An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
UL1 TR000124
NCATS NIH HHS - United States
T32 HG002536
NHGRI NIH HHS - United States
R01 DE019567
NIDCR NIH HHS - United States
R01 AR062651
NIAMS NIH HHS - United States
UM1 HG006493
NHGRI NIH HHS - United States
R01 AR066124
NIAMS NIH HHS - United States
PubMed
27466187
PubMed Central
PMC5291234
DOI
10.1093/hmg/ddw240
PII: ddw240
Knihovny.cz E-zdroje
- MeSH
- cilie genetika patologie MeSH
- exom genetika MeSH
- kojenec MeSH
- kostra abnormality růst a vývoj MeSH
- lidé MeSH
- MAP kinasový signální systém MeSH
- mnohočetné abnormality genetika patofyziologie MeSH
- protein-serin-threoninkinasy genetika MeSH
- proteiny hedgehog genetika MeSH
- rodokmen MeSH
- sekvenční analýza DNA MeSH
- signální transdukce MeSH
- syndrom krátkého žebra a polydaktylie genetika patologie MeSH
- těhotenství MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CILK1 protein, human MeSH Prohlížeč
- protein-serin-threoninkinasy MeSH
- proteiny hedgehog MeSH
The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.
Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czech Republic
College of Pharmacy Dongguk University Seoul Goyang 410 820 Korea
Department of Biology Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Department of Genome Sciences University of Washington Seattle WA 98195 USA
Department of Human Genetics University of California Los Angeles Los Angeles CA 90095 USA
Department of Orthopaedic Surgery
Division of Genetic Medicine Department of Pediatrics University of Washington Seattle WA 98195 USA
Division of Genetic Medicine Seattle Children's Hospital Seattle WA 98105 USA
Institute of Experimental Biology Masaryk University 62500 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Provot S., Schipani E. (2005) Molecular mechanisms of endochondral bone development. Biochem. Biophys. Res. Commun., 328, 658–865. PubMed
Bonafe L., Cormier-Daire V., Hall C., Lachman R., Mortier G., Mundlos S., Nishimura G., Sangiorgi L., Savarirayan R., Sillence D., et al. (September 23, 2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. A, 10.1002/ajmg.a.37365. PubMed
Huber C., Cormier-Daire V. (2012) Ciliary disorder of the skeleton. Am. J. Med. Genet. C Semin. Med. Genet., 160C, 165–174. PubMed
Beales P.L., Bland E., Tobin J.L., Bacchelli C., Tuysuz B., Hill J., Rix S., Pearson C.G., Kai M, Hartley J., et al. (2007) IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat. Genet., 39, 727–729. PubMed
Cavalcanti D.P., Huber C., Sang K.H., Baujat G., Collins F., Delezoide A.L., Dagoneau N. L., Merrer M., Martinovic J., Mello M.F., et al. (2011) Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum. J. Med. Genet., 48, 88–92. PubMed
Bredrup C., Saunier S., Oud M.M., Fiskerstrand T., Hoischen A., Brackman D., Leh S.M., Midtbø M., Filhol E., Bole-Feysot C., et al. (2011) Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am. J. Hum. Genet., 89, 634–643. PubMed PMC
Huber C., Wu S., Kim A.S., Sigaudy S., Sarukhanov A., Serre V., Baujat G.L., Quan Sang K.H., Rimoin D.L., Cohn D.H., et al. (2013) WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia. Am. J. Hum. Genet., 93, 926–931. PubMed PMC
Schmidts M., Vodopiutz J., Christou-Savina S., Cortés C.R., McInerney-Leo A.M., Emes R.D., Arts H.H., Tüysüz B., D'Silva J., Leo P.J., et al. (2013) Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am. J. Hum. Genet., 93, 932–944. PubMed PMC
Gilissen C., Arts H.H., Hoischen A., Spruijt L., Mans D.A., Arts P., van Lier B., Steehouwer M., van Reeuwijk J., Kant S.G., et al. (2010) Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet., 87, 418–423. PubMed PMC
Mill P., Lockhart P.J., Fitzpatrick E., Mountford H.S., Hall E.A., Reijns M.A., Keighren M., Bahlo M., Bromhead C.J., Budd P., et al. (2011) Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. Am. J. Hum. Genet., 88, 508–515. PubMed PMC
Perrault I., Saunier S., Hanein S., Filhol E., Bizet A.A., Collins F., Salih M.A., Gerber S., Delphin N., Bigot K., et al. (2012) Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am. J. Hum. Genet., 90, 864–870. PubMed PMC
Schmidts M., Frank V., Eisenberger T., Al Turki S., Bizet A.A., Antony D., Rix S., Decker C., Bachmann N., Bald M., et al. (2013) Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease. Hum. Mutat., 34, 714–724. PubMed PMC
Halbritter J., Bizet A.A., Schmidts M., Porath J.D., Braun D.A., Gee H.Y., McInerney-Leo A.M., Krug P., Filhol E., Davis E.E., et al. (2013) Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet., 93, 915–925. PubMed PMC
McInerney-Leo A.M., Schmidts M., Cortés C.R., Leo P.J., Gener B., Courtney A.D., Gardiner B., Harris J.A., Lu Y., Marshall M., et al. (2013) Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am. J. Hum. Genet., 93, 515–523. PubMed PMC
Davis E.E., Zhang Q., Liu Q., Diplas B.H., Davey L.M., Hartley J., Stoetzel C., Szymanska K., Ramaswami G., Logan C.V., et al. (2011) TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat. Genet., 43, 189–196. PubMed PMC
Dagoneau N., Goulet M., Geneviève D., Sznajer Y., Martinovic J., Smithson S., Huber C., Baujat G., Flori E., Tecco L. et al. (2009) DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am. J. Hum. Genet., 84, 706–711. PubMed PMC
Merrill A.E., Merriman B., Farrington-Rock C., Camacho N., Sebald E.T., Funari V.A., Schibler M.J., Firestein M.H., Cohn Z.A., Priore M.A., et al. (2009) Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am. J. Hum. Genet., 84, 542–549. PubMed PMC
Taylor S.P., Dantas T.J., Duran I., Wu S., Lachman R.S., University of Washington Center for Mendelian Genomics Consortium. Nelson S.F., Cohn D.H., Vallee R.B., Krakow D. (2015) Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat. Commun., 6, 7092. PubMed PMC
Shaheen R., Schmidts M., Faqeih E., Hashem A., Lausch E., Holder I., Superti-Furga A.U.K.10K., Consortium, Mitchison H.M., Almoisheer A., et al. (2015) A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies. Hum. Mol. Genet., 24, 1410–1419. PubMed PMC
Malicdan M.C., Vilboux T., Stephen J., Maglic D., Mian L., Konzman D., Guo J., Yildirimli D., Bryant J., Fischer R., et al. (September 18, 2015) Mutations in human homologue of chicken talpid3 gene (KIAA0586) cause a hybrid ciliopathy with overlapping features of Jeune and Joubert syndromes. J. Med. Genet., 10.1136/jmedgenet-2015-103316. PubMed PMC
Alby C., Piquand K., Huber C., Megarbané A., Ichkou A., Legendre M., Pelluard F., Encha-Ravazi F., Abi-Tayeh G., Bessières B., et al. (2015) Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome. Am. J. Hum. Genet., 97, 311–318. PubMed PMC
Fu Z., Kim J., Vidrich A., Sturgill T.W., Cohn S.M. (2009) Intestinal cell kinase, a MAP kinase-related kinase, regulates proliferation and G1 cell cycle progression of intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 297, G632–G640. PubMed PMC
Yang Y., Roine N., Mäkelä T.P. (2013) CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner. EMBO Rep., 14, 741–747. PubMed PMC
Burghoorn J., Dekkers M.P., Rademakers S., de Jong T., Willemsen R., Jansen G. (2007) Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A, 104, 7157–7162. PubMed PMC
Berman S.A., Wilson N.F., Haas N.A., Lefebvre P.A. (2003) A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol., 13, 1145–1149. PubMed
Bengs F., Scholz A., Kuhn D., Wiese M. (2005) LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol. Microbiol., 55, 1606–1615. PubMed
Lahiry P., Wang J., Robinson J.F., Turowec J.P., Litchfield D.W., Lanktree M.B., Gloor G.B., Puffenberger E.G., Strauss K.A., Martens M.B., et al. (2009) A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am. J. Hum. Genet., 84, 134–147. PubMed PMC
Oud M.M., Bonnard C., Mans D.A., Altunoglu U., Tohari S., Ng A.Y., Eskin A., Lee H., Rupar C.A., de Wagenaar N.P., et al. (2016) A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome. Cilia, 5, doi: 10.1186/s13630-016-0029-1. PubMed PMC
Moon H., Song J., Shin J.O., Lee H., Kim H.K., Eggenschwiller J.T., Bok J., Ko H.W. (2014) Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling. Proc. Natl. Acad. Sci. U. S. A., 111, 8541–8546. PubMed PMC
Chaya T., Omori Y., Kuwahara R., Furukawa T. (2014) ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. Embo J., 33, 1227–1242. PubMed PMC
Fu Z., Larson K.A., Chitta R.K., Parker S.A., Turk B.E., Lawrence M.W., Kaldis P., Galaktionov K., Cohn S.M., Shabanowitz J., et al. (2006) Identification of yin-yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol. Cell. Biol., 26, 8639–8654. PubMed PMC
Fu Z., Schroeder M.J., Shabanowitz J., Kaldis P., Togawa K., Rustgi A.K., Hunt D.F., Sturgill T.W. (2005) Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol. Cell. Biol., 25, 6047–6064. PubMed PMC
Wang L.Y., Kung H.J. (2012) Male germ cell-associated kinase is overexpressed in prostate cancer cells and causes mitotic defects via deregulation of APC/C-CDH1. Oncogene, 31, 2907–2918. PubMed PMC
Broekhuis J.R., Verhey K.J., Jansen G. (2014) Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One., 9, e108470.. PubMed PMC
Chen J.K., Taipale J., Young K.E., Maiti T., Beachy P.A. (2002) Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. U. S. A., 99, 14071–14076. PubMed PMC
Kronenberg H.M. (2006) PTHrP and skeletal development. Ann. N. Y. Acad. Sci., 1068, 1–13. PubMed
Krejci P., Salazar L., Goodridge H.S., Kashiwada T.A., Schibler M.J., Jelinkova P., Thompson L.M., Wilcox W.R. (2008) STAT1 and STAT3 do not participate in FGF-mediated growth arrest in chondrocytes. J. Cell Sci., 121, 272–281. PubMed
Krejci P., Prochazkova J., Smutny J., Chlebova K., Lin P., Aklian A., Bryja V., Kozubik A., Wilcox W.R. (2010) FGFR3 signaling induces a reversible senescence phenotype in chondrocytes similar to oncogene-induced premature senescence. Bone, 47, 102–110. PubMed PMC
He M., Subramanian R., Bangs F., Omelchenko T., Liem K.F., Jr., Kapoor T.M., Anderson K.V. (2014) The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol., 16, 663–672. PubMed PMC
Rosenbaum J.L., Witman G.B. (2002) Intraflagellar transport. Nat. Rev. Mol. Cell Biol., 3, 813–825. PubMed
Pazour G.J., Bloodgood R.A. (2008) Targeting proteins to ciliary membrane. Curr. Top. Dev. Biol., 85, 115–149. PubMed
Dishinger J.F., Kee H.L., Jenkins P.M., Fan S., Hurd T.W., Hammond J.W., Truong Y.N., Margolis B., Martens J.R., Verhey K.J. (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell. Biol., 12, 703–710. PubMed PMC
Wong S.Y., Reiter J.F. (2008) The primary cilium at the crossroads of mammalian hedgehog signaling. Curr. Top. Dev. Biol., 85, 225–260. PubMed PMC
te Welscher P., Zuniga A., Kuijper S., Drenth T., Goedemans H.J., Meijlink F., Zeller R. (2002) Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science, 298, 827–830. PubMed
Haycraft C.J., Zhang Q., Song B., Jackson W.S., Detloff P.J., Serra R., Yoder B.K. (2007) Intraflagellar transport is essential for endochondral bone formation. Development, 134, 307–316. PubMed
Liu A., Wang B., Niswander L.A. (2005) Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132, 3103–3111. PubMed
Jia J., Kolterud A., Zeng H., Hoover A., Teglund S., Toftgård R., Liu A. (2009) Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev. Biol., 330, 452–460. PubMed PMC
Hoover A.N., Wynkoop A., Zeng H., Jia J., Niswander L.A., Liu A. (2008) C2cd3 is required for cilia formation and Hedgehog signaling in mouse. Development, 135, 4049–4058. PubMed PMC
Huangfu D., Anderson K.V. (2005) Cilia and Hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. U. S. A., 102, 11325–11330. PubMed PMC
Heydeck W., Zeng H., Liu A. (2009) Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev. Dyn., 238, 3035–3042. PubMed
Cortellino S., Wang C., Wang B., Bassi M.R., Caretti E., Champeval D., Calmont A., Jarnik M., Burch J., Zaret K.S., et al. (2009) Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4. Dev. Biol., 325, 225–237. PubMed PMC
Cheung H.O., Zhang X., Ribeiro A., Mo R., Makino S., Puviindran V., Law K.K., Briscoe J., Hui C.C. (2009) The kinesin protein Kif7 is a critical regulator of Gli transcription factors in mammalian hedgehog signaling. Sci. Signal., 2, ra29.. PubMed
Endoh-Yamagami S., Evangelista M., Wilson D., Wen X., Theunissen J.W., Phamluong K., Davis M., Scales S.J., Solloway M.J., de Sauvage F.J., et al. (2009) The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development. Curr. Biol., 19, 1320–1326. PubMed
Liem K.F., Jr., He M., Ocbina P.J., Anderson K.V. (2009) Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc. Natl. Acad. Sci. U. S. A., 106, 13377–13382. PubMed PMC
Tukachinsky H., Lopez L.V., Salic A. (2010) A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J. Cell Biol., 191, 415–428. PubMed PMC
Wilcox W.R., Tavormina P.L., Krakow D., Kitoh H., Lachman R.S., Wasmuth J.J., Thompson L.M., Rimoin D.L. (1998) Molecular, radiologic, and histopathologic correlations in thanatophoric dysplasia. Am. J. Med. Genet., 78, 274–281. PubMed
Krejci P. (2014) The paradox of FGFR3 signaling in skeletal dysplasia: why chondrocytes growth arrest while other cells over proliferate. Mutat. Res. Rev. Mutat. Res., 759, 40–48. PubMed
Chen Z., Yue S.X., Zhou G., Greenfield E.M., Murakami S. (2015) ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation. J. Bone Miner. Res., 30, 765–774. PubMed PMC
Thiel C., Kessler K., Giessl A., Dimmler A., Shalev S.A., von der Haar S., Zenker M., Zahnleiter D., Stöss H., Beinder E., et al. (2011) NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am. J. Hum. Genet., 88, 106–114. PubMed PMC
White M.C., Quarmby L.M. (2008) The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol., 9, 29.. PubMed PMC
Letwin K., Mizzen L., Motro B., Ben-David Y., Bernstein A., Pawson T. (1992) A mammalian dual specificity protein kinase, Nek1, is related to the NIMA cell cycle regulator and highly expressed in meiotic germ cells. Embo J., 11, 3521–3531. PubMed PMC
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome. Res., 20, 1297–1303. PubMed PMC
DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43, 491–498. PubMed PMC
Van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., et al. (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics, 11, 11.10.1 –11.10.33. PubMed PMC
Yourshaw M., Taylor S.P., Rao A.R., Martín M.G., Nelson S.F. (2015) Rich annotation of DNA sequencing variants by leveraging the Ensembl Variant Effect Predictor with plugins. Brief Bioinform., 16, 255–264. PubMed PMC
Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248–249. PubMed PMC
Kumar P., Henikoff S., Ng P.C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc., 4, 1073–1081. PubMed
González-Pérez A., López-Bigas N. (2011) Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet., 88, 440–449. PubMed PMC
Kircher M., Witten D.M., Jain P., O'Roak B.J., Cooper G.M., Shendure J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46, 310–315. PubMed PMC
Duran I., Marí-Beffa M., Santamaría J.A., Becerra J., Santos-Ruiz L. (2011) Freeze substitution followed by low melting point wax embedding preserves histomorphology and allows protein and mRNA localization techniques. Microsc. Res. Tech., 74, 440–448. PubMed
Kelley L.A., Sternberg M.J. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc., 4, 363–371. PubMed
Marchler-Bauer A., Zheng C., Chitsaz F., Derbyshire M.K., Geer L.Y., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Lanczycki C.J., et al. (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res., 41, D348–D352. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605–1612. PubMed
Hui C.C., Joyner A.L. (1993) A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat. Genet., 3, 241–246. PubMed
Milenkovic L., Goodrich L.V., Higgins K.M., Scott M.P. (1999) Mouse patched1 controls body size determination and limb patterning. Development, 126, 4431–4440. PubMed
Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling
Mutations in GRK2 cause Jeune syndrome by impairing Hedgehog and canonical Wnt signaling