• This record comes from PubMed

Glue-assisted exfoliation of two-dimensional sulfur-rich niobium thiophosphate (Nb4P2S21) for sulfur-equivalent electrode study in lithium storage

. 2025 Mar 25 ; 7 (7) : 1860-1871. [epub] 20250130

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Two-dimensional (2D) layered thiophosphates have garnered attention for advanced battery technology due to their open ionic diffusion channels, high capacity, and unique catalytic properties. However, their potential in energy storage applications remains largely unexplored. In this study, we report a 2D transition metal thiophosphate (Nb4P2S21) with high sulfur content, synthesized via chemical vapor transport (CVT). The bulk material, exhibiting a layered quasi-one-dimensional (quasi-1D) structure, can be exfoliated into high-quality nanoplates using glue-assisted grinding. Density functional theory (DFT) calculations reveal a direct bandgap of 1.64 eV (HSE06 method) for Nb4P2S21, aligning with its near-infrared (NIR) photoluminescence at 755 nm. Despite an initial discharge capacity of 1500 mA h g-1, the material shows low reversible capacity and rapid capacity decay at 0-2.6 V. In situ Raman confirms the formation of polysulfides during cycling. Given its high sulfur content, the material was evaluated at 0.5-2.6 V, 1.0-2.6 V, and 1.5-2.6 V to assess its sulfur-equivalent cathode performance. In carbonate-based electrolytes, electrochemical performance is hindered by polysulfide formation and side reactions, but switching to ether-based electrolytes improves initial reversible capacity and coulombic efficiency due to additional Li x S conversion above 2.2 V. EDS and TOF-SIMS analyses of cycled electrodes show a significant sulfur loss, worsening the polysulfide shuttle effect and leading to battery failure. Adapting strategies from lithium-sulfur batteries, such as polar host catalysts, could enhance the material's performance.

See more in PubMed

Zhang X. Hou L. Ciesielski A. Samorì P. Adv. Energy Mater. 2016;6:1600671. doi: 10.1002/aenm.201600671. DOI

Li H. Tang Z. Liu Z. Zhi C. Joule. 2019;3:613. doi: 10.1016/j.joule.2019.01.013. DOI

Zhao P. Wang H. Wu L. Chen L. Cai Z. Li L. Wang X. Adv. Energy Mater. 2019;9:1803048. doi: 10.1002/aenm.201803048. DOI

Thackeray M. M. Wolverton C. Isaacs E. D. Energy Environ. Sci. 2012;5:7854. doi: 10.1039/C2EE21892E. DOI

Jiang F. Peng P. Sci. Rep. 2016;6:32639. doi: 10.1038/srep32639. PubMed DOI PMC

Lyu P. Liu X. Qu J. Zhao J. Huo Y. Qu Z. Rao Z. Energy Storage Mater. 2020;31:195. doi: 10.1016/j.ensm.2020.06.042. DOI

Gong M. Yu R. Zhou C. Yu Y. Pan Q. Dong C. Shen C. Guan Y. Sun C. Mai L. ACS Nano. 2024;18:20648. doi: 10.1021/acsnano.4c06111. PubMed DOI

Chen K.-S. Balla I. Luu N. S. Hersam M. C. ACS Energy Lett. 2017;2:2026. doi: 10.1021/acsenergylett.7b00476. DOI

Rojaee R. Shahbazian-Yassar R. ACS Nano. 2020;14:2628. doi: 10.1021/acsnano.9b08396. PubMed DOI

Khan A. Azadmanjiri J. Wu B. Liping L. Sofer Z. Min J. Adv. Energy Mater. 2021;11:2100451. doi: 10.1002/aenm.202100451. DOI

Kovalska E. Wu B. Liao L. Mazanek V. Luxa J. Marek I. Lajaunie L. Sofer Z. ACS Nano. 2023;17:11374. doi: 10.1021/acsnano.3c00658. PubMed DOI PMC

Wu Y. Yu Y. Energy Storage Mater. 2019;16:323. doi: 10.1016/j.ensm.2018.05.026. DOI

Cao J. Li J. Li D. Yuan Z. Zhang Y. Shulga V. Sun Z. Han W. Nano-Micro Lett. 2021;13:1. doi: 10.1007/s40820-020-00525-y. PubMed DOI PMC

Zhang H. Chhowalla M. Liu Z. Chem. Soc. Rev. 2018;47:3015. doi: 10.1039/C8CS90048E. PubMed DOI

Kumar M. R. Singh S. Fahmy H. M. Jaiswal N. K. Akin S. Shalan A. E. Lanceros-Mendez S. Salado M. J. Power Sources. 2023;556:232256. doi: 10.1016/j.jpowsour.2022.232256. DOI

Wang J. Zhang L. Wang L. Lei W. Wu Z. S. Energy Environ. Mater. 2022;5:10. doi: 10.1002/eem2.12159. DOI

Kim S. Lee J. Jin G. Jo M.-H. Lee C. Ryu S. Nano Lett. 2019;19:4043. doi: 10.1021/acs.nanolett.9b01417. PubMed DOI

Mak K. F. Shan J. Ralph D. C. Nat. Rev. Phys. 2019;1:646. doi: 10.1038/s42254-019-0110-y. DOI

Kim K. Lim S. Y. Lee J.-U. Lee S. Kim T. Y. Park K. Jeon G. S. Park C.-H. Park J.-G. Cheong H. Nat. Commun. 2019;10:345. doi: 10.1038/s41467-018-08284-6. PubMed DOI PMC

Koitzsch A. Klaproth T. Selter S. Shemerliuk Y. Aswartham S. Janson O. Büchner B. Knupfer M. npj Quantum Mater. 2023;8:27. doi: 10.1038/s41535-023-00560-z. PubMed DOI

Yang X. Luo Y. Li J. Wang H. Song Y. Li J. Guo Z. Adv. Funct. Mater. 2022;32:2112169. doi: 10.1002/adfm.202112169. DOI

Zhang H. Meng G. Liu Q. Luo Y. Niederberger M. Feng L. Luo J. Liu X. Small. 2023:2303165. doi: 10.1002/smll.202303165. PubMed DOI

Iton Z. W. B. Lee B. C. Jiang A. Y. Kim S. S. Brady M. J. Shaker S. See K. A. J. Am. Chem. Soc. 2023;145:13312. doi: 10.1021/jacs.3c03368. PubMed DOI

Li H. Chuai M. Xiao X. Jia Y. Chen B. Li C. Piao Z. Lao Z. Zhang M. Gao R. J. Am. Chem. Soc. 2023;145:22516. doi: 10.1021/jacs.3c07213. PubMed DOI

Chien P.-W. Chang C.-B. Tuan H.-Y. Energy Storage Mater. 2023:102853. doi: 10.1016/j.ensm.2023.102853. DOI

Gusmão R. Sofer Z. Pumera M. Angew. Chem., Int. Ed. 2019;58:9326. doi: 10.1002/anie.201810309. PubMed DOI

Liang Q. Zheng Y. Du C. Luo Y. Zhao J. Ren H. Xu J. Yan Q. ACS Nano. 2018;12:12902. doi: 10.1021/acsnano.8b08229. PubMed DOI

Huang Y.-F. Yang Y.-C. Tuan H.-Y. Chem. Eng. J. 2023;451:139013. doi: 10.1016/j.cej.2022.139013. DOI

Ding Y. Chen Y. Xu N. Lian X. Li L. Hu Y. Peng S. Nano-Micro Lett. 2020;12:1. doi: 10.1007/s40820-019-0337-2. PubMed DOI PMC

Xiao Z. Dai X. Jiang D. Xie H. Liu X. Wu M. Liu D. Li Y. Qian Z. Wang R. Adv. Funct. Mater. 2023:2304766. doi: 10.1002/adfm.202304766. DOI

Zhao Y. Gong Y. Gao C. Chen Z. Zheng C. Lv H. Wei H. Zhou Z. Wang Y. Chem. Eng. J. 2023;475:146229. doi: 10.1016/j.cej.2023.146229. DOI

Lv Z., Kang Y., Chen G., Yang J., Chen M., Lin P., Wu Q., Zhang M., Zhao J., Yang Y., Adv. Funct. Mater., 2024, 34, 2310476

Martinolich A. J. Lee C.-W. Lu I. T. Bevilacqua S. C. Preefer M. B. Bernardi M. Schleife A. See K. A. Chem. Mater. 2019;31:3652. doi: 10.1021/acs.chemmater.9b00207. DOI

Sun J. Liu C. Zheng P. Chaturvedi A. Nam K.-H. Li Z. Liang Q. Huang S. Fang D. Chai J. Next Mater. 2023;1:100053. doi: 10.1016/j.nxmate.2023.100053. DOI

Wright M. A. Surta T. W. Evans J. A. Lim J. Jo H. Hawkins C. J. Bahri M. Daniels L. M. Chen R. Zanella M. Angew. Chem. 2024:e202400837. PubMed

Shirota G. Nasu A. Deguchi M. Sakuda A. Tatsumisago M. Hayashi A. J. Ceram. Soc. Jpn. 2022;130:308. doi: 10.2109/jcersj2.21177. DOI

Yang M. Yao Y. Chang M. Tian F. Xie W. Zhao X. Yu Y. Yao X. Adv. Energy Mater. 2023;13:2300962. doi: 10.1002/aenm.202300962. DOI

Ye H. Ma L. Zhou Y. Wang L. Han N. Zhao F. Deng J. Wu T. Li Y. Lu J. Proc. Natl. Acad. Sci. U. S. A. 2017;114:13091. doi: 10.1073/pnas.1711917114. PubMed DOI PMC

Sakuda A. Taguchi N. Takeuchi T. Kobayashi H. Sakaebe H. Tatsumi K. Ogumi Z. ECS Electrochem. Lett. 2014;3:A79. doi: 10.1149/2.0091407eel. PubMed DOI PMC

Bowden W. L. Barnette L. H. DeMuth D. L. J. Electrochem. Soc. 1988;135:1. doi: 10.1149/1.2095554. DOI

Artemkina S. Poltarak A. Poltarak P. Grayfer E. Samsonenko D. Fedorov V. Inorg. Chim. Acta. 2020;512:119875. doi: 10.1016/j.ica.2020.119875. DOI

Li X. Liang J. Lu Y. Hou Z. Cheng Q. Zhu Y. Qian Y. Angew. Chem., Int. Ed. 2017;56:2937. doi: 10.1002/anie.201611691. PubMed DOI

Yu H. Siebert A. Mei S. Garcia-Diez R. Félix R. Quan T. Xu Y. Frisch J. Wilks R. G. Bär M. Energy Environ. Mater. 2022:e12539.

Kresse G. Hafner J. Phys. Rev. B:Condens. Matter Mater. Phys. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Heyd J. Scuseria G. E. Ernzerhof M. J. Chem. Phys. 2003;118:8207. doi: 10.1063/1.1564060. DOI

Kresse G. Furthmüller J. Phys. Rev. B:Condens. Matter Mater. Phys. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Blöchl P. E. Phys. Rev. B:Condens. Matter Mater. Phys. 1994;50:17953. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Marom N. Tkatchenko A. Rossi M. Gobre V. V. Hod O. Scheffler M. Kronik L. J. Chem. Theory Comput. 2011;7:3944. doi: 10.1021/ct2005616. PubMed DOI

Stroppa A. Kresse G. New J. Phys. 2008;10:063020. doi: 10.1088/1367-2630/10/6/063020. DOI

Queignec M. Evain M. Brec R. Sourisseau C. J. Solid State Chem. 1986;63:89. doi: 10.1016/0022-4596(86)90157-X. DOI

Scholz T. Pielnhofer F. Eger R. Lotsch B. V. Z. Naturforsch. B Chem. Sci. 2020;75:225. doi: 10.1515/znb-2019-0217. DOI

Wu B. Kempt R. Kovalska E. Luxa J. Kuc A. Heine T. Sofer Z. ACS Appl. Nano Mater. 2021;4:441. doi: 10.1021/acsanm.0c02775. DOI

Choi K. H. Oh S. Chae S. Jeong B. J. Kim B. J. Jeon J. Lee S. H. Yoon S. O. Woo C. Dong X. J. Alloys Compd. 2021;864:158811. doi: 10.1016/j.jallcom.2021.158811. DOI

Kim S., Synthesis and Characterization of Low Dimensional Materials, Master thesis, 2009, https://dspace.ewha.ac.kr/handle/2015.oak/177362

Gutzmann A., Synthese und Charakterisierung Neuartiger Quaternärer Thiophosphate mit Metallen der Gruppen 4 und 5, PhD thesis, 2004, https://nbn-resolving.org/urn:nbn:de:gbv:8-diss-10702

Jung D.-W. Kim S.-J. Bull. Korean Chem. Soc. 2003;24:739. doi: 10.5012/bkcs.2003.24.6.739. DOI

Yang L. Wang D. Liu M. Liu H. Tan J. Wang Z. Zhou H. Yu Q. Wang J. Lin J. Mater. Today. 2021;51:145. doi: 10.1016/j.mattod.2021.08.009. DOI

Splendiani A. Sun L. Zhang Y. Li T. Kim J. Chim C.-Y. Galli G. Wang F. Nano Lett. 2010;10:1271. doi: 10.1021/nl903868w. PubMed DOI

Brehm W. Santhosha A. L. Zhang Z. Neumann C. Turchanin A. Martin A. Pinna N. Seyring M. Rettenmayr M. Buchheim J. R. Adv. Funct. Mater. 2020;30:1910583. doi: 10.1002/adfm.201910583. DOI

Carvalho A. Nair V. Echeverrigaray S. G. Castro Neto A. H. ACS Omega. 2024;9:33912. doi: 10.1021/acsomega.4c04118. PubMed DOI PMC

Wang Z. Li X. Guo W. Fu Y. Adv. Funct. Mater. 2021;31:2009875. doi: 10.1002/adfm.202009875. DOI

Zou J. Zhao J. Wang B. Chen S. Chen P. Ran Q. Li L. Wang X. Yao J. Li H. ACS Appl. Mater. Interfaces. 2020;12:44850. doi: 10.1021/acsami.0c14082. PubMed DOI

Abdel-Hafiez M. Thiyagarajan R. Majumdar A. Ahuja R. Luo W. Vasiliev A. N. Maarouf A. A. Zybtsev S. G. Pokrovskii V. Y. Zaitsev-Zotov S. V. Phys. Rev. B. 2019;99:235126. doi: 10.1103/PhysRevB.99.235126. DOI

Wu H.-L. Huff L. A. Gewirth A. A. ACS Appl. Mater. Interfaces. 2015;7:1709. doi: 10.1021/am5072942. PubMed DOI

Yang L. Wang S. Qian C. Zhou S. ACS Appl. Energy Mater. 2023;6:8830. doi: 10.1021/acsaem.3c01382. DOI

Zhang S. Ueno K. Dokko K. Watanabe M. Adv. Energy Mater. 2015;5:1500117. doi: 10.1002/aenm.201500117. DOI

Dong C. Ma C. Zhou C. Yu Y. Wang J. Yu K. Shen C. Gu J. Yan K. Zheng A. Adv. Mater. 2024;36:2407070. doi: 10.1002/adma.202407070. PubMed DOI

Chen M. Zhao X. Li Y. Zeng P. Liu H. Yu H. Wu M. Li Z. Shao D. Miao C. Chem. Eng. J. 2020;385:123905. doi: 10.1016/j.cej.2019.123905. DOI

Bao W. Liu L. Wang C. Choi S. Wang D. Wang G. Adv. Energy Mater. 2018;8:1702485. doi: 10.1002/aenm.201702485. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...