Electrochemical Decalcification-Exfoliation of Two-Dimensional Siligene, SixGey: Material Characterization and Perspectives for Lithium-Ion Storage
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37283557
PubMed Central
PMC10311597
DOI
10.1021/acsnano.3c00658
Knihovny.cz E-zdroje
- Klíčová slova
- electrochemical exfoliation, germanene, lithium-ion battery, lithium-ion storage, low-hydrogenated siligene, silicene, top-down synthesis,
- Publikační typ
- časopisecké články MeSH
A two-dimensional (2D) silicene-germanene alloy, siligene (SixGey), a single-phase material, has attracted increased attention due to its two-elemental low-buckled composition and unique physics and chemistry. This 2D material has the potential to address the challenges caused by low electrical conductivity and the environmental instability of corresponding monolayers. Yet, the siligene structure was studied in theory, demonstrating the material's great electrochemical potential for energy storage applications. The synthesis of free-standing siligene remains challenging and therefore hinders the research and its application. Herein we demonstrate nonaqueous electrochemical exfoliation of a few-layer siligene from a Ca1.0Si1.0Ge1.0 Zintl phase precursor. The procedure was conducted in an oxygen-free environment applying a -3.8 V potential. The obtained siligene exhibits a high quality, high uniformity, and excellent crystallinity; the individual flake is within the micrometer lateral size. The 2D SixGey was further explored as an anode material for lithium-ion storage. Two types of anode have been fabricated and integrated into lithium-ion battery cells, namely, (1) siligene-graphene oxide sponges and (2) siligene-multiwalled carbon nanotubes. The as-fabricated batteries both with/without siligene exhibit similar behavior; however there is an increase in the electrochemical characteristics of SiGe-integrated batteries by 10%. The corresponding batteries exhibit a 1145.0 mAh·g-1 specific capacity at 0.1 A·g-1. The SiGe-integrated batteries demonstrate a very low polarization, confirmed by their good stability after 50 working cycles and a decrease in the solid electrolyte interphase level that occurs after the first discharge/charge cycle. We anticipate the growing potential of emerging two-component 2D materials and their great promise for energy storage and beyond.
Zobrazit více v PubMed
Chen X.; Loaiza L. C.; Monconduit L.; Seznec V. 2D Silicon-Germanium-Layered Materials as Anodes for Li-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 12552–12561. 10.1021/acsaem.1c02362. DOI
Kasper E.; Herzog H. J. In Silicon–Germanium (SiGe) Nanostructures; Shiraki Y.; Usami N.Eds.; Woodhead Publishing: Oxford, 2011; pp 3–25.
Zemskov V. S.; Belokurova I. N.; Shulpina I. L.; Titkov A. N. The Structural Features of the Germanium-Silicon Solid Solution Crystals Obtained Under Microgravity. Adv. Space Res. 1984, 4, 11–14. 10.1016/0273-1177(84)90445-9. DOI
Dismukes J. P.; Ekstrom L.; Paff R. J. Lattice Parameter and Density in Germanium-Silicon Alloys. J. Phys. Chem. 1964, 68, 3021–3027. 10.1021/j100792a049. DOI
Zhang H.; Wang R. The Stability and the Nonlinear Elasticity of 2D Hexagonal Structures of Si and Ge from First-Principles Calculations. Phys. B: Conden. Matter 2011, 406, 4080–4084. 10.1016/j.physb.2011.07.052. DOI
Jamdagni P.; Kumar A.; Thakur A.; Pandey R.; Ahluwalia P. K. Stability and Electronic Properties of SiGe-based 2D Layered Structures. Mater. Res. Express 2015, 2, 01630110.1088/2053-1591/2/1/016301. DOI
Sannyal A.; Ahn Y.; Jang J. First-Principles Study on the Two-Dimensional Siligene (2D SiGe) as an Anode Material of an Alkali Metal Ion Battery. Comput. Mater. Sci. 2019, 165, 121–128. 10.1016/j.commatsci.2019.04.039. DOI
Mastail C.; Bourennane I.; Estève A.; Landa G.; Rouhani M. D.; Richard N.; Hémeryck A. Oxidation of Germanium and Silicon surfaces (100): A Comparative Study Through DFT Methodology. IOP Conf. Ser.: Mater. Sci. Eng. 2012, 41, 01200710.1088/1757-899X/41/1/012007. DOI
Kovalska E.; Antonatos N.; Luxa J.; Sofer Z. Edge-Hydrogenated Germanene by Electrochemical Decalcification-Exfoliation of CaGe2: Germanene-Enabled Vapor Sensor. ACS Nano 2021, 15, 16709–16718. 10.1021/acsnano.1c06675. PubMed DOI
Li P.; Cao J.; Guo Z.-X. A New Approach for Fabricating Germanene with Dirac Electrons Preserved: A First Principles Study. J. Mater. Chem. C 2016, 4, 1736–1740. 10.1039/C5TC03442F. DOI
Bianco E.; Butler S.; Jiang S.; Restrepo O. D.; Windl W.; Goldberger J. E. Stability and Exfoliation of Germanane: A Germanium Graphane Analogue. ACS Nano 2013, 7, 4414–4421. 10.1021/nn4009406. PubMed DOI
Cinquanta E.; Scalise E.; Chiappe D.; Grazianetti C.; van den Broek B.; Houssa M.; Fanciulli M.; Molle A. Getting Through the Nature of Silicene: an sp2–sp3 Two-Dimensional Silicon Nanosheet. J. Phys. Chem. C 2013, 117, 16719–16724. 10.1021/jp405642g. DOI
Giousis T.; Potsi G.; Kouloumpis A.; Spyrou K.; Geor-gantas Y.; Chalmpes N.; Dimos K.; Antoniou M.-K.; Papavassiliou G.; Bourlinos A. B.; Kim H. J.; Wadi J. K. Sh.; Alhassan S.; Ahmadi M.; Kooi B. J.; Blake G.; Balazs D. M.; Loi M. A.; Gournis D.; Rudolf P. Synthesis of 2D Germanane (GeH): A New, Fast, and Facile Approach. Angew. Chem., Int. Ed. 2021, 133 (1), 364–369. 10.1002/ange.202010404. PubMed DOI PMC
Muniz A. R.; Maroudas D. Opening and Tuning of Band Gap by the Formation of Diamond Superlattices in Twisted Bilayer Graphene. Phys. Rev. B 2012, 86, 07540410.1103/PhysRevB.86.075404. DOI
Gao R.; Tang J.; Yu X.; Lin S.; Zhang K.; Qin L.-C. Layered Silicon-Based Nanosheets as Electrode for 4 V High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2002200.10.1002/adfm.202002200. DOI
Guo Q.; Han Y.; Chen N.; Qu L. Few-layer Siloxene as an Electrode for Superior High-Rate Zinc Ion Hybrid Capacitors. ACS Energy Lett. 2021, 6, 1786–1794. 10.1021/acsenergylett.1c00285. DOI
Liu J.; Yang Y.; Lyu P.; Nachtigall P.; Xu Y. Few-layer Silicene Nanosheets with Superior Lithium-Storage Properties. Adv. Mater. 2018, 30, 1800838.10.1002/adma.201800838. PubMed DOI
Wu B.; Šturala J.; Veselý M.; Hartman T.; Kovalska E.; Bouša D.; Luxa J.; Azadmanjiri J.; Sofer Z. Functionalized Germanane/SWCNT Hybrid Films as Flexible Anodes for Lithium-Ion Batteries. Nanoscale Adv. 2021, 3, 4440–4446. 10.1039/D1NA00189B. PubMed DOI PMC
Zhang Q.; Chen H.; Luo L.; Zhao B.; Luo H.; Han V.; Wang J.; Wang C.; Yang Y.; Zhu T.; Liu M. Harnessing the Concurrent Reaction Dynamics in Active Si and Ge to Achieve High Performance Lithium-Ion Batteries. Energy & Environ. Sci. 2018, 11, 669–681. 10.1039/C8EE00239H. DOI
Tian H.; Xin F.; Wang X.; He W.; Han W. High Capacity Group-IV Elements (Si, Ge, Sn) Based Anodes for Lithium-Ion Batteries. J. Materiomics 2015, 1, 153–169. 10.1016/j.jmat.2015.06.002. DOI
Heiskanen S. K.; Kim J.; Lucht B. L. Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule 2019, 3, 2322–2333. 10.1016/j.joule.2019.08.018. DOI
Pender J. P.; Jha G.; Youn D. H.; Ziegler J. M.; Andoni I.; Choi E. J.; Heller A.; Dunn B. S.; Weiss P. S.; Penner R. M.; Mullins C. B. Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14, 1243–1295. 10.1021/acsnano.9b04365. PubMed DOI
Hirel P. Atomsk: A Tool for Manipulating and Converting Atomic Data Files. Comput. Phys. Commun. 2015, 197, 212–219. 10.1016/j.cpc.2015.07.012. DOI