• This record comes from PubMed

Cilia kinases in skeletal development and homeostasis

. 2022 Apr ; 251 (4) : 577-608. [epub] 20211018

Language English Country United States Media print-electronic

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.

See more in PubMed

Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn. 2020;250:414-449. doi:10.1002/dvdy.278

Akiyama H, Chaboissier MC, Martin JF, Schedl A, De Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813-2828. doi:10.1101/gad.1017802

Bi W, Deng JM, Zhang Z, Behringer RR, De Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22(1):85-89. doi:10.1038/8792

Lefrebvre V, de Crombrugghe B. Toward understanding S0X9 function in chondrocyte differentiation. Matrix Biol. 1998;16(9):529-540. doi:10.1016/s0945-053x(98)90065-8

Rooney P, Archer CW. The development of the perichondrium in the avian ulna. J Anat. 1992;181(3):393-401.

Mundy C, Yang E, Takano H, Billings PC, Pacifici M. Heparan sulfate antagonism alters bone morphogenetic protein signaling and receptor dynamics, suggesting a mechanism in hereditary multiple exostoses. J Biol Chem. 2018;293(20):7703-7716. doi:10.1074/jbc.RA117.000264

Long F, Linsenmayer TF. Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development. 1998;125(6):1067-1073.

Hunziker EB. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech. 1994;28(6):505-519. doi:10.1002/jemt.1070280606

Hirota K, Yasoda A, Kanai Y, et al. Live imaging analysis of the growth plate in a murine long bone explanted culture system. Sci Rep. 2018;8(1):1-10. doi:10.1038/s41598-018-28742-x

Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332-336. doi:10.1038/nature01657

Hallett SA, Ono W, Ono N. Growth plate chondrocytes: skeletal development, growth and beyond. Int J Mol Sci. 2019;20(23):1-17. doi:10.3390/ijms20236009

Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613-622. doi:10.1126/science.273.5275.613

St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072-2086. doi:10.1101/gad.13.16.2072

Karp SJ, Schipani E, St-Jacques B, Hunzelman J, Kronenberg H, McMahon AP. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development. 2000;127(3):543-548.

Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes Dev. 2002;16(7):859-869. doi:10.1101/gad.965602

Li Y, Dudley AT. Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development. 2009;136(7):1083-1092. doi:10.1242/dev.023820

Tamamura Y, Otani T, Kanatani N, et al. Developmental regulation of Wnt/β-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem. 2005;280(19):19185-19195. doi:10.1074/jbc.M414275200

Houben A, Kostanova-Poliakova D, Weissenböck M, et al. β-Catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis. Development. 2016;143(20):3826-3838. doi:10.1242/dev.137489

Glass DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751-764. doi:10.1016/j.devcel.2005.02.017

Enomoto-Iwamoto M, Kitagaki J, Koyama E, et al. The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol. 2002;251(1):142-156. doi:10.1006/dbio.2002.0802

Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623-628. doi:10.1038/9467

Mayr-wohlfart U, Waltenberger J, Hausser H, et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone. 2002;30(3):472-477. doi:10.1016/S8756-3282(01)00690-1

Romeo SG, Alawi KM, Rodrigues J, Singh A, Kusumbe AP, Ramasamy SK. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nat Cell Biol. 2019;21(4):430-441. doi:10.1038/s41556-019-0304-7

Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 2019;15(4):199-219. doi:10.1038/s41581-019-0116-9

Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18(9):533-547. doi:10.1038/nrm.2017.60

Wang L, Dynlacht BD. The regulation of cilium assembly and disassembly in development and disease. Dev. 2018;145(18):dev151407. doi:10.1242/dev.151407

Webb S, Mukhopadhyay AG, Roberts AJ. Intraflagellar transport trains and motors: insights from structure. Semin Cell Dev Biol. 2020;107:82-90. doi:10.1016/j.semcdb.2020.05.021

Wingfield JL, Mekonnen B, Mengoni I, et al. In vivo imaging shows continued association of several IFT a, B and dynein complexes while IFT trains U-turn at the tip. J Cell Sci. 2021;20:jcs259010. doi:10.1242/jcs.259010.

Cole DG. Kinesin-II, the Heteromeric Kinesin. Cell Mol Life Sci. 1999;56(3-4):217-226. doi:10.1007/s000180050423

Kozminski KG, Beech PL, Rosenbaum JL. The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol. 1995;131(6 Pt 1):1517-1527. doi:10.1083/jcb.131.6.1517

Lechtreck KF. IFT-cargo interactions and protein transport in cilia. Trends Biochem Sci. 2015;40(12):765-778. doi:10.1016/j.tibs.2015.09.003

Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol. 2020;55(2):179-196. doi:10.1080/10409238.2020.1768206

Chien A, Min Shih S, Bower R, Tritschler D, Porter ME, Yildiz A. Dynamics of the IFT machinery at the ciliary tip. Elife. 2017;6:1-25. doi:10.7554/eLife.28606

Pedersen LB, Geimer S, Rosenbaum JL. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr Biol. 2006;16(5):450-459. doi:10.1016/j.cub.2006.02.020

Badgandi HB, Hwang SH, Shimada IS, Loriot E, Mukhopadhyay S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J Cell Biol. 2017;216(3):743-760. doi:10.1083/jcb.201607095

Marszalek JR, Ruiz-lozano P, Roberts E, Chien KR, Goldstein LS. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA. 1999;96:5043-5048.

Nonaka S, Tanaka Y, Okada Y, et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 1998;95(6):839-837.

Zhang W, Taylor SP, Nevarez L, et al. IFT52 mutations destabilize anterograde complex assembly, disrupt ciliogenesis and result in short rib polydactyly syndrome. Hum Mol Genet. 2016;25(18):4012-4020. doi:10.1093/hmg/ddw241

Xin D, Christopher KJ, Zeng L, Kong Y, Weatherbee SD. IFT56 regulates vertebrate developmental patterning by maintaining IFTB complex integrity and ciliary microtubule architecture. Development. 2017;144(8):1544-1553. doi:10.1242/dev.143255

Teng J, Rai T, Tanaka Y, et al. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nat Cell Biol. 2005;7(5):474-482. doi:10.1038/ncb1249

Houde C, Dickinson RJ, Houtzager VM, et al. Hippi is essential for node cilia assembly and sonic hedgehog signaling. Dev Biol. 2006;300(2):523-533. doi:10.1016/j.ydbio.2006.09.001

Botilde Y, Yoshiba S, Shinohara K, et al. Cluap1 localizes preferentially to the base and tip of cilia and is required for ciliogenesis in the mouse embryo. Dev Biol. 2013;381(1):203-212. doi:10.1016/j.ydbio.2013.05.024

Takei R, Katoh Y, Nakayama K. Robust interaction of IFT70 with IFT52-IFT88 in the IFT-B complex is required for ciliogenesis. Biol Open. 2018;7(5):bio033241. doi:10.1242/bio.033241

Berbari NF, Kin NW, Sharma N, Michaud EJ, Kesterson RA, Yoder BK. Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. Dev Biol. 2011;360(1):66-76. doi:10.1016/j.ydbio.2011.09.001

Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature. 2003;426(6962):83-87. doi:10.1038/nature02061

Keady BT, Samtani R, Tobita K, et al. IFT25 links the signal-dependent movement of hedgehog components to Intraflagellar transport. Dev Cell. 2012;22(5):940-951. doi:10.1016/j.devcel.2012.04.009

Eguether T, SanAgustin JT, Keady BT, et al. IFT27 links the bbsome to IFT for maintenance of the ciliary signaling compartment. Dev Cell. 2014;31(3):279-290. doi:10.1016/j.devcel.2014.09.011

Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA. HEF1-dependent aurora A activation induces disassembly of the primary cilium. Cell. 2007;129(7):1351-1363. doi:10.1016/j.cell.2007.04.035

Kinzel D, Boldt K, Davis EE, et al. Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell. 2010;19(1):66-77. doi:10.1016/j.devcel.2010.06.005

Wang QT, Holmgren RA. Nuclear import of cubitus interruptus is regulated by hedgehog via a mechanism distinct from ci stabilization and ci activation. Development. 2000;127(14):3131-3139.

Kim S, Lee K, Choi JH, Ringstad N, Dynlacht BD. Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 2015;6:8087. doi:10.1038/ncomms9087

Huangfu D, Anderson KV. Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A. 2005;102(32):11325-11330.

Litingtung Y, Dahn RD, Li Y, Fallon JF, Chiang C. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature. 2002;418(6901):979-983. doi:10.1038/nature01033

Forbes AJ, Nakano Y, Taylor AM, Ingham PW. Genetic analysis of hedgehog signalling in the drosophila embryo. Dev Suppl. 1993;119:115-124.

van den Heuvel M, Ingham PW. Smoothened encodes a receptor-like serpentine protein required for hedgehog signalling. Nature. 1996;382(6591):547-551. doi:10.1038/382547a0

Sasaki H, Hui C, Nakafuku M, Kondoh H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development. 1997;124(7):1313-1322.

Aza-Blanc P, Lin HY, Ruiz i Altaba A, Kornberg TB. Expression of the vertebrate Gli proteins in drosophila reveals a distribution of activator and repressor activities. Development. 2000;127(19):4293-4301.

Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S. Sonic hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem. 1999;274(12):8143-8152. doi:10.1074/jbc.274.12.8143

Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science. 2007;317(5836):372-376. doi:10.1126/science.1139740

Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 2005;1(4):e53. doi:10.1371/journal.pgen.0010053

Tukachinsky H, Lopez LV, Salic A. A mechanism for vertebrate hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol. 2010;191(2):415-428. doi:10.1083/jcb.201004108

Su Y, Ospina JK, Zhang J, Michelson AP, Schoen AM, Zhu AJ. Sequential phosphorylation of smoothened transduces graded hedgehog signaling. Sci Signal. 2011;4(180):ra43. doi:10.1126/scisignal.2001747

Mo R, Freer AM, Zinyk DL, et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development. 1997;124(1):113-123. doi:10.1242/dev.124.1.113

Miao D, Liu H, Plut P, et al. Impaired endochondral bone development and osteopenia in Gli2-deficient mice. Exp Cell Res. 2004;294(1):210-222. doi:10.1016/j.yexcr.2003.10.021

Long F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development. 2001;128(24):5099-5108.

Yuan X, Yang S. Deletion of IFT80 impairs epiphyseal and articular cartilage formation due to disruption of chondrocyte differentiation. PLoS One. 2015;10(6):e0130618. doi:10.1371/journal.pone.0130618

Koyama E, Young B, Nagayama M, et al. Conditional Kif3a ablation causes abnormal hedgehog signaling topography, growth plate dysfunction, and excessive bone and cartilage formation during mouse skeletogenesis. Development. 2007;134(11):2159-2169. doi:10.1242/dev.001586

Song B, Haycraft CJ, Seo H, Yoder BK, Serra R. Development of the post-natal growth plate requires intraflagellar transport proteins. Dev Biol. 2007;305(1):202-216. doi:10.1016/j.ydbio.2007.02.003

Kuss P, Kraft K, Stumm J, et al. Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A. Dev Biol. 2014;385(1):83-93. doi:10.1016/j.ydbio.2013.10.013

Ruhlen R, Marberry K. The chondrocyte primary cilium. Osteoarthr Cartil. 2014;22(8):1071-1076. doi:10.1016/j.joca.2014.05.011

Xiao Z, Quarles LD. Physiological mechanisms and therapeutic potential of bone mechanosensing. Rev Endocr Metab Disord. 2015;16(2):115-129. doi:10.1007/s11154-015-9313-4

Farnum CE, Wilsman NJ. Orientation of primary cilia of articular chondrocytes in three-dimensional space. Anat Rec. 2011;294(3):533-549. doi:10.1002/ar.21330

Poole CA, Zhang Z-J, Ross JM. The differential distribution of acetylated and detyrosinated alpha-tubulin in the microtubular cytoskeleton and primary cilia of hyaline cartilage chondrocytes. J Anat. 2001;199(4):393-405.

O'Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A. 2014;111(4):1316-1321. doi:10.1073/pnas.1319569111

Malone AMD, Anderson CT, Tummala P, et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA. 2007;104(33):13325-13330.

Wann AKT, Zuo N, Haycraft CJ, et al. Primary cilia mediate mechanotransduction through control of ATP-induced Ca2+ signaling in compressed chondrocytes. FASEB J off Publ Fed Am Soc Exp Biol. 2012;26(4):1663-1671. doi:10.1096/fj.11-193649

Qiu N, Xiao Z, Cao L, et al. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci. 2012;125(8):1945-1957. doi:10.1242/jcs.095893

McGlashan SR, Cluett EC, Jensen CG, Poole CA. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters. Dev Dyn. 2008;237(8):2013-2020. doi:10.1002/dvdy.21501

Thompson CL, Wiles A, Poole CA, Knight MM. Lithium chloride modulates chondrocyte primary cilia and inhibits hedgehog signaling. FASEB J. 2016;30(2):716-726. doi:10.1096/fj.15-274944

Lin AC, Seeto BL, Bartoszko JM, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med. 2009;15(12):1421-1425. doi:10.1038/nm.2055

Wann AKT, Knight MM. Primary cilia elongation in response to interleukin-1 mediates the inflammatory response. Cell Mol Life Sci. 2012;69(17):2967-2977. doi:10.1007/s00018-012-0980-y

Mortier GR, Cohn DH, Cormier-Daire V, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet Part A. 2019;179(12):2393-2419. doi:10.1002/ajmg.a.61366

Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for the skeletal dysplasias. J Med Genet. 1986;23(4):328-332. doi:10.1136/jmg.23.4.328

Handa A, Voss U, Hammarsjö A, Grigelioniene G, Nishimura G. Skeletal ciliopathies: a pattern recognition approach. Jpn J Radiol. 2020;38(3):193-206. doi:10.1007/s11604-020-00920-w

Martin L, Kaci N, Estibals V, et al. Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia. Hum Mol Genet. 2018;27(1):1-13. doi:10.1093/hmg/ddx374

Ornitz DM, Legeai-Mallet L. Achondroplasia: development, pathogenesis, and therapy. Dev Dyn. 2017;246(4):291-309. doi:10.1002/dvdy.24479

Bosakova MK, Varecha M, Hampl M, et al. Regulation of ciliary function by fibroblast growth factor signaling identifies FGFR3-related disorders achondroplasia and thanatophoric dysplasia as ciliopathies. Hum Mol Genet. 2018;27(6):1093-1105. doi:10.1093/hmg/ddy031

Shiang R, Thompson LM, Zhu YZ, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78(2):335-342. doi:10.1016/0092-8674(94)90302-6

Fry AM, O'Regan L, Sabir SR, Bayliss R. Cell cycle regulation by the NEK family of protein kinases. J Cell Sci. 2012;125(19):4423-4433. doi:10.1242/jcs.111195

Mahjoub MR, Trapp ML, Quarmby LM. NIMA-related kinases defective in murine models of polycystic kidney diseases localize to primary cilia and centrosomes. J Am Soc Nephrol. 2005;16(12):3485-3489. doi:10.1681/asn.2005080824

Surpili MJ, Delben TM, Kobarg J. Identification of proteins that interact with the central coiled-coil region of the human protein kinase NEK1. Biochemistry. 2003;42(51):15369-15376. doi:10.1021/bi034575v

White MC, Quarmby LM. The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol. 2008;9:1-11. doi:10.1186/1471-2121-9-29

Hilton LK, White MC, Quarmby LM. The NIMA-related kinase NEK1 cycles through the nucleus. Biochem Biophys Res Commun. 2009;389(1):52-56. doi:10.1016/j.bbrc.2009.08.086

Chen Y, Chiang HC, Litchfield P, Pena M, Juang C, Riley DJ. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease. J Biomed Sci. 2014;21(1):1-14. doi:10.1186/s12929-014-0063-5

Chen Y, Chen PL, Chen CF, Jiang X, Riley DJ. Never-in-mitosis related kinase 1 functions in DNA damage response and checkpoint control. Cell Cycle. 2008;7(20):3194-3201. doi:10.4161/cc.7.20.6815

Chen Y, Chen CF, Riley DJ, Chen PL. Nek1 kinase functions in DNA damage response and checkpoint control through a pathway independent of ATM and ATR. Cell Cycle. 2011;10(4):655-663. doi:10.4161/cc.10.4.14814

Yoshida S, Aoki K, Fujiwara K, et al. The novel ciliogenesis regulator DYRK2 governs hedgehog signaling during mouse embryogenesis. Elife. 2020;9:1-29. doi:10.7554/eLife.57381

Philipp M, Fralish GB, Meloni AR, et al. Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Mol Biol Cell. 2008;19(12):5478-5489. doi:10.1091/mbc.e08-05-0448

Chen Y, Sasai N, Ma G, et al. Sonic hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol. 2011;9(6):e1001083. doi:10.1371/journal.pbio.1001083

Jaber M, Koch WJ, Rockman H, et al. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A. 1996;93(23):12974-12979. doi:10.1073/pnas.93.23.12974

Pusapati GV, Kong JH, Patel BB, et al. G protein-coupled receptors control the sensitivity of cells to the morphogen sonic hedgehog. Sci Signal. 2018;11(516):1-16. doi:10.1126/scisignal.aao5749

Meloni AR, Fralish GB, Kelly P, et al. Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol. 2006;26(20):7550-7560. doi:10.1128/mcb.00546-06

Tuson M, He M, Anderson KV. Protein kinase a acts at the basal body of the primary cilium to prevent Gli2 activation and ventralization of the mouse neural tube. Development. 2011;138(22):4921-4930. doi:10.1242/dev.070805

Skålhegg BS, Huang Y, Su T, Idzerda RL, Stanley McKnight G, Burton KA. Mutation of the Cα subunit of PKA leads to growth retardation and sperm dysfunction. Mol Endocrinol. 2002;16(3):630-639. doi:10.1210/me.16.3.630

Windpassinger C, Piard J, Bonnard C, et al. CDK10 mutations in humans and mice cause severe growth retardation, spine malformations, and developmental delays. Am J Hum Genet. 2017;101(3):391-403. doi:10.1016/j.ajhg.2017.08.003

Snouffer A, Brown D, Lee H, et al. Cell cycle-related kinase (CCRK) regulates ciliogenesis and hedgehog signaling in mice. PLoS Genet. 2017;13(8):1-30. doi:10.1371/journal.pgen.1006912

Lee H, Ko HW. Cell cycle-related kinase is a crucial regulator for ciliogenesis and hedgehog signaling in embryonic mouse lung development. BMB Rep. 2020;53(7):367-372. doi:10.5483/BMBRep.2020.53.7.295

Taylor SP, Bosakova MK, Varecha M, et al. An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome. Hum Mol Genet. 2016;25(18):3998-4011. doi:10.1093/hmg/ddw240

Moon H, Song J, Shin JO, et al. Intestinal cell kinase, aprotein associated with endocrine-cerebro- osteodysplasia syndrome,is a key regulator of cilia length and hedgehog signaling. Proc Natl Acad Sci U S A. 2014;111(23):8541-8546. doi:10.1073/pnas.1323161111

Shin JO, Song J, Choi HS, et al. Activation of sonic hedgehog signaling by a smoothened agonist restores congenital defects in mouse models of endocrine-cerebro-osteodysplasia syndrome. EBioMedicine. 2019;49:305-317. doi:10.1016/j.ebiom.2019.10.016

Tong Y, Park SH, Wu D, et al. An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human ECO syndrome. FEBS Lett. 2017;591(9):1247-1257. doi:10.1002/1873-3468.12644

Ding M, Jin L, Xie L, et al. A murine model for human ECO syndrome reveals a critical role of intestinal cell kinase in skeletal development. Calcif Tissue Int. 2018;102(3):348-357. doi:10.1007/s00223-017-0355-3

Chaya T, Omori Y, Kuwahara R, Furukawa T. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J. 2014;33:1227-1242. doi:10.1002/embj.201488175

Okamoto S, Chaya T, Omori Y, et al. Ick ciliary kinase is essential for planar cell polarity formation in inner ear hair cells and hearing function. J Neurosci. 2017;37(8):2073-2085. doi:10.1523/JNEUROSCI.3067-16.2017

Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell. 1996;84(6):911-921. doi:10.1016/S0092-8674(00)81069-7

Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet. 1996;12(4):390-397. doi:10.1038/ng0496-390

Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest. 1999;104(11):1517-1525. doi:10.1172/JCI6690

Wang Y, Spatz MK, Kannan K, et al. A mouse model for achondroplasia produced by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci U S A. 1999;96(8):4455-4460. doi:10.1073/pnas.96.8.4455

Chen L, Li C, Qiao W, Xu X, Deng C. A Ser365→Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates lhh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet. 2001;10(5):457-465. doi:10.1093/hmg/10.5.457

Iwata T, Li CL, Deng CX, Francomano CA. Highly activated Fgfr3 with the K644M mutation causes prolonged survival in severe dwarf mice. Hum Mol Genet. 2001;10(12):1255-1264. doi:10.1093/hmg/10.12.1255

Li C, Chen L, Iwata T, Kitagawa M, Fu XY, Deng CX. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet. 1999;8(1):35-44. doi:10.1093/hmg/8.1.35

Imuta Y, Nishioka N, Kiyonari H, Sasaki H. Short limbs, cleft palate, and delayed formation of flat proliferative chondrocytes in mice with targeted disruption of a putative protein kinase gene, Pkdcc (AW548124). Dev Dyn. 2009;238(1):210-222. doi:10.1002/dvdy.21822

Probst S, Zeller R, Zuniga A. The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development. Differentiation. 2013;85(4-5):121-130. doi:10.1016/j.diff.2013.03.002

Janaswami PM, Birkenmeier EH, Cook SA, Rowe LB, Bronson RT, Davisson MT. Identification and genetic mapping of a new polycystic kidney disease on mouse chromosome 8. Genomics. 1997;40(1):101-107. doi:10.1006/geno.1996.4567

Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE. Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci U S A. 2000;97(1):217-221. doi:10.1073/pnas.97.1.217

Wheway G, Schmidts M, Mans DA, et al. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat Cell Biol. 2015;17(8):1074-1087. doi:10.1038/ncb3201

Chen CP, Chang TY, Chen CY, et al. Short rib-polydactyly syndrome type II (Majewski): prenatal diagnosis, perinatal imaging findings and molecular analysis of the NEK1 gene. Taiwan J Obstet Gynecol. 2012;51(1):100-105. doi:10.1016/j.tjog.2012.01.020

Thiel C, Kessler K, Giessl A, et al. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet. 2011;88(1):106-114. doi:10.1016/j.ajhg.2010.12.004

El Hokayem J, Huber C, Couvé A, et al. NEK1 and DYNC2H1 are both involved in short rib polydactyly majewski type but not in Beemer Langer cases. J Med Genet. 2012;49(4):227-233. doi:10.1136/jmedgenet-2011-100717

Chen CP, Chern SR, Chang TY, et al. Prenatal diagnosis and molecular genetic analysis of short rib-polydactyly syndrome type III (Verma-Naumoff) in a second-trimester fetus with a homozygous splice site mutation in intron 4 in the NEK1 gene. Taiwan J Obstet Gynecol. 2012;51(2):266-270. doi:10.1016/j.tjog.2012.04.018

McInerney-Leo AM, Harris JE, Leo PJ, et al. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies. Clin Genet. 2015;88(6):550-557. doi:10.1111/cge.12550

Monroe GR, Kappen IFPM, Stokman MF, et al. Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome). Eur J Hum Genet. 2016;24(12):1752-1760. doi:10.1038/ejhg.2016.103

Wang Z, Horemuzova E, Iida A, et al. Axial spondylometaphyseal dysplasia is also caused by NEK1 mutations. J Hum Genet. 2017;62(4):503-506. doi:10.1038/jhg.2016.157

Casey JP, Brennan K, Scheidel N, et al. Recessive NEK9 mutation causes a lethal skeletal dysplasia with evidence of cell cycle and ciliary defects. Hum Mol Genet. 2016;25(9):1824-1835. doi:10.1093/hmg/ddw054

Shaheen R, Patel N, Shamseldin H, et al. Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort. Genet Med. 2016;18(7):686-695. doi:10.1038/gim.2015.147

Bosakova M, Abraham SP, Nita A, et al. Mutations in GRK2 cause Jeune syndrome by impairing hedgehog and canonical Wnt signaling. EMBO Mol Med. 2020;12(11):1-20. doi:10.15252/emmm.201911739

Palencia-Campos A, Aoto PC, Machal EMF, et al. Germline and mosaic variants in PRKACA and PRKACB cause a multiple congenital malformation syndrome. Am J Hum Genet. 2020;107(5):977-988. doi:10.1016/j.ajhg.2020.09.005

Linglart A, Menguy C, Couvineau A, et al. Recurrent PRKAR1A mutation in Acrodysostosis with hormone resistance. N Engl J Med. 2011;364(23):2218-2226. doi:10.1056/NEJMoa1012717

Lin YJ, Liao WL, Wang CH, et al. Association of human height-related genetic variants with familial short stature in Han Chinese in Taiwan. Sci Rep. 2017;7(1):1-7. doi:10.1038/s41598-017-06766-z

Oud MM, Bonnard C, Mans DA, et al. A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome. Cilia. 2016;5(1):1-11. doi:10.1186/s13630-016-0029-1

Lahiry P, Wang J, Robinson JF, et al. A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am J Hum Genet. 2008;84(2):134-147. doi:10.1016/j.ajhg.2008.12.017

Bellus GA, Hefferon TW, De Luna RIO, et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet. 1995;56(2):368-373.

Cormier S, Delezoide A-L, Benoist-Lasselin C, Legeai-Mallet L, Bonaventure J, Silve C. Parathyroid hormone receptor type 1/Indian hedgehog expression is preserved in the growth plate of human fetuses affected with fibroblast growth factor receptor type 3 activating mutations. Am J Pathol. 2002;161(4):1325-1335. doi:10.1016/s0002-9440(10)64409-4

Superti-Furga A, Steinmann B, Gitzelmann R, et al. A glycine 375-to-cysteine substitution in the transmembrane domain of the fibroblast growth factor receptor-3 in a newborn with achondroplasia. Eur J Pediatr. 1995;154(3):215-219. doi:10.1007/BF01954274

Mortier G, Nuytinck L, Craen M, Renard JP, Leroy JG, De Paepe A. Clinical and radiographic features of a family with hypochondroplasia owing to a novel Asn540Ser mutation in the fibroblast growth factor receptor 3 gene. J Med Genet. 2000;37(3):220-224. doi:10.1136/jmg.37.3.220

Prinster C, Carrera P, Del Maschio M, et al. Comparison of clinical-radiological and molecular findings in hypochondroplasia. Am J Med Genet. 1998;75(1):109-112. doi:10.1002/(SICI)1096-8628(19980106)75:1〈109::AID-AJMG22〉3.0.CO;2-P

Deutz-Terlouw PP, Losekoot M, Aalfs CM, Hennekam RCM, Bakker E. Asn540THr substitution in the fibroblast growth factor receptor 3 tyrosine kinase domain causing hypochondroplasia. Hum Mutat. 1998;11(SUPPL 1):S62-S65. doi:10.1002/humu.1380110122

Grigelioniené G, Hagenäs L, Eklöf O, Neumeyer L, Haereid PE, Anvret M. A novel missense mutation Ile538Val in the fibroblast growth factor receptor 3 in hypochondroplasia. Mutations in brief no. 122. Online. Hum Mutat. 1998;11(4):333. doi:10.1002/(sici)1098-1004(1998)11:4〈333::aid-humu17〉3.0.co;2-j

Leroy JG, Nuytinck L, Lambert J, Naeyaert JM, Mortier GR. Acanthosis nigricans in a child with mild osteochondrodysplasia and K650Q mutation in the FGFR3 gene. Am J Med Genet Part A. 2007;143(24):3144-3149. doi:10.1002/ajmg.a.31966

Bellus GA, Spector EB, Speiser PW, et al. Distinct missense mutations of the FGFR3 Lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am J Hum Genet. 2000;67(6):1411-1421. doi:10.1086/316892

Rousseau F, El Ghouzzi V, Delezoide AL, et al. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum Mol Genet. 1996;5(4):509-512. doi:10.1093/hmg/5.4.509

Rousseau F, Saugier P, Le Merrer M, et al. Stop codon FGFR3 mutations in thanatophoric dwarfism type 1. Nat Genet. 1995;10(1):11-12. doi:10.1038/ng0595-11

Tavormina PL, Shiang R, Thompson LM, et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet. 1995;9(3):321-328. doi:10.1038/ng0395-321

Zankl A, Elakis G, Susman RD, et al. Prenatal and postnatal presentation of severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) due to the FGFR3 Lys650Met mutation. Am J Med Genet Part A. 2008;146(2):212-218. doi:10.1002/ajmg.a.32085

Bellus GA, Bamshad MJ, Przylepa KA, et al. Severe achondroplasia with developmental delay and Acanthosis nigricans (SADDAN): phenotypic analysis of a new skeletal dysplasia caused by a Lys650Met mutation in fibroblast growth factor receptor 3. Am J Med Genet. 1999;85(1):53-65. doi:10.1002/(SICI)1096-8628(19990702)85:1〈53::AID-AJMG10〉3.0.CO;2-F

Tavormina PL, Bellus GA, Webster MK, et al. A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. Am J Hum Genet. 1999;64(3):722-731. doi:10.1086/302275

Toydemir RM, Brassington AE, Bayrak-Toydemir P, et al. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am J Hum Genet. 2006;79(5):935-941. doi:10.1086/508433

Makrythanasis P, Temtamy S, Aglan MS, Otaify GA, Hamamy H, Antonarakis SE. A novel homozygous mutation in FGFR3 causes tall stature, severe lateral Tibial deviation, scoliosis, hearing impairment, Camptodactyly, and arachnodactyly. Hum Mutat. 2014;35(8):959-963. doi:10.1002/humu.22597

Sajan SA, Ganesh J, Shinde DN, et al. Biallelic disruption of PKDCC is associated with a skeletal disorder characterised by rhizomelic shortening of extremities and dysmorphic features. J Med Genet. 2019;56(12):850-854. doi:10.1136/jmedgenet-2018-105639

Villalobos-Comparán M, Jiménez-Ortega RF, Estrada K, et al. A pilot genome-wide association study in postmenopausal Mexican-mestizo women implicates the RMND1/CCDC170 locus is associated with bone mineral density. Int J Genomics. 2017;2017:1-13. doi:10.1155/2017/5831020

Zhou H, Mori S, Ishizaki T, et al. Genetic risk score based on the prevalence of vertebral fracture in Japanese women with osteoporosis. Bone Reports. 2016;5:168-172. doi:10.1016/j.bonr.2016.07.001

Zhang W, Taylor SP, Ennis HA, et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2019;39(1):152-166. doi:10.1002/humu.23362.Expanding

Wang W, Wu T, Kirschner MW. The master cell cycle regulator APC-Cdc20 regulates ciliary length and disassembly of the primary cilium. Elife. 2014;3:e03083. doi:10.7554/eLife.03083

Evangelista M, Lim TY, Lee J, et al. Kinome siRNA screen identifies regulators of ciliogenesis and hedgehog signal transduction. Sci Signal. 2008;1(39):ra7. doi:10.1126/scisignal.1162925

Shalom O, Shalva N, Altschuler Y, Motro B. The mammalian Nek1 kinase is involved in primary cilium formation. FEBS Lett. 2008;582(10):1465-1470. doi:10.1016/j.febslet.2008.03.036

Al-Jassar C, Andreeva A, Barnabas DD, et al. The ciliopathy-associated Cep104 protein interacts with tubulin and Nek1 kinase. Structure. 2017;25(1):146-156. doi:10.1016/j.str.2016.11.014

Patil M, Pabla N, Huang S, Dong Z. Nek1 phosphorylates von Hippel-Lindau tumor suppressor to promote its proteasomal degradation and ciliary destabilization. Cell Cycle. 2013;12(1):166-171. doi:10.4161/cc.23053

Roig J, Mikhailov A, Belham C, Avruch J. Nercc1, a mammalian NIMA-family kinase, binds the ran GTPase and regulates mitotic progression. Genes Dev. 2002;16(13):1640-1658. doi:10.1101/gad.972202

Roig J, Groen A, Caldwell J, Avruch J. Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly. Mol Biol Cell. 2005;16(10):4827-4840. doi:10.1091/mbc.e05-04-0315

Kaneta Y, Ullrich A. NEK9 depletion induces catastrophic mitosis by impairment of mitotic checkpoint control and spindle dynamics. Biochem Biophys Res Commun. 2013;442(3-4):139-146. doi:10.1016/j.bbrc.2013.04.105

Yang SW, Gao C, Chen L, et al. Nek9 regulates spindle organization and cell cycle progression during mouse oocyte meiosis and its location in early embryo mitosis. Cell Cycle. 2012;11(23):4366-4377. doi:10.4161/cc.22690

Regué L, Sdelci S, Bertran MT, Caelles C, Reverter D, Roig J. DYNLL/LC8 protein controls signal transduction through the Nek9/Nek6 signaling module by regulating Nek6 binding to Nek9. J Biol Chem. 2011;286(20):18118-18129. doi:10.1074/jbc.M110.209080

Gallego P, Velazquez-Campoy A, Regue L, Roig J, Reverter D. Structural analysis of the regulation of the DYNLL/LC8 binding to Nek9 by phosphorylation. J Biol Chem. 2013;288(17):12283-12294. doi:10.1074/jbc.M113.459149

Bertran MT, Sdelci S, Regué L, Avruch J, Caelles C, Roig J. Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5. EMBO J. 2011;30(13):2634-2647. doi:10.1038/emboj.2011.179

Alkuraya FS. Arthrogryposiss, perthes disease, and upward gaze palsy: a novel autosomal recessive syndromic form of arthrogryposis. Am J Med Genet Part A. 2011;155(2):297-300. doi:10.1002/ajmg.a.33794

Tan BCM, Lee SC. Nek9, a novel FACT-associated protein. Modulates Interphase Progression J Biol Chem. 2004;279(10):9321-9330. doi:10.1074/jbc.M311477200

Brum AM, van der Leije CS, Schreuders-Koedam M, et al. Identification of chloride Intracellular Channel protein 3 as a novel gene affecting human bone formation. JBMR Plus. 2017;1(1):16-26. doi:10.1002/jbm4.10003

Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007;25(5):725-738. doi:10.1016/j.molcel.2007.02.007

Taira N, Yamamoto H, Yamaguchi T, Miki Y, Yoshida K. ATM augments nuclear stabilization of DYRK2 by inhibiting MDM2 in the apoptotic response to DNA damage. J Biol Chem. 2010;285(7):4909-4919. doi:10.1074/jbc.M109.042341

Taira N, Mimoto R, Kurata M, et al. DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J Clin Invest. 2012;122(3):859-872. doi:10.1172/JCI60818

Enomoto Y, Yamashita S, Yoshinaga Y, et al. Downregulation of DYRK2 can be a predictor of recurrence in early stage breast cancer. Tumor Biol. 2014;35(11):11021-11025. doi:10.1007/s13277-014-2413-z

Zhang X, Xu P, Ni W, et al. Downregulated DYRK2 expression is associated with poor prognosis and Oxaliplatin resistance in hepatocellular carcinoma. Pathol Res Pract. 2016;212(3):162-170. doi:10.1016/j.prp.2016.01.002

Nomura S, Suzuki Y, Takahashi R, et al. Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) as a novel marker in T1 high-grade and T2 bladder cancer patients receiving neoadjuvant chemotherapy: DYRK2 is associated with survival in bladder cancer urological oncology. BMC Urol. 2015;15(1):1-6. doi:10.1186/s12894-015-0040-7

Luebbering N, Charlton-Perkins M, Kumar JP, Rollmann SM, Cook T, Cleghon V. Drosophila Dyrk2 plays a role in the development of the visual system. PLoS One. 2013;8(10):e76775. doi:10.1371/journal.pone.0076775

Sun W, Jiao S, Tan X, Zhang P, You F. DYRK2 displays muscle fiber type specific function during zebrafish early somitogenesis. Int J Dev Biol. 2017;61(6-7):459-463. doi:10.1387/ijdb.160175sj

Guterman-Ram G, Pesic M, Orenbuch A, Czeiger T, Aflalo A, Levaot N. Dual-specificity tyrosine phosphorylation-regulated kinase 2 regulates osteoclast fusion in a cell heterotypic manner. J Cell Physiol. 2018;233(1):617-629. doi:10.1002/jcp.25922

Varjosalo M, Björklund M, Cheng F, et al. Application of active and kinase-deficient Kinome collection for identification of kinases regulating hedgehog signaling. Cell. 2008;133(3):537-548. doi:10.1016/j.cell.2008.02.047

Larsen LJ, Møller LB. Crosstalk of hedgehog and mTORC1 pathways. Cell. 2020;9(10):2316. doi:10.3390/cells9102316

Hossain D, Javadi Esfehani Y, Das A, Tsang WY. Cep78 controls centrosome homeostasis by inhibiting EDD - DYRK 2- DDB 1 Vpr BP. EMBO Rep. 2017;18(4):632-644. doi:10.15252/embr.201642377

Jung HY, Wang X, Jun S, Park J. Il. Dyrk2-associated EDD-DDB1-VprBP E3 ligase inhibits telomerase by TERT degradation. J Biol Chem. 2013;288(10):7252-7262. doi:10.1074/jbc.M112.416792

Nihiraa NT, Yoshidaa K. Engagement of dyrk2 in proper control for cell division. Cell Cycle. 2015;14(6):802-807. doi:10.1080/15384101.2015.1007751

Maddika S, Chen J. Protein kinase DYRK2 is an E3-ligase specific molecular assembler. Nat Cell Biol. 2009;11(4):409-419. doi:10.1038/ncb1848.Protein

Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 1990;4(11):2881-2889.

Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63(6):1256-1272. doi:10.1124/mol.63.6.1256

Matkovich SJ, Diwan A, Klanke JL, et al. Cardiac-specific ablation of G-protein receptor kinase 2 redefines its roles in heart development and β-adrenergic signaling. Circ Res. 2006;99(9):996-1003. doi:10.1161/01.RES.0000247932.71270.2c

Zhao WL, Wang D, Liu CY, Zhao XF. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling. Sci Rep. 2016;6:1-13. doi:10.1038/srep29205

Maier D, Cheng S, Faubert D, Hipfner DR. A broadly conserved G-protein-coupled receptor kinase phosphorylation mechanism controls drosophila smoothened activity. PLoS Genet. 2014;10(7):e1004399. doi:10.1371/journal.pgen.1004399

Jia J, Tong C, Wang B, Luo L, Jiang J. Hedgehog signalling activity of smoothened requires phosphorylation by protein kinase a and casein kinase I. Nature. 2004;432(7020):1045-1050. doi:10.1038/nature03179

Zhao Z, Teck R, Lee H, et al. An essential role for Grk2 in hedgehog signalling downstream of smoothened. EMBO Rep. 2016;17(5):739-752.

Arveseth CD, Happ JT, Hedeen DS, et al. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol. 2021;19:e3001191. doi:10.1371/journal.pbio.3001191

Niewiadomski P, Kong JH, Ahrends R, et al. Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling. Cell Rep. 2014;6(1):168-181. doi:10.1016/j.celrep.2013.12.003

Bryja V, Gradl D, Schambony A, Arenas E, Schulte G. β-Arrestin is a necessary component of Wnt/β-catenin signaling in vitro and in vivo. Proc Natl Acad Sci U S A. 2007;104(16):6690-6695. doi:10.1073/pnas.0611356104

Rosanò L, Cianfrocca R, Masi S, et al. β-Arrestin links endothelin a receptor to β-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proc Natl Acad Sci U S A. 2009;106(8):2806-2811. doi:10.1073/pnas.0807158106

Dao DY, Jonason JH, Zhang Y, et al. Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res. 2012;27(8):1680-1694. doi:10.1002/jbmr.1639

Hoppe J, Wagner KG. cAMP-dependent protein kinase I, a unique allosteric enzyme. Trends Biochem Sci. 1979;4(12):282-285. doi:10.1016/0968-0004(79)90302-5

Zhang P, Smith-Nguyen EV, Keshwani MM, Deal MS, Kornev AP, Taylor SS. Structure and allostery of the PKA RIIβ tetrameric holoenzyme. Science. 2012;335(6069):712-716. doi:10.1126/science.1213979

Walsh DA, Perkins JP, Krebs EG. An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem. 1968;243(13):3763-3765. doi:10.1016/s0021-9258(19)34204-8

Fischer EH, Krebs EG. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem. 1955;216(1):121-132. doi:10.1016/s0021-9258(19)52289-x

Bouchez C, Devin A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway. Cell. 2019;8(4):287. doi:10.3390/cells8040287

Carlucci A, Lignitto L, Feliciello A. Control of mitochondria dynamics and oxidative metabolism by cAMP, AKAPs and the proteasome. Trends Cell Biol. 2008;18(12):604-613. doi:10.1016/j.tcb.2008.09.006

Thorens B, Dériaz N, Bosco D, et al. Protein kinase A-dependent phosphorylation of GLUT2 in pancreatic β cells. J Biol Chem. 1996;271(14):8075-8081. doi:10.1074/jbc.271.14.8075

Marfella-Scivittaro C, Quiñones A, Orellana SA. cAMP-dependent protein kinase and proliferation differ in normal and polycystic kidney epithelia. Am J Physiol-Cell Physiol. 2002;282(4):693-707. doi:10.1152/ajpcell.00122.2001

Barzi M, Berenguer J, Menendez A, Alvarez-Rodriguez R, Pons S. Sonic-hedgehog-mediated proliferation requires the localization of PKA to the cilium base. J Cell Sci. 2010;123(1):62-69. doi:10.1242/jcs.060020

Epstein DJ, Marti E, Scott MP, McMahon AP. Antagonizing cAMP-dependent protein kinase a in the dorsal CNS activates a conserved sonic hedgehog signaling pathway. Development. 1996;122(9):2885-2894.

Hammerschmidt M, Bitgood MJ, McMahon AP. Protein kinase a is a common negative regulator of hedgehog signaling in the vertebrate embryo. Genes Dev. 1996;10(6):647-658. doi:10.1101/gad.10.6.647

Mick DU, Rodrigues RB, Leib RD, et al. Proteomics of primary cilia by proximity labeling. Dev Cell. 2015;35(4):497-512. doi:10.1016/j.devcel.2015.10.015

Wang G, Wang B, Jiang J. Protein kinase a antagonizes hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev. 1999;13(21):2828-2837. doi:10.1101/gad.13.21.2828

Mukhopadhyay S, Wen X, Ratti N, et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the sonic hedgehog pathway via cAMP signaling. Cell. 2013;152(1-2):210-223. doi:10.1016/j.cell.2012.12.026

Tschaikner P, Enzler F, Torres-Quesada O, Aanstad P, Stefan E. Hedgehog and Gpr161: regulating cAMP signaling in the primary cilium. Cell. 2020;9(1):1-14. doi:10.3390/cells9010118

Briscoe J, Thérond PP. The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14(7):418-431. doi:10.1038/nrm3598

Hwang SH, Mukhopadhyay S. G-protein-coupled receptors and localized signaling in the primary cilium during ventral neural tube patterning. Birth Defects Res Part A-Clin Mol Teratol. 2015;103(1):12-19. doi:10.1002/bdra.23267

Ashe A, Butterfield NC, Town L, et al. Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies. Hum Mol Genet. 2012;21(8):1808-1823. doi:10.1093/hmg/ddr613

Liem KF, Ashe A, He M, et al. The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J Cell Biol. 2012;197(6):789-800. doi:10.1083/jcb.201110049

Bredrup C, Saunier S, Oud MM, et al. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet. 2011;89(5):634-643. doi:10.1016/j.ajhg.2011.10.001

Yang Q, Zhang Q, Chen F, et al. A novel combination of biallelic IFT122 variants associated with cranioectodermal dysplasia: a case report. Exp Ther Med. 2021;21(4):1-5. doi:10.3892/etm.2021.9742

Walczak-Sztulpa J, Eggenschwiler J, Osborn D, et al. Cranioectodermal dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet. 2010;86(6):949-956. doi:10.1016/j.ajhg.2010.04.012

Guen VJ, Gamble C, Flajolet M, et al. CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proc Natl Acad Sci U S A. 2013;110(48):19525-19530. doi:10.1073/pnas.1306814110

Bagella L, Giacinti C, Simone C, Giordano A. Identification of murine cdk10: association with Ets2 transcription factor and effects on the cell cycle. J Cell Biochem. 2006;99(3):978-985. doi:10.1002/jcb.20981

Kasten M, Giordano A. Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene. 2001;20(15):1832-1838. doi:10.1038/sj.onc.1204295

Guen VJ, Gamble C, Lees JA, Colas P. The awakening of the CDK10/cyclin M protein kinase. Oncotarget. 2017;8(30):50174-50186. doi:10.18632/oncotarget.15024

Lefroy H, Hurst JA, Shears DJ. STAR syndrome: a further case and the first report of maternal mosaicism. Clin Dysmorphol. 2017;26(3):157-160. doi:10.1097/MCD.0000000000000176

Bedeschi MF, Giangiobbe S, Paganini L, et al. STAR syndrome plus: the first description of a female patient with the lethal form. Am J Med Genet Part A. 2017;173(12):3226-3230. doi:10.1002/ajmg.a.38484

Boczek NJ, Kruisselbrink T, Cousin MA, et al. Multigenerational pedigree with STAR syndrome: a novel FAM58A variant and expansion of the phenotype. Am J Med Genet Part A. 2017;173(5):1328-1333. doi:10.1002/ajmg.a.38113

Unger S, Böhm D, Kaiser FJ, et al. Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations. Nat Genet. 2008;40(3):287-289. doi:10.1038/ng.86

Blackburn C. Lily's story: STAR syndrome. Adv Neonatal Care. 2015;15(4):269-273. doi:10.1097/ANC.0000000000000207

Boone PM, Bacino CA, Shaw CA, et al. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat. 2010;31(12):1326-1342. doi:10.1002/humu.21360

Zarate YA, Farrell JM, Alfaro MP, Elhassan NO. STAR syndrome is part of the differential diagnosis of females with anorectal malformations. Am J Med Genet Part A. 2015;167(8):1940-1943. doi:10.1002/ajmg.a.37078

Orge FH, Dar SA, Blackburn CN, Grimes-Hodges SJ, Mitchell AL. Ocular manifestations of X-linked dominant FAM58A mutation in toe syndactyly, telecanthus, anogenital, and renal malformations (‘STAR’) syndrome. Ophthalmic Genet. 2016;37(3):323-327. doi:10.3109/13816810.2015.1071407

Green AJ, Sandford RN, Davison BCC. An autosomal dominant syndrome of renal and anogenital malformations with syndactyly. J Med Genet. 1996;33(7):594-596. doi:10.1136/jmg.33.7.594

Sumarsono SH, Wilson TJ, Tymms MJ, et al. Down's syndrome-like skeletal abnormalities in Ets2 transgenic mice. Nature. 1996;379(6565):534-537. doi:10.1038/379534a0

Guen VJ, Gamble C, Perez DE, et al. Star syndrome-associated CDK10/cyclin M regulates Actin network architecture and ciliogenesis. Cell Cycle. 2016;15(5):678-688. doi:10.1080/15384101.2016.1147632

Pitaval A, Tseng Q, Bornens M, Théry M. Cell shape and contractility regulate ciliogenesis in cell cycle-arrested cells. J Cell Biol. 2010;191(2):303-312. doi:10.1083/jcb.201004003

Kim J, Jo H, Hong H, et al. Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat Commun. 2015;6:1-13. doi:10.1038/ncomms7781

Vincent S, Settleman J. The PRK2 kinase is a potential effector target of both rho and Rac GTPases and regulates Actin cytoskeletal organization. Mol Cell Biol. 1997;17(4):2247-2256. doi:10.1128/mcb.17.4.2247

Iorns E, Turner NC, Elliott R, et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell. 2008;13(2):91-104. doi:10.1016/j.ccr.2008.01.001

Li S, MacLachlan TK, De Luca A, Claudio PP, Condorelli G, Giordano A. The cdc2-related kinase, PISSLRE, is essential for cell growth and acts in G2 phase of the cell cycle. Cancer Res. 1995;55(18):3992-3995.

Mok MT, Zhou J, Tang W, et al. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol Ther. 2018;186:138-151. doi:10.1016/j.pharmthera.2018.01.008

Yang Y, Roine N, Mäkelä TP. CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner. EMBO Rep. 2013;14(8):741-747. doi:10.1038/embor.2013.80

Tam LW, Wilson NF, Lefebvre PA. A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol. 2007;176(6):819-829. doi:10.1083/jcb.200610022

Yi P, Xie C, Ou G. The kinases male germ cell-associated kinase and cell cycle-related kinase regulate kinesin-2 motility in Caenorhabditis elegans neuronal cilia. Traffic. 2018;19(7):522-535. doi:10.1111/tra.12572

Erdmann M, Scholz A, Melzer IM, Schmetz C, Wiese M. Interacting protein kinases involved in the regulation of flagellar length. Mol Biol Cell. 2006;17(4):2035-2045. doi:10.1091/mbc.e05-10-0976

Jiang YY, Maier W, Baumeister R, et al. LF4/MOK and a CDK-related kinase regulate the number and length of cilia in tetrahymena. PLoS Genet. 2019;15(7):e1008099. doi:10.1101/582833

Ko HW, Norman RX, Tran J, Fuller KP, Fukuda M, Eggenschwiler JT. Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev Cell. 2010;18(2):237-247. doi:10.1016/j.devcel.2009.12.014

Fu Z, Larson KA, Chitta RK, et al. Identification of yin-Yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol Cell Biol. 2006;26(22):8639-8654. doi:10.1128/mcb.00816-06

Bosakova MK, Nita A, Gregor T, et al. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci U S A. 2019;116(10):4316-4325. doi:10.1073/pnas.1800338116

Zohn IE, Anderson KV, Niswander L. Using genomewide mutagenesis screens to identify the genes required for neural tube closure in the mouse. Birth Defects Res Part A-Clin Mol Teratol. 2005;73(9):583-590. doi:10.1002/bdra.20164

Adly N, Alhashem A, Ammari A, Alkuraya FS. Ciliary genes TBC1D32/C6orf170 and SCLT1 are mutated in patients with OFD type IX. Hum Mutat. 2014;35(1):36-40. doi:10.1002/humu.22477

Monies D, Abouelhoda M, Assoum M, et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet. 2019;104(6):1182-1201. doi:10.1016/j.ajhg.2019.04.011

Alsahan N, Alkuraya FS. Confirming TBC1D32-related ciliopathy in humans. Am J Med Genet Part A. 2020;182(8):1985-1987. doi:10.1002/ajmg.a.61717

Hietamäki J, Gregory LC, Ayoub S, et al. Loss-of-function variants in TBC1D32 underlie syndromic hypopituitarism. J Clin Endocrinol Metab. 2020;105(6):1748-1758. doi:10.1210/clinem/dgaa078

Bladt F, Birchmeier C. Characterization and expression analysis of the murine rck gene: a protein kinase with a potential function in sensory cells. Differentiation. 1993;53(2):115-122. doi:10.1111/j.1432-0436.1993.tb00651.x

Tsutsumi R, Chaya T, Furukawa T. Enriched expression of the ciliopathy gene ick in cell proliferating regions of adult mice. Gene Expr Patterns. 2018;29:18-23. doi:10.1016/j.gep.2018.04.005

Togawa K, Yan YX, Inomoto T, Slaugenhaupt S, Rustgi AK. Intestinal cell kinase (ICK) localizes to the crypt region and requires a dual phosphorylation site found in map kinases. J Cell Physiol. 2000;183(1):129-139. doi:10.1002/(SICI)1097-4652(200004)183:1〈129::AID-JCP15〉3.0.CO;2-S

Fu Z, Schroeder MJ, Shabanowitz J, et al. Activation of a nuclear Cdc2-related kinase within a mitogen-activated protein kinase-like TDY motif by autophosphorylation and cyclin-dependent protein kinase-activating kinase. Mol Cell Biol. 2005;25(14):6047-6064. doi:10.1128/mcb.25.14.6047-6064.2005

Tong Y, Park S, Wu D, et al. Modulation of GSK3β autoinhibition by Thr-7 and Thr-8. FEBS Lett. 2018;592(4):537-546. doi:10.1002/1873-3468.12990

Wu D, Chapman JR, Wang L, et al. Intestinal cell kinase (ICK) promotes activation of mTOR complex 1 (mTORC1) through phosphorylation of raptor Thr-908. J Biol Chem. 2012;287(15):12510-12519. doi:10.1074/jbc.M111.302117

Oh YS, Wang EJ, Gailey CD, Brautigan DL, Allen BL, Fu Z. Ciliopathy-associated protein kinase ICK requires its non-catalytic carboxyl-terminal domain for regulation of Ciliogenesis. Cell. 2019;8(7):677. doi:10.3390/cells8070677

Wang EJ, Gailey CD, Brautigan DL, Fu Z. Functional alterations in Ciliogenesis-associated kinase 1 (CILK1) that result from mutations linked to juvenile myoclonic epilepsy. Cell. 2020;9(3):694. doi:10.3390/cells9030694

Broekhuis JR, Verhey KJ, Jansen G. Regulation of cilium length and intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial cells. PLoS One. 2014;9:e108470. doi:10.1371/journal.pone.0108470

Ichinose S, Ogawa T, Hirokawa N. Mechanism of activity-dependent cargo loading via the phosphorylation of KIF3A by PKA and CaMKIIa. Neuron. 2015;87(5):1022-1035. doi:10.1016/j.neuron.2015.08.008

Gailey CD, Wang EJ, Jin L, et al. Phosphosite T674A mutation in kinesin family member 3A fails to reproduce tissue and ciliary defects characteristic of CILK1 loss of function. Dev Dyn. 2020;250:263-273. doi:10.1002/dvdy.252

Nakamura K, Noguchi T, Takahara M, et al. Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J Biol Chem. 2020;295(38):13363-13377. doi:10.1074/jbc.ra120.014142

Fu Z, Kim J, Vidrich A, Sturgill TW, Cohn SM. Intestinal cell kinase, a MAP kinase-related kinase, regulates proliferation and G1 cell cycle progression of intestinal epithelial cells. Am J Physiol-Gastrointest Liver Physiol. 2009;297(4):632-640. doi:10.1152/ajpgi.00066.2009

Nojima H, Tokunaga C, Eguchi S, et al. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem. 2003;278(18):15461-15464. doi:10.1074/jbc.C200665200

Valvezan AJ, Manning BD. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat Metab. 2019;1(3):321-333. doi:10.1038/s42255-019-0038-7

Yonezawa K, Tokunaga C, Oshiro N, Yoshino KI. Raptor, a binding partner of target of rapamycin. Biochem Biophys Res Commun. 2004;313(2):437-441. doi:10.1016/j.bbrc.2003.07.018

Takahashi K, Nagai T, Chiba S, Nakayama K, Mizuno K. Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J Cell Sci. 2018;131(1):jcs208769. doi:10.1242/jcs.208769

Csukasi F, Duran I, Barad M, et al. The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling. Sci Transl Med. 2018;10(459):eaat9356. doi:10.1126/scitranslmed.aat9356

Yan B, Zhang Z, Jin D, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:1-15. doi:10.1038/ncomms11151

Chen J, Long F. mTORC1 signaling controls mammalian skeletal growth through stimulation of protein synthesis. Development. 2014;141(14):2848-2854. doi:10.1242/dev.108811

Chen J, Long F. MTOR signaling in skeletal development and disease. Bone Res. 2018;6(1):1. doi:10.1038/s41413-017-0004-5

Thoma CR, Frew IJ, Hoerner CR, Montani M, Moch H, Krek W. pVHL and GSK3beta are components of a primary cilium-maintenance signalling network. Nat Cell Biol. 2007;9(5):588-595. doi:10.1038/ncb1579

Tempé D, Casas M, Karaz S, Blanchet-Tournier M-F, Concordet J-P. Multisite protein kinase a and glycogen synthase kinase 3β phosphorylation leads to Gli3 ubiquitination by SCFβTrCP. Mol Cell Biol. 2006;26(11):4316-4326. doi:10.1128/mcb.02183-05

Takenaka K, Kise Y, Miki H. GSK3β positively regulates hedgehog signaling through Sufu in mammalian cells. Biochem Biophys Res Commun. 2007;353(2):501-508. doi:10.1016/j.bbrc.2006.12.058

Zhang B, Zhang T, Wang G, et al. GSK3β-Dzip1-Rab8 cascade regulates ciliogenesis after mitosis. PLoS Biol. 2015;13(4):1-25. doi:10.1371/journal.pbio.1002129

de Frutos CA, Vega S, Manzanares M, et al. Snail1 is a transcriptional effector of FGFR3 signaling during chondrogenesis and achondroplasias. Dev Cell. 2007;13(6):872-883. doi:10.1016/j.devcel.2007.09.016

Foldynova-Trantirkova S, Wilcox WR, Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat. 2012;33(1):29-41. doi:10.1002/humu.21636

Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development. 1998;125(24):4977-4988.

Kimura T, Bosakova M, Nonaka Y, et al. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci Transl Med. 2021;13(592):eaba4226. doi:10.1126/scitranslmed.aba4226

Naski MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet. 1996;13(2):233-237. doi:10.1038/ng0696-233

Sahni M, Ambrosetti DC, Mansukhani A, Gertner R, Levy D, Basilico C. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes Dev. 1999;13(11):1361-1366. doi:10.1101/gad.13.11.1361

Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, De Crombrugghe B. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Dev. 2004;18(3):290-305. doi:10.1101/gad.1179104

Wren KN, Craft JM, Tritschler D, et al. A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol. 2013;23(24):2463-2471. doi:10.1016/j.cub.2013.10.044

Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature. 2009;458(7238):651-654. doi:10.1038/nature07753

Balek L, Nemec P, Konik P, et al. Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome. Cell Signal. 2018;42(2017):144-154. doi:10.1016/j.cellsig.2017.10.003

Bordoli MR, Yum J, Breitkopf SB, et al. A secreted tyrosine kinase acts in the extracellular environment. Cell. 2014;158(5):1033-1044. doi:10.1016/j.cell.2014.06.048

Kim JM, Han H, Bahn M, Hur Y, Yeo CY, Kim DW. Secreted tyrosine kinase Vlk negatively regulates hedgehog signaling by inducing lysosomal degradation of smoothened. Biochem J. 2020;477(1):121-136. doi:10.1042/BCJ20190784

Kinoshita M, Era T, Jakt LM, Nishikawa SI. The novel protein kinase Vlk is essential for stromal function of mesenchymal cells. Development. 2009;136(12):2069-2079. doi:10.1242/dev.026435

Tavella S, Biticchi R, Schito A, et al. Targeted expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression. J Bone Miner Res. 2004;19(10):1678-1688. doi:10.1359/JBMR.040706

Kesper DA, Didt-Koziel L, Vortkamp A. Gli2 activator function in preosteoblasts is sufficient to mediate Ihh-dependent osteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification. Dev Dyn. 2010;239(6):1818-1826. doi:10.1002/dvdy.22301

Vitorino M, Silva AC, Inácio JM, et al. Xenopus Pkdcc1 and Pkdcc2 are two new tyrosine kinases involved in the regulation of JNK dependent Wnt/PCP signaling pathway. PLoS One. 2015;10(8):1-25. doi:10.1371/journal.pone.0135504

Ding Y, Colozza G, Zhang K, et al. Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula. Dev Biol. 2017;426(2):176-187. doi:10.1016/j.ydbio.2016.02.032

Chan CKF, Gulati GS, Sinha R, et al. Identification of the human skeletal stem cell. Cell. 2018;175(1):43-56.e21. doi:10.1016/j.cell.2018.07.029

He J, Yan J, Wang J, et al. Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell Res. 2021;31:742-757. doi:10.1038/s41422-021-00467-z

Mizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 2018;563(7730):254-258. doi:10.1038/s41586-018-0662-5

Newton PT, Li L, Zhou B, et al. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature. 2019;567(7747):234-238. doi:10.1038/s41586-019-0989-6

Aghajanian P, Xing W, Cheng S, Mohan S. Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation. Sci Rep. 2017;7(1):1-12. doi:10.1038/s41598-017-11050-1

Ono N, Ono W, Nagasawa T, Kronenberg HM. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol. 2014;16(12):1157-1167. doi:10.1038/ncb3067

Yang G, Zhu L, Hou N, et al. Osteogenic fate of hypertrophic chondrocytes. Cell Res. 2014;24(10):1266-1269. doi:10.1038/cr.2014.111

Zhou X, von der Mark K, Henry S, Norton W, Adams H, de Crombrugghe B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014;10(12):e1004820. doi:10.1371/journal.pgen.1004820

Chagin AS, Newton PT. Postnatal skeletal growth is driven by the epiphyseal stem cell niche: potential implications to pediatrics. Pediatr Res. 2020;87(6):986-990. doi:10.1038/s41390-019-0722-z

Tsang KY, Chan D, Cheah KSE. Fate of growth plate hypertrophic chondrocytes: death or lineage extension? Dev Growth Differ. 2015;57(2):179-192. doi:10.1111/dgd.12203

Moore ER, Chen JC, Jacobs CR. Prx1-expressing progenitor primary cilia mediate bone formation in response to mechanical loading in mice. Stem Cells Int. 2019;2019:1-9. doi:10.1155/2019/3094154

Esposito A, Wang L, Li T, Miranda M, Spagnoli A. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone. 2020;139:115521. doi:10.1016/j.bone.2020.115521

Haycraft CJ, Zhang Q, Song B, et al. Intraflagellar transport is essential for endochondral bone formation. Development. 2007;134(2):307-316. doi:10.1242/dev.02732

Kawanami A, Matsushita T, Chan YY, Murakami S. Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun. 2009;386(3):477-482. doi:10.1016/j.bbrc.2009.06.059

Moore ER, Yang Y, Jacobs CR. Primary cilia are necessary for Prx1-expressing cells to contribute to postnatal skeletogenesis. J Cell Sci. 2018;131(16):jcs217828. doi:10.1242/jcs.217828

Moore ER, Mathews OA, Yao Y, Yang Y. Prx1-expressing cells contributing to fracture repair require primary cilia for complete healing in mice. Bone. 2021;143:115738. doi:10.1016/j.bone.2020.115738

Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med. 2012;1(6):480-491. doi:10.5966/sctm.2011-0056

Tani S, Okada H, Chung U, Ohba S, Hojo H. The progress of stem cell technology for skeletal regeneration. Int J Mol Sci. 2021;22(3):1-16. doi:10.3390/ijms22031404

Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet Part A. 2015;167(12):2869-2892. doi:10.1002/ajmg.a.37365

Talebi F, Ghanbari Mardasi F, Mohammadi Asl J, Bavarsad AH, Tizno S. Identification of a novel missence mutation in FGFR3 gene in an Iranian family with LADD syndrome by next-generation sequencing. Int J Pediatr Otorhinolaryngol. 2017;97:192-196. doi:10.1016/j.ijporl.2017.04.016

Rohmann E, Brunner HG, Kayserili H, et al. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006;38(4):414-417. doi:10.1038/ng1757

Chen L, Li C, Qiao W, Xu X, Deng C. A Ser365→Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet. 2001;10(5):457-466. doi:10.1093/hmg/10.5.457

Xie Y, Su N, Jin M, et al. Intermittent pth (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum Mol Genet. 2012;21(18):3941-3955. doi:10.1093/hmg/dds181

Garcia S, Dirat B, Tognacci T, et al. Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci Transl Med. 2013;5(203):203ra124. doi:10.1126/scitranslmed.3006247

Komla-Ebri D, Dambroise E, Kramer I, et al. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model. J Clin Invest. 2016;126(5):1871-1884. doi:10.1172/JCI83926

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...