Astroglia in neurological diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
R01 MH069791
NIMH NIH HHS - United States
R21 HD078678
NICHD NIH HHS - United States
PubMed
23658503
PubMed Central
PMC3645493
DOI
10.2217/fnl.12.90
Knihovny.cz E-zdroje
- Klíčová slova
- Alexander disease, Alzheimer's disease, amyotrophic lateral sclerosis, astroglia, astroglial atrophy, astrogliosis, ischemia, neurodegeneration, neuropathology, stroke,
- Publikační typ
- časopisecké články MeSH
Astroglia encompass a subset of versatile glial cells that fulfill a major homeostatic role in the mammalian brain. Since any brain disease results from failure in brain homeostasis, astroglial cells are involved in many, if not all, aspects of neurological and/or psychiatric disorders. In this article, the roles of astrocytes as homeostatic cells in healthy and diseased brains are surveyed. These cells can mount the defence response to the insult of the brain, astrogliosis, when and where they display hypertrophy. Interestingly, astrocytes can alternatively display atrophy in some pathological conditions. Various pathologies, including Alexander and Alzheimer's diseases, amyotrophic lateral sclerosis, stroke and epilepsy, to mention a few, are discussed. Astrocytes could represent a novel target for medical intervention in the treatment of brain disorders.
Zobrazit více v PubMed
Verkhratsky A. Physiology of neuronal–glial networking. Neurochem. Int. 2010;57(4):332–343. PubMed
Verkhratsky A, Butt A, editors. Physiology and Pathophysiology of Neuroglia. Wiley; Chichester, UK: 2013. [Provides an introduction to neuroglial function in health and disease.]
Verkhratsky A, Parpura V, Rodriguez JJ. Where the thoughts dwell: the physiology of neuronal–glial ‘diffuse neural net’. Brain Res. Rev. 2011;66(1–2):133–151. PubMed
Kettenmann H, Ransom BR, editors. Neuroglia. 3rd Edition. Oxford University Press; Oxford, UK: 2012. [Most comprehensive reference book in the field.]
Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007;10(11):1387–1394. PubMed
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol. Rev. 2011;91(2):461–553. PubMed
Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 2009;27:119–145. PubMed
Hanani M. Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res. Rev. 2010;64(2):304–327. PubMed
Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2012;9(11):625–632. PubMed
Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische and pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im pathologischen Institut zu Berlin. August Hirschwald; Berlin, Germany: 1858. [First description of the concept of neuroglia.]
Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31(12):653–659. PubMed
Verkhratsky A, Sofroniew MV, Messing A, et al. Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro. 2012;4(3):e00082. PubMed PMC
Parpura V, Heneka MT, Montana V, et al. Glial cells in (patho)physiology. J. Neurochem. 2012;121(1):4–27. PubMed PMC
Nedergaard M, Rodriguez JJ, Verkhratsky A. Glial calcium and diseases of the nervous system. Cell. Calcium. 2010;47(2):140–149. PubMed
Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia: the fulcrum of brain diseases. Cell Death Differ. 2007;14(7):1324–1335. PubMed
De Keyser J, Mostert JP, Koch MW. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 2008;267(1–2):3–16. [Comprehensive account of astroglial pathophysiology.] PubMed
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 2004;5(5):347–360. PubMed
Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 2007;10(11):1369–1376. PubMed
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22(5):208–215. [Introduced the concept of the tripartite synapse.] PubMed
Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 2007;13(2):54–63. PubMed
Nedergaard M, Verkhratsky A. Artifact versus reality – how astrocytes contribute to synaptic events. Glia. 2012;60(7):1013–1023. PubMed PMC
Hertz L, Zielke HR. Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 2004;27(12):735–743. PubMed
Hassel B, Brathe A. Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J. Neurosci. 2000;20(4):1342–1347. PubMed PMC
Kirischuk S, Parpura V, Verkhratsky A. Sodium dynamics: another key to astroglial excitability? Trends Neurosci. 2012;35(8):497–506. PubMed
Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–407. PubMed
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–647. [Comprehensive description of astrogliosis as a multistage and complex defensive reaction.] PubMed PMC
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. PubMed PMC
Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat. Rev. Neurosci. 2011;12(2):88–104. PubMed
Alexander WS. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain. 1949;72(3):373–381. PubMed
Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE. Alexander disease. J. Neurosci. 2012;32(15):5017–5023. [Up-to-date comprehensive description of Alexander disease and its cellular pathophysiology.] PubMed PMC
Prust M, Wang J, Morizono H, et al. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 2011;77(13):1287–1294. PubMed PMC
Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke. 2009;40(Suppl. 3):S8–S12. PubMed PMC
Vangeison G, Rempe DA. The Janus-faced effects of hypoxia on astrocyte function. Neuroscientist. 2009;15(6):579–588. PubMed PMC
Zhao Y, Rempe DA. Targeting astrocytes for stroke therapy. Neurotherapeutics. 2010;7(4):439–451. PubMed PMC
Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell. Calcium. 2010;47(2):122–129. PubMed
Danbolt NC. Glutamate uptake. Progr. Neurobiol. 2001;65:1–105. PubMed
Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia. 1999;28(2):85–96. PubMed
Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129(4):1045–1056. PubMed PMC
Parpura V, Grubisic V, Verkhratsky A. Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim. Biophys. Acta. 2011;1813(5):984–991. PubMed
Malarkey EB, Parpura V. Mechanisms of glutamate release from astrocytes. Neurochem. Int. 2008;52(1–2):142–154. PubMed PMC
Ding S, Wang T, Cui W, Haydon PG. Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia. 2009;57(7):767–776. PubMed PMC
Lin JH, Weigel H, Cotrina ML, et al. Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1998;1(6):494–500. PubMed
Leão AAP. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 1944;7:359–390. PubMed
Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 2011;17(4):439–447. PubMed
Eikermann-Haerter K, Ayata C. Cortical spreading depression and migraine. Curr. Neurol. Neurosci. Rep. 2010;10(3):167–173. PubMed
Leo L, Gherardini L, Barone V, et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011;7(6):e1002129. PubMed PMC
Sugaya E, Takato M, Noda Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J. Neurophysiol. 1975;38(4):822–841. PubMed
Nedergaard M, Cooper AJ, Goldman SA. Gap junctions are required for the propagation of spreading depression. J. Neurobiol. 1995;28(4):433–444. PubMed
Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ. Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics. 2010;7(4):452–470. PubMed PMC
Butterworth RF. Altered glial–neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem. Int. 2010;57(4):383–388. PubMed
Butterworth RF. Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology. 2011;53(4):1372–1376. PubMed
Haberle J, Gorg B, Rutsch F, et al. Congenital glutamine deficiency with glutamine synthetase mutations. N. Engl. J. Med. 2005;353(18):1926–1933. PubMed
Oide T, Yoshida K, Kaneko K, Ohta M, Arima K. Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol. Appl. Neurobiol. 2006;32(2):170–176. PubMed
Yin Z, Milatovic D, Aschner JL, et al. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res. 2007;1131(1):1–10. PubMed PMC
Struys-Ponsar C, Guillard O, van den Bosch de Aguilar P. Effects of aluminum exposure on glutamate metabolism: a possible explanation for its toxicity. Exp. Neurol. 2000;163(1):157–164. PubMed
Suarez-Fernandez MB, Soldado AB, Sanz-Medel A, Vega JA, Novelli A, Fernandez-Sanchez MT. Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res. 1999;835(2):125–136. PubMed
Oberheim NA, Tian GF, Han X, et al. Loss of astrocytic domain organization in the epileptic brain. J. Neurosci. 2008;28(13):3264–3276. PubMed PMC
Carmignoto G, Haydon PG. Astrocyte calcium signaling and epilepsy. Glia. 2012;60(8):1227–1233. PubMed PMC
Coulter DA, Eid T. Astrocytic regulation of glutamate homeostasis in epilepsy. Glia. 2012;60(8):1215–1226. PubMed PMC
Heinemann U, Kaufer D, Friedman A. Blood–brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia. 2012;60(8):1251–1257. PubMed PMC
Seifert G, Carmignoto G, Steinhauser C. Astrocyte dysfunction in epilepsy. Brain Res. Rev. 2010;63(1–2):212–221. PubMed
Seifert G, Steinhauser C. Neuron–astrocyte signaling and epilepsy. Exp. Neurol. 2011 doi:10.1016/j.expneurol.2011.08.024 (Epub ahead of print) PubMed
Reyes RC, Parpura V. Models of astrocytic Ca dynamics and epilepsy. Drug Discov. Today Dis. Models. 2008;5(1):13–18. PubMed PMC
Heneka MT, Rodriguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain Res. Rev. 2010;63(1–2):189–211. PubMed
Rodriguez JJ, Verkhratsky A. Neuroglial roots of neurodegenerative diseases? Mol. Neurobiol. 2011;43(2):87–96. PubMed
Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics. 2010;7(4):399–412. PubMed PMC
Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiat. Psych.-Gericht. Med. 1907;64:146–148.
Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol. Aging. 2004;25(5):663–674. PubMed
Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: mechanism for deficient glutamatergic transmission? Mol. Neurodegener. 2011;6:55. PubMed PMC
Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science. 2009;323(5918):1211–1215. PubMed PMC
Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia. 2010;58:831–838. PubMed
Yeh CY, Vadhwana B, Verkhratsky A, Rodriguez JJ. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease. ASN Neuro. 2012;3(5):271–279. PubMed PMC
Kulijewicz-Nawrot M, Verkhratsky A, Chvatal A, Sykova E, Rodriguez JJ. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease. J. Anat. 2012;221(3):252–262. PubMed PMC
Terry RD. Cell death or synaptic loss in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2000;59(12):1118–1119. PubMed
Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflam. 2005;2(1):22. PubMed PMC
Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme. J. Neurochem. 2005;92(2):226–234. PubMed
Rossi D, Brambilla L, Valori CF, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ. 2008;15(11):1691–1700. PubMed
Rossi D, Volterra A. Astrocytic dysfunction: Insights on the role in neurodegeneration. Brain Res. Bull. 2009;80:224–232. PubMed
Staats KA, Van Den Bosch L. Astrocytes in amyotrophic lateral sclerosis: direct effects on motor neuron survival. J. Biol. Phys. 2009;35(4):337–346. PubMed PMC
Yamanaka K, Chun SJ, Boillee S, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 2008;11(3):251–253. PubMed PMC
Wang L, Gutmann DH, Roos RP. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum. Mol. Genet. 2011;20(2):286–293. PubMed
Hazell AS, Sheedy D, Oanea R, et al. Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia. 2009;58:148–156. PubMed PMC
Hazell AS. Astrocytes are a major target in thiamine deficiency and Wernicke's encephalopathy. Neurochem. Int. 2009;55(1–3):129–135. PubMed
Broe M, Kril J, Halliday GM. Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain. 2004;127(Pt 10):2214–2220. PubMed
Kersaitis C, Halliday GM, Kril JJ. Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuropathol. 2004;108(6):515–523. PubMed
Potts R, Leech RW. Thalamic dementia: an example of primary astroglial dystrophy of Seitelberger. Clin. Neuropathol. 2005;24(6):271–275. PubMed
Rosenbaum AI, Maxfield FR. Niemann–Pick type C disease: molecular mechanisms and potential therapeutic approaches. J. Neurochem. 2011;116(5):789–795. PubMed PMC
McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Mov. Disord. 2008;23(4):474–483. PubMed
Mena MA, Garcia de Yebenes J. Glial cells as players in parkinsonism: the ‘good’, the ‘bad’ and the ‘mysterious’ glia. Neuroscientist. 2008;14(6):544–560. PubMed
Estrada-Sánchez AM, Rebec GV. Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes. Basal Ganglia. 2012;2(2):57–66. PubMed PMC
Bernstein HG, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev. Neurother. 2009;9(7):1059–1071. PubMed
Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol. Disord. Drug Targets. 2007;6(3):219–233. PubMed PMC
Miljkovic D, Timotijevic G, Mostarica Stojkovic M. Astrocytes in the tempest of multiple sclerosis. FEBS Lett. 2011;585(23):3781–3788. PubMed