Glue-assisted exfoliation of two-dimensional sulfur-rich niobium thiophosphate (Nb4P2S21) for sulfur-equivalent electrode study in lithium storage
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39926007
PubMed Central
PMC11804794
DOI
10.1039/d4na01060d
PII: d4na01060d
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Two-dimensional (2D) layered thiophosphates have garnered attention for advanced battery technology due to their open ionic diffusion channels, high capacity, and unique catalytic properties. However, their potential in energy storage applications remains largely unexplored. In this study, we report a 2D transition metal thiophosphate (Nb4P2S21) with high sulfur content, synthesized via chemical vapor transport (CVT). The bulk material, exhibiting a layered quasi-one-dimensional (quasi-1D) structure, can be exfoliated into high-quality nanoplates using glue-assisted grinding. Density functional theory (DFT) calculations reveal a direct bandgap of 1.64 eV (HSE06 method) for Nb4P2S21, aligning with its near-infrared (NIR) photoluminescence at 755 nm. Despite an initial discharge capacity of 1500 mA h g-1, the material shows low reversible capacity and rapid capacity decay at 0-2.6 V. In situ Raman confirms the formation of polysulfides during cycling. Given its high sulfur content, the material was evaluated at 0.5-2.6 V, 1.0-2.6 V, and 1.5-2.6 V to assess its sulfur-equivalent cathode performance. In carbonate-based electrolytes, electrochemical performance is hindered by polysulfide formation and side reactions, but switching to ether-based electrolytes improves initial reversible capacity and coulombic efficiency due to additional Li x S conversion above 2.2 V. EDS and TOF-SIMS analyses of cycled electrodes show a significant sulfur loss, worsening the polysulfide shuttle effect and leading to battery failure. Adapting strategies from lithium-sulfur batteries, such as polar host catalysts, could enhance the material's performance.
See more in PubMed
Zhang X. Hou L. Ciesielski A. Samorì P. Adv. Energy Mater. 2016;6:1600671. doi: 10.1002/aenm.201600671. DOI
Li H. Tang Z. Liu Z. Zhi C. Joule. 2019;3:613. doi: 10.1016/j.joule.2019.01.013. DOI
Zhao P. Wang H. Wu L. Chen L. Cai Z. Li L. Wang X. Adv. Energy Mater. 2019;9:1803048. doi: 10.1002/aenm.201803048. DOI
Thackeray M. M. Wolverton C. Isaacs E. D. Energy Environ. Sci. 2012;5:7854. doi: 10.1039/C2EE21892E. DOI
Jiang F. Peng P. Sci. Rep. 2016;6:32639. doi: 10.1038/srep32639. PubMed DOI PMC
Lyu P. Liu X. Qu J. Zhao J. Huo Y. Qu Z. Rao Z. Energy Storage Mater. 2020;31:195. doi: 10.1016/j.ensm.2020.06.042. DOI
Gong M. Yu R. Zhou C. Yu Y. Pan Q. Dong C. Shen C. Guan Y. Sun C. Mai L. ACS Nano. 2024;18:20648. doi: 10.1021/acsnano.4c06111. PubMed DOI
Chen K.-S. Balla I. Luu N. S. Hersam M. C. ACS Energy Lett. 2017;2:2026. doi: 10.1021/acsenergylett.7b00476. DOI
Rojaee R. Shahbazian-Yassar R. ACS Nano. 2020;14:2628. doi: 10.1021/acsnano.9b08396. PubMed DOI
Khan A. Azadmanjiri J. Wu B. Liping L. Sofer Z. Min J. Adv. Energy Mater. 2021;11:2100451. doi: 10.1002/aenm.202100451. DOI
Kovalska E. Wu B. Liao L. Mazanek V. Luxa J. Marek I. Lajaunie L. Sofer Z. ACS Nano. 2023;17:11374. doi: 10.1021/acsnano.3c00658. PubMed DOI PMC
Wu Y. Yu Y. Energy Storage Mater. 2019;16:323. doi: 10.1016/j.ensm.2018.05.026. DOI
Cao J. Li J. Li D. Yuan Z. Zhang Y. Shulga V. Sun Z. Han W. Nano-Micro Lett. 2021;13:1. doi: 10.1007/s40820-020-00525-y. PubMed DOI PMC
Zhang H. Chhowalla M. Liu Z. Chem. Soc. Rev. 2018;47:3015. doi: 10.1039/C8CS90048E. PubMed DOI
Kumar M. R. Singh S. Fahmy H. M. Jaiswal N. K. Akin S. Shalan A. E. Lanceros-Mendez S. Salado M. J. Power Sources. 2023;556:232256. doi: 10.1016/j.jpowsour.2022.232256. DOI
Wang J. Zhang L. Wang L. Lei W. Wu Z. S. Energy Environ. Mater. 2022;5:10. doi: 10.1002/eem2.12159. DOI
Kim S. Lee J. Jin G. Jo M.-H. Lee C. Ryu S. Nano Lett. 2019;19:4043. doi: 10.1021/acs.nanolett.9b01417. PubMed DOI
Mak K. F. Shan J. Ralph D. C. Nat. Rev. Phys. 2019;1:646. doi: 10.1038/s42254-019-0110-y. DOI
Kim K. Lim S. Y. Lee J.-U. Lee S. Kim T. Y. Park K. Jeon G. S. Park C.-H. Park J.-G. Cheong H. Nat. Commun. 2019;10:345. doi: 10.1038/s41467-018-08284-6. PubMed DOI PMC
Koitzsch A. Klaproth T. Selter S. Shemerliuk Y. Aswartham S. Janson O. Büchner B. Knupfer M. npj Quantum Mater. 2023;8:27. doi: 10.1038/s41535-023-00560-z. PubMed DOI
Yang X. Luo Y. Li J. Wang H. Song Y. Li J. Guo Z. Adv. Funct. Mater. 2022;32:2112169. doi: 10.1002/adfm.202112169. DOI
Zhang H. Meng G. Liu Q. Luo Y. Niederberger M. Feng L. Luo J. Liu X. Small. 2023:2303165. doi: 10.1002/smll.202303165. PubMed DOI
Iton Z. W. B. Lee B. C. Jiang A. Y. Kim S. S. Brady M. J. Shaker S. See K. A. J. Am. Chem. Soc. 2023;145:13312. doi: 10.1021/jacs.3c03368. PubMed DOI
Li H. Chuai M. Xiao X. Jia Y. Chen B. Li C. Piao Z. Lao Z. Zhang M. Gao R. J. Am. Chem. Soc. 2023;145:22516. doi: 10.1021/jacs.3c07213. PubMed DOI
Chien P.-W. Chang C.-B. Tuan H.-Y. Energy Storage Mater. 2023:102853. doi: 10.1016/j.ensm.2023.102853. DOI
Gusmão R. Sofer Z. Pumera M. Angew. Chem., Int. Ed. 2019;58:9326. doi: 10.1002/anie.201810309. PubMed DOI
Liang Q. Zheng Y. Du C. Luo Y. Zhao J. Ren H. Xu J. Yan Q. ACS Nano. 2018;12:12902. doi: 10.1021/acsnano.8b08229. PubMed DOI
Huang Y.-F. Yang Y.-C. Tuan H.-Y. Chem. Eng. J. 2023;451:139013. doi: 10.1016/j.cej.2022.139013. DOI
Ding Y. Chen Y. Xu N. Lian X. Li L. Hu Y. Peng S. Nano-Micro Lett. 2020;12:1. doi: 10.1007/s40820-019-0337-2. PubMed DOI PMC
Xiao Z. Dai X. Jiang D. Xie H. Liu X. Wu M. Liu D. Li Y. Qian Z. Wang R. Adv. Funct. Mater. 2023:2304766. doi: 10.1002/adfm.202304766. DOI
Zhao Y. Gong Y. Gao C. Chen Z. Zheng C. Lv H. Wei H. Zhou Z. Wang Y. Chem. Eng. J. 2023;475:146229. doi: 10.1016/j.cej.2023.146229. DOI
Lv Z., Kang Y., Chen G., Yang J., Chen M., Lin P., Wu Q., Zhang M., Zhao J., Yang Y., Adv. Funct. Mater., 2024, 34, 2310476
Martinolich A. J. Lee C.-W. Lu I. T. Bevilacqua S. C. Preefer M. B. Bernardi M. Schleife A. See K. A. Chem. Mater. 2019;31:3652. doi: 10.1021/acs.chemmater.9b00207. DOI
Sun J. Liu C. Zheng P. Chaturvedi A. Nam K.-H. Li Z. Liang Q. Huang S. Fang D. Chai J. Next Mater. 2023;1:100053. doi: 10.1016/j.nxmate.2023.100053. DOI
Wright M. A. Surta T. W. Evans J. A. Lim J. Jo H. Hawkins C. J. Bahri M. Daniels L. M. Chen R. Zanella M. Angew. Chem. 2024:e202400837. PubMed
Shirota G. Nasu A. Deguchi M. Sakuda A. Tatsumisago M. Hayashi A. J. Ceram. Soc. Jpn. 2022;130:308. doi: 10.2109/jcersj2.21177. DOI
Yang M. Yao Y. Chang M. Tian F. Xie W. Zhao X. Yu Y. Yao X. Adv. Energy Mater. 2023;13:2300962. doi: 10.1002/aenm.202300962. DOI
Ye H. Ma L. Zhou Y. Wang L. Han N. Zhao F. Deng J. Wu T. Li Y. Lu J. Proc. Natl. Acad. Sci. U. S. A. 2017;114:13091. doi: 10.1073/pnas.1711917114. PubMed DOI PMC
Sakuda A. Taguchi N. Takeuchi T. Kobayashi H. Sakaebe H. Tatsumi K. Ogumi Z. ECS Electrochem. Lett. 2014;3:A79. doi: 10.1149/2.0091407eel. PubMed DOI PMC
Bowden W. L. Barnette L. H. DeMuth D. L. J. Electrochem. Soc. 1988;135:1. doi: 10.1149/1.2095554. DOI
Artemkina S. Poltarak A. Poltarak P. Grayfer E. Samsonenko D. Fedorov V. Inorg. Chim. Acta. 2020;512:119875. doi: 10.1016/j.ica.2020.119875. DOI
Li X. Liang J. Lu Y. Hou Z. Cheng Q. Zhu Y. Qian Y. Angew. Chem., Int. Ed. 2017;56:2937. doi: 10.1002/anie.201611691. PubMed DOI
Yu H. Siebert A. Mei S. Garcia-Diez R. Félix R. Quan T. Xu Y. Frisch J. Wilks R. G. Bär M. Energy Environ. Mater. 2022:e12539.
Kresse G. Hafner J. Phys. Rev. B:Condens. Matter Mater. Phys. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Heyd J. Scuseria G. E. Ernzerhof M. J. Chem. Phys. 2003;118:8207. doi: 10.1063/1.1564060. DOI
Kresse G. Furthmüller J. Phys. Rev. B:Condens. Matter Mater. Phys. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Blöchl P. E. Phys. Rev. B:Condens. Matter Mater. Phys. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Marom N. Tkatchenko A. Rossi M. Gobre V. V. Hod O. Scheffler M. Kronik L. J. Chem. Theory Comput. 2011;7:3944. doi: 10.1021/ct2005616. PubMed DOI
Stroppa A. Kresse G. New J. Phys. 2008;10:063020. doi: 10.1088/1367-2630/10/6/063020. DOI
Queignec M. Evain M. Brec R. Sourisseau C. J. Solid State Chem. 1986;63:89. doi: 10.1016/0022-4596(86)90157-X. DOI
Scholz T. Pielnhofer F. Eger R. Lotsch B. V. Z. Naturforsch. B Chem. Sci. 2020;75:225. doi: 10.1515/znb-2019-0217. DOI
Wu B. Kempt R. Kovalska E. Luxa J. Kuc A. Heine T. Sofer Z. ACS Appl. Nano Mater. 2021;4:441. doi: 10.1021/acsanm.0c02775. DOI
Choi K. H. Oh S. Chae S. Jeong B. J. Kim B. J. Jeon J. Lee S. H. Yoon S. O. Woo C. Dong X. J. Alloys Compd. 2021;864:158811. doi: 10.1016/j.jallcom.2021.158811. DOI
Kim S., Synthesis and Characterization of Low Dimensional Materials, Master thesis, 2009, https://dspace.ewha.ac.kr/handle/2015.oak/177362
Gutzmann A., Synthese und Charakterisierung Neuartiger Quaternärer Thiophosphate mit Metallen der Gruppen 4 und 5, PhD thesis, 2004, https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-10702
Jung D.-W. Kim S.-J. Bull. Korean Chem. Soc. 2003;24:739. doi: 10.5012/bkcs.2003.24.6.739. DOI
Yang L. Wang D. Liu M. Liu H. Tan J. Wang Z. Zhou H. Yu Q. Wang J. Lin J. Mater. Today. 2021;51:145. doi: 10.1016/j.mattod.2021.08.009. DOI
Splendiani A. Sun L. Zhang Y. Li T. Kim J. Chim C.-Y. Galli G. Wang F. Nano Lett. 2010;10:1271. doi: 10.1021/nl903868w. PubMed DOI
Brehm W. Santhosha A. L. Zhang Z. Neumann C. Turchanin A. Martin A. Pinna N. Seyring M. Rettenmayr M. Buchheim J. R. Adv. Funct. Mater. 2020;30:1910583. doi: 10.1002/adfm.201910583. DOI
Carvalho A. Nair V. Echeverrigaray S. G. Castro Neto A. H. ACS Omega. 2024;9:33912. doi: 10.1021/acsomega.4c04118. PubMed DOI PMC
Wang Z. Li X. Guo W. Fu Y. Adv. Funct. Mater. 2021;31:2009875. doi: 10.1002/adfm.202009875. DOI
Zou J. Zhao J. Wang B. Chen S. Chen P. Ran Q. Li L. Wang X. Yao J. Li H. ACS Appl. Mater. Interfaces. 2020;12:44850. doi: 10.1021/acsami.0c14082. PubMed DOI
Abdel-Hafiez M. Thiyagarajan R. Majumdar A. Ahuja R. Luo W. Vasiliev A. N. Maarouf A. A. Zybtsev S. G. Pokrovskii V. Y. Zaitsev-Zotov S. V. Phys. Rev. B. 2019;99:235126. doi: 10.1103/PhysRevB.99.235126. DOI
Wu H.-L. Huff L. A. Gewirth A. A. ACS Appl. Mater. Interfaces. 2015;7:1709. doi: 10.1021/am5072942. PubMed DOI
Yang L. Wang S. Qian C. Zhou S. ACS Appl. Energy Mater. 2023;6:8830. doi: 10.1021/acsaem.3c01382. DOI
Zhang S. Ueno K. Dokko K. Watanabe M. Adv. Energy Mater. 2015;5:1500117. doi: 10.1002/aenm.201500117. DOI
Dong C. Ma C. Zhou C. Yu Y. Wang J. Yu K. Shen C. Gu J. Yan K. Zheng A. Adv. Mater. 2024;36:2407070. doi: 10.1002/adma.202407070. PubMed DOI
Chen M. Zhao X. Li Y. Zeng P. Liu H. Yu H. Wu M. Li Z. Shao D. Miao C. Chem. Eng. J. 2020;385:123905. doi: 10.1016/j.cej.2019.123905. DOI
Bao W. Liu L. Wang C. Choi S. Wang D. Wang G. Adv. Energy Mater. 2018;8:1702485. doi: 10.1002/aenm.201702485. DOI