Astroglia in neurological diseases

. 2013 Mar 01 ; 8 (2) : 149-158.

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid23658503

Grantová podpora
R01 MH069791 NIMH NIH HHS - United States
R21 HD078678 NICHD NIH HHS - United States

Astroglia encompass a subset of versatile glial cells that fulfill a major homeostatic role in the mammalian brain. Since any brain disease results from failure in brain homeostasis, astroglial cells are involved in many, if not all, aspects of neurological and/or psychiatric disorders. In this article, the roles of astrocytes as homeostatic cells in healthy and diseased brains are surveyed. These cells can mount the defence response to the insult of the brain, astrogliosis, when and where they display hypertrophy. Interestingly, astrocytes can alternatively display atrophy in some pathological conditions. Various pathologies, including Alexander and Alzheimer's diseases, amyotrophic lateral sclerosis, stroke and epilepsy, to mention a few, are discussed. Astrocytes could represent a novel target for medical intervention in the treatment of brain disorders.

Zobrazit více v PubMed

Verkhratsky A. Physiology of neuronal–glial networking. Neurochem. Int. 2010;57(4):332–343. PubMed

Verkhratsky A, Butt A, editors. Physiology and Pathophysiology of Neuroglia. Wiley; Chichester, UK: 2013. [Provides an introduction to neuroglial function in health and disease.]

Verkhratsky A, Parpura V, Rodriguez JJ. Where the thoughts dwell: the physiology of neuronal–glial ‘diffuse neural net’. Brain Res. Rev. 2011;66(1–2):133–151. PubMed

Kettenmann H, Ransom BR, editors. Neuroglia. 3rd Edition. Oxford University Press; Oxford, UK: 2012. [Most comprehensive reference book in the field.]

Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 2007;10(11):1387–1394. PubMed

Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol. Rev. 2011;91(2):461–553. PubMed

Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 2009;27:119–145. PubMed

Hanani M. Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res. Rev. 2010;64(2):304–327. PubMed

Gulbransen BD, Sharkey KA. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2012;9(11):625–632. PubMed

Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische and pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im pathologischen Institut zu Berlin. August Hirschwald; Berlin, Germany: 1858. [First description of the concept of neuroglia.]

Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31(12):653–659. PubMed

Verkhratsky A, Sofroniew MV, Messing A, et al. Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro. 2012;4(3):e00082. PubMed PMC

Parpura V, Heneka MT, Montana V, et al. Glial cells in (patho)physiology. J. Neurochem. 2012;121(1):4–27. PubMed PMC

Nedergaard M, Rodriguez JJ, Verkhratsky A. Glial calcium and diseases of the nervous system. Cell. Calcium. 2010;47(2):140–149. PubMed

Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A. Glia: the fulcrum of brain diseases. Cell Death Differ. 2007;14(7):1324–1335. PubMed

De Keyser J, Mostert JP, Koch MW. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 2008;267(1–2):3–16. [Comprehensive account of astroglial pathophysiology.] PubMed

Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 2004;5(5):347–360. PubMed

Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 2007;10(11):1369–1376. PubMed

Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22(5):208–215. [Introduced the concept of the tripartite synapse.] PubMed

Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol. Med. 2007;13(2):54–63. PubMed

Nedergaard M, Verkhratsky A. Artifact versus reality – how astrocytes contribute to synaptic events. Glia. 2012;60(7):1013–1023. PubMed PMC

Hertz L, Zielke HR. Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 2004;27(12):735–743. PubMed

Hassel B, Brathe A. Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J. Neurosci. 2000;20(4):1342–1347. PubMed PMC

Kirischuk S, Parpura V, Verkhratsky A. Sodium dynamics: another key to astroglial excitability? Trends Neurosci. 2012;35(8):497–506. PubMed

Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–407. PubMed

Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–647. [Comprehensive description of astrogliosis as a multistage and complex defensive reaction.] PubMed PMC

Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. PubMed PMC

Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat. Rev. Neurosci. 2011;12(2):88–104. PubMed

Alexander WS. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain. 1949;72(3):373–381. PubMed

Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE. Alexander disease. J. Neurosci. 2012;32(15):5017–5023. [Up-to-date comprehensive description of Alexander disease and its cellular pathophysiology.] PubMed PMC

Prust M, Wang J, Morizono H, et al. GFAP mutations, age at onset, and clinical subtypes in Alexander disease. Neurology. 2011;77(13):1287–1294. PubMed PMC

Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke. 2009;40(Suppl. 3):S8–S12. PubMed PMC

Vangeison G, Rempe DA. The Janus-faced effects of hypoxia on astrocyte function. Neuroscientist. 2009;15(6):579–588. PubMed PMC

Zhao Y, Rempe DA. Targeting astrocytes for stroke therapy. Neurotherapeutics. 2010;7(4):439–451. PubMed PMC

Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell. Calcium. 2010;47(2):122–129. PubMed

Danbolt NC. Glutamate uptake. Progr. Neurobiol. 2001;65:1–105. PubMed

Tanaka J, Toku K, Zhang B, Ishihara K, Sakanaka M, Maeda N. Astrocytes prevent neuronal death induced by reactive oxygen and nitrogen species. Glia. 1999;28(2):85–96. PubMed

Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129(4):1045–1056. PubMed PMC

Parpura V, Grubisic V, Verkhratsky A. Ca(2+) sources for the exocytotic release of glutamate from astrocytes. Biochim. Biophys. Acta. 2011;1813(5):984–991. PubMed

Malarkey EB, Parpura V. Mechanisms of glutamate release from astrocytes. Neurochem. Int. 2008;52(1–2):142–154. PubMed PMC

Ding S, Wang T, Cui W, Haydon PG. Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia. 2009;57(7):767–776. PubMed PMC

Lin JH, Weigel H, Cotrina ML, et al. Gap-junction-mediated propagation and amplification of cell injury. Nat. Neurosci. 1998;1(6):494–500. PubMed

Leão AAP. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 1944;7:359–390. PubMed

Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 2011;17(4):439–447. PubMed

Eikermann-Haerter K, Ayata C. Cortical spreading depression and migraine. Curr. Neurol. Neurosci. Rep. 2010;10(3):167–173. PubMed

Leo L, Gherardini L, Barone V, et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011;7(6):e1002129. PubMed PMC

Sugaya E, Takato M, Noda Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J. Neurophysiol. 1975;38(4):822–841. PubMed

Nedergaard M, Cooper AJ, Goldman SA. Gap junctions are required for the propagation of spreading depression. J. Neurobiol. 1995;28(4):433–444. PubMed

Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ. Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics. 2010;7(4):452–470. PubMed PMC

Butterworth RF. Altered glial–neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem. Int. 2010;57(4):383–388. PubMed

Butterworth RF. Hepatic encephalopathy: a central neuroinflammatory disorder? Hepatology. 2011;53(4):1372–1376. PubMed

Haberle J, Gorg B, Rutsch F, et al. Congenital glutamine deficiency with glutamine synthetase mutations. N. Engl. J. Med. 2005;353(18):1926–1933. PubMed

Oide T, Yoshida K, Kaneko K, Ohta M, Arima K. Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol. Appl. Neurobiol. 2006;32(2):170–176. PubMed

Yin Z, Milatovic D, Aschner JL, et al. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Res. 2007;1131(1):1–10. PubMed PMC

Struys-Ponsar C, Guillard O, van den Bosch de Aguilar P. Effects of aluminum exposure on glutamate metabolism: a possible explanation for its toxicity. Exp. Neurol. 2000;163(1):157–164. PubMed

Suarez-Fernandez MB, Soldado AB, Sanz-Medel A, Vega JA, Novelli A, Fernandez-Sanchez MT. Aluminum-induced degeneration of astrocytes occurs via apoptosis and results in neuronal death. Brain Res. 1999;835(2):125–136. PubMed

Oberheim NA, Tian GF, Han X, et al. Loss of astrocytic domain organization in the epileptic brain. J. Neurosci. 2008;28(13):3264–3276. PubMed PMC

Carmignoto G, Haydon PG. Astrocyte calcium signaling and epilepsy. Glia. 2012;60(8):1227–1233. PubMed PMC

Coulter DA, Eid T. Astrocytic regulation of glutamate homeostasis in epilepsy. Glia. 2012;60(8):1215–1226. PubMed PMC

Heinemann U, Kaufer D, Friedman A. Blood–brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia. 2012;60(8):1251–1257. PubMed PMC

Seifert G, Carmignoto G, Steinhauser C. Astrocyte dysfunction in epilepsy. Brain Res. Rev. 2010;63(1–2):212–221. PubMed

Seifert G, Steinhauser C. Neuron–astrocyte signaling and epilepsy. Exp. Neurol. 2011 doi:10.1016/j.expneurol.2011.08.024 (Epub ahead of print) PubMed

Reyes RC, Parpura V. Models of astrocytic Ca dynamics and epilepsy. Drug Discov. Today Dis. Models. 2008;5(1):13–18. PubMed PMC

Heneka MT, Rodriguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain Res. Rev. 2010;63(1–2):189–211. PubMed

Rodriguez JJ, Verkhratsky A. Neuroglial roots of neurodegenerative diseases? Mol. Neurobiol. 2011;43(2):87–96. PubMed

Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics. 2010;7(4):399–412. PubMed PMC

Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiat. Psych.-Gericht. Med. 1907;64:146–148.

Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC. Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol. Aging. 2004;25(5):663–674. PubMed

Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: mechanism for deficient glutamatergic transmission? Mol. Neurodegener. 2011;6:55. PubMed PMC

Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science. 2009;323(5918):1211–1215. PubMed PMC

Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia. 2010;58:831–838. PubMed

Yeh CY, Vadhwana B, Verkhratsky A, Rodriguez JJ. Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease. ASN Neuro. 2012;3(5):271–279. PubMed PMC

Kulijewicz-Nawrot M, Verkhratsky A, Chvatal A, Sykova E, Rodriguez JJ. Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer's disease. J. Anat. 2012;221(3):252–262. PubMed PMC

Terry RD. Cell death or synaptic loss in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2000;59(12):1118–1119. PubMed

Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflam. 2005;2(1):22. PubMed PMC

Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme. J. Neurochem. 2005;92(2):226–234. PubMed

Rossi D, Brambilla L, Valori CF, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ. 2008;15(11):1691–1700. PubMed

Rossi D, Volterra A. Astrocytic dysfunction: Insights on the role in neurodegeneration. Brain Res. Bull. 2009;80:224–232. PubMed

Staats KA, Van Den Bosch L. Astrocytes in amyotrophic lateral sclerosis: direct effects on motor neuron survival. J. Biol. Phys. 2009;35(4):337–346. PubMed PMC

Yamanaka K, Chun SJ, Boillee S, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 2008;11(3):251–253. PubMed PMC

Wang L, Gutmann DH, Roos RP. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum. Mol. Genet. 2011;20(2):286–293. PubMed

Hazell AS, Sheedy D, Oanea R, et al. Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia. 2009;58:148–156. PubMed PMC

Hazell AS. Astrocytes are a major target in thiamine deficiency and Wernicke's encephalopathy. Neurochem. Int. 2009;55(1–3):129–135. PubMed

Broe M, Kril J, Halliday GM. Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain. 2004;127(Pt 10):2214–2220. PubMed

Kersaitis C, Halliday GM, Kril JJ. Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuropathol. 2004;108(6):515–523. PubMed

Potts R, Leech RW. Thalamic dementia: an example of primary astroglial dystrophy of Seitelberger. Clin. Neuropathol. 2005;24(6):271–275. PubMed

Rosenbaum AI, Maxfield FR. Niemann–Pick type C disease: molecular mechanisms and potential therapeutic approaches. J. Neurochem. 2011;116(5):789–795. PubMed PMC

McGeer PL, McGeer EG. Glial reactions in Parkinson's disease. Mov. Disord. 2008;23(4):474–483. PubMed

Mena MA, Garcia de Yebenes J. Glial cells as players in parkinsonism: the ‘good’, the ‘bad’ and the ‘mysterious’ glia. Neuroscientist. 2008;14(6):544–560. PubMed

Estrada-Sánchez AM, Rebec GV. Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: interactions between neurons and astrocytes. Basal Ganglia. 2012;2(2):57–66. PubMed PMC

Bernstein HG, Steiner J, Bogerts B. Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev. Neurother. 2009;9(7):1059–1071. PubMed

Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol. Disord. Drug Targets. 2007;6(3):219–233. PubMed PMC

Miljkovic D, Timotijevic G, Mostarica Stojkovic M. Astrocytes in the tempest of multiple sclerosis. FEBS Lett. 2011;585(23):3781–3788. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace