williams S.J., Burgess S.G., Richards M.W., Roth D., Straube A., Pfuhl M., Bayliss R., Royle S.J. Coordination of adjacent domains mediates TACC3-ch-TOG-clathrin assembly and mitotic spindle binding. J. Cell Biol. 2013;202:463–478. doi: 10.1083/jcb.201211127. PubMed DOI PMC
Hood F.E., Royle S.J. Pulling it together: The mitotic function of TACC3. Bioarchitecture. 2011;1:105–109. doi: 10.4161/bioa.1.3.16518. PubMed DOI PMC
Nixon F.M., Gutiérrez-Caballero C., Hood F.E., Booth D.G., Prior I.A., Royle S.J. The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle. Elife. 2015;4:1–21. doi: 10.7554/eLife.07635. PubMed DOI PMC
Sarkar S., Ryan E.L., Royle S.J. FGFR3-TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle. Open Biol. 2017;7 doi: 10.1098/rsob.170080. PubMed DOI PMC
Yao R., Natsume Y., Saiki Y., Shioya H., Takeuchi K., Yamori T., Toki H., Aoki I., Saga T., Noda T. Disruption of Tacc3 function leads to in vivo tumor regression. Oncogene. 2012;31:135–148. doi: 10.1038/onc.2011.235. PubMed DOI
Yao R., Oyanagi J., Natsume Y., Kusama D., Kato Y., Nagayama S., Noda T. Suppression of intestinal tumors by targeting the mitotic spindle of intestinal stem cells. Oncogene. 2016;35:6109–6119. doi: 10.1038/onc.2016.148. PubMed DOI
Akbulut O., Lengerli D., Saatci O., Duman E., Seker U.O.S., Isik A., Akyol A., Caliskan B., Banoglu E., Sahin O. A highly potent TACC3 inhibitor as a novel anticancer drug candidate. Mol. Cancer Ther. 2020;19:1243–1254. doi: 10.1158/1535-7163.MCT-19-0957. PubMed DOI
Kinoshita K., Noetzel T.L., Pelletier L., Mechtler K., Drechsel D.N., Schwager A., Lee M., Raff J.W., Hyman A.A. Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J. Cell Biol. 2005;170:1047–1055. doi: 10.1083/jcb.200503023. PubMed DOI PMC
Adams M., Simms R.J., Abdelhamed Z., Dawe H.R., Szymanska K., Logan C.V., Wheway G., Pitt E., Gull K., Knowles M.A., et al. A meckelin-filamin a interaction mediates ciliogenesis. Hum. Mol. Genet. 2012;21:1272–1286. doi: 10.1093/hmg/ddr557. PubMed DOI PMC
Qie Y., Wang L., Du E., Chen S., Lu C., Ding N., Yang K., Xu Y. TACC3 promotes prostate cancer cell proliferation and restrains primary cilium formation. Exp. Cell Res. 2020;390 doi: 10.1016/j.yexcr.2020.111952. PubMed DOI
Still I.H., Hamilton M., Vince P., Wolfman A., Cowell J.K. Cloning of TACC1, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon. Oncogene. 1999;18:4032–4038. doi: 10.1038/sj.onc.1202801. PubMed DOI
Peset I., Vernos I. The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol. 2008;18:379–388. doi: 10.1016/j.tcb.2008.06.005. PubMed DOI
Gergely F., Karlsson C., Still I., Cowell J., Kilmartin J., Raff J.W. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. USA. 2000;97:14352–14357. doi: 10.1073/pnas.97.26.14352. PubMed DOI PMC
Conte N., Delaval B., Ginestier C., Ferrand A., Isnardon D., Larroque C., Prigent C., Séraphin B., Jacquemier J., Birnbaum D. TACC1-chTOG-Aurora A protein complex in breast cancer. Oncogene. 2003;22:8102–8116. doi: 10.1038/sj.onc.1206972. PubMed DOI
Cristinziano G., Porru M., Lamberti D., Buglioni S., Rollo F., Amoreo C.A., Manni I., Giannarelli D., Cristofoletti C., Russo G., et al. FGFR2 fusion proteins drive oncogenic transformation of mouse liver organoids towards cholangiocarcinoma. J. Hepatol. 2021;11:3–5. doi: 10.1016/j.jhep.2021.02.032. PubMed DOI
Parker B.C., Engels M., Annala M., Zhang W. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J. Pathol. 2014;232:4–15. doi: 10.1002/path.4297. PubMed DOI
Bahleda R., Meric-Bernstam F., Goyal L., Tran B., He Y., Yamamiya I., Benhadji K.A., Matos I., Arkenau H.-T. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1–4 inhibitor in patients with advanced solid tumors. Ann. Oncol. 2020;31:1405–1412. doi: 10.1016/j.annonc.2020.06.018. PubMed DOI PMC
Goyal L., Saha S.K., Liu L.Y., Siravegna G., Leshchiner I., Ahronian L.G., Lennerz J.K., Vu P., Deshpande V., Kambadakone A., et al. Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion–Positive Cholangiocarcinoma. Cancer Discov. 2017;7:252–263. doi: 10.1158/2159-8290.CD-16-1000. PubMed DOI PMC
Mahone M., Saffman E.E., Lasko P.F. Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. EMBO J. 1995;14:2043–2055. doi: 10.1002/j.1460-2075.1995.tb07196.x. PubMed DOI PMC
Park S., Blaser S., Marchal M.A., Houston D.W., Sheets M.D. A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators. Development. 2016;143:864–871. doi: 10.1242/dev.131359. PubMed DOI PMC
Wessely O., De Robertis E.M. The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation. Development. 2000;127:2053–2062. doi: 10.1242/dev.127.10.2053. PubMed DOI PMC
Dowdle M.E., Park S., Blaser Imboden S., Fox C.A., Houston D.W., Sheets M.D. A single KH domain in Bicaudal-C links mRNA binding and translational repression functions to maternal development. Development. 2019;146 doi: 10.1242/dev.172486. PubMed DOI PMC
Saffman E.E., Styhler S., Rother K., Li W., Richard S., Lasko P. Premature translation of oskar in oocytes lacking the RNA-binding protein bicaudal-C. Mol. Cell. Biol. 1998;18:4855–4862. doi: 10.1128/MCB.18.8.4855. PubMed DOI PMC
Tran U., Zakin L., Schweickert A., Agrawal R., Döger R., Blum M., De Robertis E.M., Wessely O. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development. 2010;137:1107–1116. doi: 10.1242/dev.046045. PubMed DOI PMC
Cogswell C., Price S.J., Hou X., Guay-Woodford L.M., Flaherty L., Bryda E.C. Positional cloning of jcpk/bpk locus of the mouse. Mamm. Genome. 2003;14:242–249. doi: 10.1007/s00335-002-2241-0. PubMed DOI
Lemaire L.A., Goulley J., Kim Y.H., Carat S., Jacquemin P., Rougemont J., Constam D.B., Grapin-Botton A. Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis. Development. 2015;142:858–870. doi: 10.1242/dev.114611. PubMed DOI
Maisonneuve C., Guilleret I., Vick P., Weber T., Andre P., Beyer T., Blum M., Constam D.B. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development. 2009;136:3019–3030. doi: 10.1242/dev.038174. PubMed DOI
Guay-Woodford L.M., Bryda E.C., Christine B., Lindsey J.R., Collier W.R., Avner E.D., D’Eustachio P., Flaherty L. Evidence that two phenotypically distinct mouse PKD mutations, bpk and jcpk, are allelic. Kidney Int. 1996;50:1158–1165. doi: 10.1038/ki.1996.423. PubMed DOI
Flaherty L., Bryda E.C., Collins D., Rudofsky U., Montogomery J.C. New mouse model for polycystic kidney disease with both recessive and dominant gene effects. Kidney Int. 1995;47:552–558. doi: 10.1038/ki.1995.69. PubMed DOI
Bouvrette D.J., Sittaramane V., Heidel J.R., Chandrasekhar A., Bryda E.C. Knockdown of bicaudal C in zebrafish (Danio rerio) causes cystic kidneys: A nonmammalian model of polycystic kidney disease. Comp. Med. 2010;60:96–106. PubMed PMC
Gamberi C., Hipfner D.R., Trudel M., Lubell W.D. Bicaudal C mutation causes myc and TOR pathway up-regulation and polycystic kidney disease-like phenotypes in Drosophila. PLoS Genet. 2017;13:e1006694. doi: 10.1371/journal.pgen.1006694. PubMed DOI PMC
Iaconis D., Monti M., Renda M., Van Koppen A., Tammaro R., Chiaravalli M., Cozzolino F., Pignata P., Crina C., Pucci P., et al. The centrosomal OFD1 protein interacts with the translation machinery and regulates the synthesis of specific targets. Sci. Rep. 2017;7:1224. doi: 10.1038/s41598-017-01156-x. PubMed DOI PMC
Rothé B., Gagnieux C., Leal-Esteban L.C., Constam D.B. Role of the RNA-binding protein Bicaudal-C1 and interacting factors in cystic kidney diseases. Cell. Signal. 2020;68:109499. doi: 10.1016/j.cellsig.2019.109499. PubMed DOI
Kraus M.R.C., Clauin S., Pfister Y., Di Maïo M., Ulinski T., Constam D., Bellanné-Chantelot C., Grapin-Botton A. Two mutations in human BICC1 resulting in wnt pathway hyperactivity associated with cystic renal dysplasia. Hum. Mutat. 2012;33:86–90. doi: 10.1002/humu.21610. PubMed DOI
Mesner L.D., Ray B., Hsu Y.H., Manichaikul A., Lum E., Bryda E.C., Rich S.S., Rosen C.J., Criqui M.H., Allison M., et al. Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. J. Clin. Invest. 2014;124:2736–2749. doi: 10.1172/JCI73072. PubMed DOI PMC
Rothé B., Leal-Esteban L., Bernet F., Urfer S., Doerr N., Weimbs T., Iwaszkiewicz J., Constam D.B. Bicc1 Polymerization Regulates the Localization and Silencing of Bound mRNA. Mol. Cell. Biol. 2015;35:3339–3353. doi: 10.1128/MCB.00341-15. PubMed DOI PMC
Bouvrette D.J., Price S.J., Bryda E.C. K homology domains of the mouse polycystic kidney disease-related protein, Bicaudal-C (Bicc1), mediate RNA binding in vitro. Nephron. Exp. Nephrol. 2008;108:e27–e34. doi: 10.1159/000112913. PubMed DOI
Wimbish R.T., DeLuca J.G. Hec1/Ndc80 Tail Domain Function at the Kinetochore-Microtubule Interface. Front. Cell Dev. Biol. 2020;8:1–16. doi: 10.3389/fcell.2020.00043. PubMed DOI PMC
Qu Y., Li J., Cai Q., Liu B. Hec1/Ndc80 is overexpressed in human gastric cancer and regulates cell growth. J. Gastroenterol. 2014;49:408–418. doi: 10.1007/s00535-013-0809-y. PubMed DOI
Wang G., Jiang Q., Zhang C. The role of mitotic kinases in coupling the centrosome cycle with the assembly of the mitotic spindle. J. Cell Sci. 2014;127:4111–4122. doi: 10.1242/jcs.151753. PubMed DOI
Bièche I., Vacher S., Lallemand F., Tozlu-Kara S., Bennani H., Beuzelin M., Driouch K., Rouleau E., Lerebours F., Ripoche H., et al. Expression analysis of mitotic spindle checkpoint genes in breast carcinoma: Role of NDC80/HEC1 in early breast tumorigenicity, and a two-gene signature for aneuploidy. Mol. Cancer. 2011;10:1–18. doi: 10.1186/1476-4598-10-23. PubMed DOI PMC
Hu C.M., Zhu J., Guo X.E., Chen W., Qiu X.L., Ngo B., Chien R., Wang Y.V., Tsai C.Y., Wu G., et al. Novel small molecules disrupting Hec1/Nek2 interaction ablate tumor progression by triggering Nek2 degradation through a death-trap mechanism. Oncogene. 2015;34:1220–1230. doi: 10.1038/onc.2014.67. PubMed DOI PMC
Diaz-Rodríguez E., Sotillo R., Schvartzman J.M., Benezra R. Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc. Natl. Acad. Sci. USA. 2008;105:16719–16724. doi: 10.1073/pnas.0803504105. PubMed DOI PMC
Leber B., Maier B., Fuchs F., Chi J., Riffel P., Anderhub S., Wagner L., Ho A.D., Salisbury J.L., Boutros M., et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl. Med. 2010;2 doi: 10.1126/scitranslmed.3000915. PubMed DOI
Wu G., Qiu X.L., Zhou L., Zhu J., Chamberlin R., Lau J., Chen P.L., Lee W.H. Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal. Cancer Res. 2008;68:8393–8399. doi: 10.1158/0008-5472.CAN-08-1915. PubMed DOI PMC
Huang L.Y.L., Chang C.C., Lee Y.S., Huang J.J., Chuang S.H., Chang J.M., Kao K.J., Lau G.M.G., Tsai P.Y., Liu C.W., et al. Inhibition of Hec1 as a novel approach for treatment of primary liver cancer. Cancer Chemother. Pharmacol. 2014;74:511–520. doi: 10.1007/s00280-014-2540-7. PubMed DOI
Hall T.G., Yu Y., Eathiraj S., Wang Y., Savage R.E., Lapierre J.-M., Schwartz B., Abbadessa G. Preclinical Activity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation. PLoS ONE. 2016;11:e0162594. doi: 10.1371/journal.pone.0162594. PubMed DOI PMC
Gai M., Bianchi F.T., Vagnoni C., Vernì F., Bonaccorsi S., Pasquero S., Berto G.E., Sgrò F., Chiotto A.A., Annaratone L., et al. ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep. 2017;18:1870. doi: 10.15252/embr.201745023. PubMed DOI PMC
Watanabe S., De Zan T., Ishizaki T., Narumiya S. Citron kinase mediates transition from constriction to abscission through its coiled-coil domain. J. Cell Sci. 2013;126:1773–1784. doi: 10.1242/jcs.116608. PubMed DOI
Bassi Z.I., Audusseau M., Riparbelli M.G., Callaini G., D’Avino P.P. Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc. Natl. Acad. Sci. USA. 2013;110:9782–9787. doi: 10.1073/pnas.1301328110. PubMed DOI PMC
Gruneberg U., Neef R., Li X., Chan E.H.Y., Chalamalasetty R.B., Nigg E.A., Barr F.A. KIF14 and citron kinase act together to promote efficient cytokinesis. J. Cell Biol. 2006;172:363–372. doi: 10.1083/jcb.200511061. PubMed DOI PMC
Wu Z., Zhu X., Xu W., Zhang Y., Chen L., Qiu F., Zhang B., Wu L., Peng Z., Tang H. Up-regulation of CIT promotes the growth of colon cancer cells. Oncotarget. 2017;8:71954–71964. doi: 10.18632/oncotarget.18615. PubMed DOI PMC
Fu Y., Huang J., Wang K.S., Zhang X., Han Z.G. RNA interference targeting CITRON can significantly inhibit the proliferation of hepatocellular carcinoma cells. Mol. Biol. Rep. 2011;38:693–702. doi: 10.1007/s11033-010-0156-5. PubMed DOI
Ehrlichova M., Mohelnikova-Duchonova B., Hrdy J., Brynychova V., Mrhalova M., Kodet R., Rob L., Pluta M., Gut I., Soucek P., et al. The association of taxane resistance genes with the clinical course of ovarian carcinoma. Genomics. 2013;102:96–101. doi: 10.1016/j.ygeno.2013.03.005. PubMed DOI
Meng D., Yu Q., Feng L., Luo M., Shao S., Huang S., Wang G., Jing X., Tong Z., Zhao X., et al. Citron kinase (CIT-K) promotes aggressiveness and tumorigenesis of breast cancer cells in vitro and in vivo: Preliminary study of the underlying mechanism. Clin. Transl. Oncol. 2019;21:910–923. doi: 10.1007/s12094-018-02003-9. PubMed DOI
Liu Z., Yan H., Yang Y., Wei L., Xia S., Xiu Y. Down-regulation of CIT can inhibit the growth of human bladder cancer cells. Biomed. Pharmacother. 2020;124:109830. doi: 10.1016/j.biopha.2020.109830. PubMed DOI
Liu J., Dou J., Wang W., Liu H., Qin Y., Yang Q., Jiang W., Liang Y., Liu Y., He J., et al. High expression of citron kinase predicts poor prognosis of prostate cancer. Oncol. Lett. 2020;19:1815–1823. doi: 10.3892/ol.2020.11254. PubMed DOI PMC
Pallavicini G., Iegiani G., Berto G.E., Calamia E., Trevisiol E., Veltri A., Allis S., Di Cunto F. CITK loss inhibits growth of group 3 and group 4 medulloblastoma cells and sensitizes them to DNA-damaging agents. Cancers. 2020;12:542. doi: 10.3390/cancers12030542. PubMed DOI PMC
Di Cunto F., Imarisio S., Hirsch E., Broccoli V., Bulfone A., Migheli A., Atzori C., Turco E., Triolo R., Dotto G.P., et al. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron. 2000;28:115–127. doi: 10.1016/S0896-6273(00)00090-8. PubMed DOI
Di Cunto F., Imarisio S., Camera P., Boitani C., Altruda F., Silengo L. Essential role of citron kinase in cytokinesis of spermatogenic precursors. J. Cell Sci. 2002;115:4819–4826. doi: 10.1242/jcs.00163. PubMed DOI
Mick D.U., Rodrigues R.B., Leib R.D., Adams C.M., Chien A.S., Gygi S.P., Nachury M. V Proteomics of Primary Cilia by Proximity Labeling. Dev. Cell. 2015;35:497–512. doi: 10.1016/j.devcel.2015.10.015. PubMed DOI PMC
Kuhns S., Schmidt K.N., Reymann J., Gilbert D.F., Neuner A., Hub B., Carvalho R., Wiedemann P., Zentgraf H., Erfle H., et al. The microtubule affinity regulating kinase MARK4 promotes axoneme extension during early ciliogenesis. J. Cell Biol. 2013;200:505–522. doi: 10.1083/jcb.201206013. PubMed DOI PMC
Anastas S.B., Mueller D., Semple-Rowland S.L., Breunig J.J., Sarkisian M.R. Failed cytokinesis of neural progenitors in citron kinase-deficient rats leads to multiciliated neurons. Cereb. Cortex. 2011;21:338–344. doi: 10.1093/cercor/bhq099. PubMed DOI
Karkera J.D., Cardona G.M., Bell K., Gaffney D., Portale J.C., Santiago-Walker A., Moy C.H., King P., Sharp M., Bahleda R., et al. Oncogenic characterization and pharmacologic sensitivity of activating Fibroblast Growth Factor Receptor (FGFR) genetic alterations to the selective FGFR inhibitor erdafitinib. Mol. Cancer Ther. 2017;16:1717–1726. doi: 10.1158/1535-7163.MCT-16-0518. PubMed DOI
Romio L., Fry A.M., Winyard P.J.D., Malcolm S., Woolf A.S., Feather S.A. OFD1 is a centrosomal/basal body protein expressed during mesenchymal-epithelial transition in human nephrogenesis. J. Am. Soc. Nephrol. 2004;15:2556–2568. doi: 10.1097/01.ASN.0000140220.46477.5C. PubMed DOI
Ferrante M.I., Zullo A., Barra A., Bimonte S., Messaddeq N., Studer M., Dollé P., Franco B. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat. Genet. 2006;38:112–117. doi: 10.1038/ng1684. PubMed DOI
Singla V., Romaguera-Ros M., Garcia-Verdugo J.M., Reiter J.F. Ofd1, a Human Disease Gene, Regulates the Length and Distal Structure of Centrioles. Dev. Cell. 2010;18:410–424. doi: 10.1016/j.devcel.2009.12.022. PubMed DOI PMC
Lopes C.A.M., Prosser S.L., Romio L., Hirst R.A., O’Callaghan C., Woolf A.S., Fry A.M. Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J. Cell Sci. 2011;124:600–612. doi: 10.1242/jcs.077156. PubMed DOI PMC
Chetty-John S., Piwnica-Worms K., Bryant J., Bernardini I., Fischer R.E., Heller T., Gahl W.A., Gunay-Aygun M. Fibrocystic disease of liver and pancreas; under-recognized features of the X-linked ciliopathy oral-facial-digital syndrome type 1 (OFD I) Am. J. Med. Genet. 2010;152:2640–2645. doi: 10.1002/ajmg.a.33666. PubMed DOI PMC
Thauvin-Robinet C., Cossée M., Cormier-Daire V., Van Maldergem L., Toutain A., Alembik Y., Bieth E., Layet V., Parent P., David A., et al. Clinical, molecular, and genotype-phenotype correlation studies from 25 cases of oral-facial-digital syndrome type 1: A French and Belgian collaborative study. J. Med. Genet. 2006;43:54–61. doi: 10.1136/jmg.2004.027672. PubMed DOI PMC
Saal S., Faivre L., Aral B., Gigot N., Toutain A., Van Maldergem L., Destree A., Maystadt I., Cosyns J.-P.P., Jouk P.-S.S., et al. Renal insufficiency, a frequent complication with age in oral-facial-digital syndrome type I. Clin. Genet. 2010;77:258–265. doi: 10.1111/j.1399-0004.2009.01290.x. PubMed DOI
Marina M., Franco B. The molecular basis of oral-facial-digital syndrome, type 1. Am. J. Med. Genet. Part C Semin. Med. Genet. 2009;151:318–325. doi: 10.1002/ajmg.c.30224. PubMed DOI
Zullo A., Iaconis D., Barra A., Cantone A., Messaddeq N., Capasso G., Dollé P., Igarashi P., Franco B. Kidney-specific inactivation of Ofd1 leads to renal cystic disease associated with upregulation of the mTOR pathway. Hum. Mol. Genet. 2010;19:2792–2803. doi: 10.1093/hmg/ddq180. PubMed DOI PMC
Bimonte S., De Angelis A., Quagliata L., Giusti F., Tammaro R., Dallai R., Ascenzi M.-G.G., Diez-Roux G., Franco B. Ofd1 is required in limb bud patterning and endochondral bone development. Dev. Biol. 2011;349:179–191. doi: 10.1016/j.ydbio.2010.09.020. PubMed DOI
Ferrante M.I., Romio L., Castro S., Collins J.E., Goulding D.A., Stemple D.L., Woolf A.S., Wilson S.W. Convergent extension movements and ciliary function are mediated by ofd1, a zebrafish orthologue of the human oral-facial-digital type 1 syndrome gene. Hum. Mol. Genet. 2009;18:289–303. doi: 10.1093/hmg/ddn356. PubMed DOI PMC
Lelièvre H., Chevrier V., Tassin A.-M., Birnbaum D. Myeloproliferative disorder FOP-FGFR1 fusion kinase recruits phosphoinositide-3 kinase and phospholipase Cgamma at the centrosome. Mol. Cancer. 2008;7:30. doi: 10.1186/1476-4598-7-30. PubMed DOI PMC
Delaval B., Létard S., Lelièvre H., Chevrier V., Daviet L., Dubreuil P., Birnbaum D. Oncogenic tyrosine kinase of malignant hemopathy targets the centrosome. Cancer Res. 2005;65:7231–7240. doi: 10.1158/0008-5472.CAN-04-4167. PubMed DOI
Guasch G., Ollendorff V., Borg J.-P., Birnbaum D., Pébusque M.-J. 8p12 Stem Cell Myeloproliferative Disorder: The FOP-Fibroblast Growth Factor Receptor 1 Fusion Protein of the t(6;8) Translocation Induces Cell Survival Mediated by Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase/Akt/mTOR Pathways. Mol. Cell. Biol. 2001;21:8129–8142. doi: 10.1128/MCB.21.23.8129-8142.2001. PubMed DOI PMC
Guasch G., Delaval B., Arnoulet C., Xie M.J., Xerri L., Sainty D., Birnbaum D., Pébusque M.J. FOP-FGFR1 tyrosine kinase, the product of a t(6;8) translocation, induces a fatal myeloproliferative disease in mice. Blood. 2004;103:309–312. doi: 10.1182/blood-2003-05-1690. PubMed DOI
Mikolajka A., Yan X., Popowicz G.M., Smialowski P., Nigg E.A., Holak T.A. Structure of the N-terminal Domain of the FOP (FGFR1OP) Protein and Implications for its Dimerization and Centrosomal Localization. J. Mol. Biol. 2006;359:863–875. doi: 10.1016/j.jmb.2006.03.070. PubMed DOI
Hori A., Toda T. Regulation of centriolar satellite integrity and its physiology. Cell. Mol. Life Sci. 2016;74:213–229. doi: 10.1007/s00018-016-2315-x. PubMed DOI PMC
Odabasi E., Gul S., Kavakli I.H., Firat-Karalar E.N. Centriolar satellites are required for efficient ciliogenesis and ciliary content regulation. EMBO Rep. 2019;20:1–20. doi: 10.15252/embr.201947723. PubMed DOI PMC
Tollenaere M.A.X., Mailand N., Bekker-Jensen S. Centriolar satellites: Key mediators of centrosome functions. Cell. Mol. Life Sci. 2015;72:11–23. doi: 10.1007/s00018-014-1711-3. PubMed DOI PMC
Bärenz F., Mayilo D., Gruss O.J. Centriolar satellites: Busy orbits around the centrosome. Eur. J. Cell Biol. 2011;90:983–989. doi: 10.1016/j.ejcb.2011.07.007. PubMed DOI
Yan X., Habedanck R., Nigg E.A. A Complex of Two Centrosomal Proteins, CAP350 and FOP, Cooperates with EB1 in Microtubule Anchoring. Mol. Biol. Cell. 2006;17:634–644. doi: 10.1091/mbc.e05-08-0810. PubMed DOI PMC
Mohammadi M., McMahon G., Sun L., Tang C., Hirth P., Yeh B.K., Hubbard S.R., Schlessinger J. Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science. 1997;276:955–960. doi: 10.1126/science.276.5314.955. PubMed DOI
Mohammadi M., Honegger A.M., Rotin D., Fischer R., Bellot F., Li W., Dionne C.A., Jaye M., Rubinstein M., Schlessinger J. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol. Cell. Biol. 1991;11:5068–5078. doi: 10.1128/MCB.11.10.5068. PubMed DOI PMC
Lee J.Y., Hong W.J., Majeti R., Stearns T. Centrosome-kinase fusions promote oncogenic signaling and disrupt centrosome function in myeloproliferative neoplasms. PLoS ONE. 2014;9:e92641. doi: 10.1371/journal.pone.0092641. PubMed DOI PMC
Lee J.Y., Stearns T. FOP Is a Centriolar Satellite Protein Involved in Ciliogenesis. PLoS ONE. 2013;8:e58589. doi: 10.1371/journal.pone.0058589. PubMed DOI PMC
Mojarad B.A., Gupta G.D., Hasegan M., Goudiam O., Basto R., Gingras A.C., Pelletier L. CEP19 cooperates with FOP and CEP350 to drive early steps in the ciliogenesis programme. Open Biol. 2017;7 doi: 10.1098/rsob.170114. PubMed DOI PMC
Cabaud O., Roubin R., Comte A., Bascunana V., Sergé A., Sedjaï F., Birnbaum D., Rosnet O., Acquaviva C. Mutation of FOP/FGFR1OP in mice recapitulates human short rib-polydactyly ciliopathy. Hum. Mol. Genet. 2018;27:3377–3391. doi: 10.1093/hmg/ddy246. PubMed DOI
Bangs F., Anderson K.V. Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harb. Perspect. Biol. 2017;9:a028175. doi: 10.1101/cshperspect.a028175. PubMed DOI PMC
Satir P., Christensen S.T. Overview of Structure and Function of Mammalian Cilia. Annu. Rev. Physiol. 2007;69:377–400. doi: 10.1146/annurev.physiol.69.040705.141236. PubMed DOI
Giehl M., Fabarius A., Frank O., Hochhaus A., Hafner M., Hehlmann R., Seifarth W. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia. 2005;19:1192–1197. doi: 10.1038/sj.leu.2403779. PubMed DOI
Ren M., Qin H., Kitamura E., Cowell J.K. Dysregulated signaling pathways in the development of CNTRL-FGFR1-induced myeloid and lymphoid malignancies associated with FGFR1 in human and mouse models. Blood. 2013;122:1007–1016. doi: 10.1182/blood-2013-03-489823. PubMed DOI PMC
Ren M., Qin H., Ren R., Tidwell J., Cowell J.K. Src activation plays an important key role in lymphomagenesis induced by FGFR1 fusion kinases. Cancer Res. 2011;71:7312–7322. doi: 10.1158/0008-5472.CAN-11-1109. PubMed DOI PMC
Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Ren M., Qin H., Ren R., Cowell J.K. Ponatinib suppresses the development of myeloid and lymphoid malignancies associated with FGFR1 abnormalities. Leukemia. 2013;27:32–40. doi: 10.1038/leu.2012.188. PubMed DOI PMC
Ou Y.Y., Mack G.J., Zhang M., Rattner J.B. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J. Cell Sci. 2002;115:1825–1835. doi: 10.1242/jcs.115.9.1825. PubMed DOI
Kashihara H., Chiba S., Kanno S.-I., Suzuki K., Yano T., Tsukita S. Cep128 associates with Odf2 to form the subdistal appendage of the centriole. Genes Cells. 2019;24:231–243. doi: 10.1111/gtc.12668. PubMed DOI
Sun T.-Y., Wang H.-Y., Kwon J.-W., Yuan B., Lee I.-W., Cui X.-S., Kim N.-H. Centriolin, a centriole-appendage protein, regulates peripheral spindle migration and asymmetric division in mouse meiotic oocytes. Cell Cycle. 2017;16:1774–1780. doi: 10.1080/15384101.2016.1264544. PubMed DOI PMC
Chen C.-T., Hehnly H., Yu Q., Farkas D., Zheng G., Redick S.D., Hung H.-F., Samtani R., Jurczyk A., Akbarian S., et al. A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation. Curr. Biol. 2014;24:2327–2334. doi: 10.1016/j.cub.2014.08.029. PubMed DOI PMC
Lassman A.B., Sepúlveda-Sánchez J.M., Cloughesy T., Gil-Gil J.M., Puduvalli V.K., Raizer J., De Vos F.Y., Wen P.Y., Butowski N., Clement P., et al. OS10.6 Infigratinib (BGJ398) in patients with recurrent gliomas with fibroblast growth factor receptor (FGFR) alterations: A multicenter phase II study. Neuro. Oncol. 2019;21:iii21–iii22. doi: 10.1093/neuonc/noz126.072. DOI
Goyal L., Shi L., Liu L.Y., de la Cruz F.F., Lennerz J.K., Raghavan S., Leschiner I., Elagina L., Siravegna G., Ng R.W.S., et al. TAS-120 overcomes resistance to atp-competitive FGFR inhibitors in patients with FGFR2 fusion–positive intrahepatic cholangiocarcinoma. Cancer Discov. 2019;9:1064–1079. doi: 10.1158/2159-8290.CD-19-0182. PubMed DOI PMC
Krzyscik M.A., Zakrzewska M., Otlewski J. Site-Specific, Stoichiometric-Controlled, PEGylated Conjugates of Fibroblast Growth Factor 2 (FGF2) with Hydrophilic Auristatin y for Highly Selective Killing of Cancer Cells Overproducing Fibroblast Growth Factor Receptor 1 (FGFR1) Mol. Pharm. 2020;17:2734–2748. doi: 10.1021/acs.molpharmaceut.0c00419. PubMed DOI PMC
Porębska N., Latko M., Kucińska M., Zakrzewska M., Otlewski J., Opaliński Ł. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J. Clin. Med. 2018;8:7. doi: 10.3390/jcm8010007. PubMed DOI PMC
Canning P., Park K., Gonçalves J., Li C., Howard C.J., Sharpe T.D., Holt L.J., Pelletier L., Bullock A.N., Leroux M.R. CDKL Family Kinases Have Evolved Distinct Structural Features and Ciliary Function. Cell Rep. 2018;22:885–894. doi: 10.1016/j.celrep.2017.12.083. PubMed DOI PMC
Harrington K.J., Hingorani M., Tanay M.A., Hickey J., Bhide S.A., Clarke P.M., Renouf L.C., Thway K., Sibtain A., McNeish I.A., et al. Phase I/II study of oncolytic HSVGM-CSFin combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin. Cancer Res. 2010;16:4005–4015. doi: 10.1158/1078-0432.CCR-10-0196. PubMed DOI
Heo J., Reid T., Ruo L., Breitbach C.J., Rose S., Bloomston M., Cho M., Lim H.Y., Chung H.C., Kim C.W., et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 2013;19:329–336. doi: 10.1038/nm.3089. PubMed DOI PMC
Freytag S.O., Stricker H., Lu M., Elshaikh M., Aref I., Pradhan D., Levin K., Kim J.H., Peabody J., Siddiqui F., et al. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014;89:268–276. doi: 10.1016/j.ijrobp.2014.02.034. PubMed DOI PMC
Ronca R., Giacomini A., Di Salle E., Coltrini D., Pagano K., Ragona L., Matarazzo S., Rezzola S., Maiolo D., Torrella R., et al. Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy. Cancer Cell. 2015;28:225–239. doi: 10.1016/j.ccell.2015.07.002. PubMed DOI
FGFR2 residence in primary cilia is necessary for epithelial cell signaling