Smart Watch Versus Classic Receivers: Static Validity of Three GPS Devices in Different Types of Built Environments

. 2021 Oct 30 ; 21 (21) : . [epub] 20211030

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34770539

Grantová podpora
IGA_FTK_2018_002 Palacký University, Olomouc

In order to study the relationship between human physical activity and the design of the built environment, it is important to measure the location of human movement accurately. In this study, we compared an inexpensive GPS receiver (Holux RCV-3000) and a frequently used Garmin Forerunner 35 smart watch, with a device that has been validated and recommended for physical activity research (Qstarz BT-Q1000XT). These instruments were placed on six geodetic points, which represented a range of different environments (e.g., residential, open space, park). The coordinates recorded by each device were compared with the known coordinates of the geodetic points. There were no differences in accuracy among the three devices when averaged across the six sites. However, the Garmin was more accurate in the city center and the Holux was more accurate in the park and housing estate areas compared to the other devices. We consider the location accuracy of the Holux and the Garmin to be comparable to that of the Qstarz. Therefore, we consider these devices to be suitable instruments for locating physical activity. Researchers must also consider other differences among these devices (such as battery life) when determining if they are suitable for their research studies.

Zobrazit více v PubMed

Frank L., Giles-Corti B., Ewing R. The influence of the built environment on transport and health. J. Transp. Health. 2016;3:423–425. doi: 10.1016/j.jth.2016.11.004. DOI

Sallis J.F., Cerin E., Conway T.L., Adams M.A., Frank L.D., Pratt M., Salvo D., Schipperijn J., Smith G., Cain K.L., et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet. 2016;387:2207–2217. doi: 10.1016/S0140-6736(15)01284-2. PubMed DOI PMC

Sallis J.F., Conway T.L., Cain K.L., Carlson J.A., Frank L.D., Kerr J., Glanz K., Chapman J.E., Saelens B.E. Neighborhood built environment and socioeconomic status in relation to physical activity, sedentary behavior, and weight status of adolescents. Prev. Med. 2018;110:47–54. doi: 10.1016/j.ypmed.2018.02.009. PubMed DOI PMC

Kerr J., Emond J.A., Badland H., Reis R., Sarmiento O., Carlson J., Sallis J.F., Cerin E., Cain K., Conway T., et al. Perceived Neighborhood Environmental Attributes Associated with Walking and Cycling for Transport among Adult Residents of 17 Cities in 12 Countries: The IPEN Study. Environ. Health Perspect. 2016;124:290–298. doi: 10.1289/ehp.1409466. PubMed DOI PMC

Oreskovic N.M., Blossom J., Field A.E., Chiang S.R., Winickoff J.P., Kleinman R.E. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat. Health. 2012;6:263–272. doi: 10.4081/gh.2012.144. PubMed DOI

Oliver M., Badland H., Mavoa S., Duncan M.J., Duncan S. Combining GPS, GIS, and accelerometry: Methodological issues in the assessment of location and intensity of travel behaviors. J. Phys. Act. Health. 2010;7:102–108. doi: 10.1123/jpah.7.1.102. PubMed DOI

Vorlíček M., Rubín L., Dygrýn J., Mitáš J., Voženílek V. The use of GPS devices to monitor physical activity—Potencial and limits. Stud. Kinanthropologica. 2016;17:131–138. doi: 10.32725/sk.2016.066. DOI

Krenn P.J., Titze S., Oja P., Jones A., Ogilvie D. Use of global positioning systems to study physical activity and the environment: A systematic review. Am. J. Prev. Med. 2011;41:508–515. doi: 10.1016/j.amepre.2011.06.046. PubMed DOI PMC

Yi L., Wilson J.P., Mason T.B., Habre R., Wang S., Dunton G.F. Methodologies for assessing contextual exposure to the built environment in physical activity studies: A systematic review. Health Place. 2019;60:102226. doi: 10.1016/j.healthplace.2019.102226. PubMed DOI PMC

Jones A.P., Coombes E.G., Griffin S.J., van Sluijs E.M. Environmental supportiveness for physical activity in English schoolchildren: A study using Global Positioning Systems. Int. J. Behav. Nutr. Phys. Act. 2009;6:42. doi: 10.1186/1479-5868-6-42. PubMed DOI PMC

Quigg R., Gray A., Reeder A.I., Holt A., Waters D.L. Using accelerometers and GPS units to identify the proportion of daily physical activity located in parks with playgrounds in New Zealand children. Prev. Med. 2010;50:235–240. doi: 10.1016/j.ypmed.2010.02.002. PubMed DOI

Troped P.J., Wilson J.S., Matthews C.E., Cromley E.K., Melly S.J. The Built Environment and Location-Based Physical Activity. Am. J. Prev. Med. 2010;38:429–438. doi: 10.1016/j.amepre.2009.12.032. PubMed DOI PMC

Cho G.H., Rodríguez D.A., Evenson K.R. Identifying walking trips using GPS data. Med. Sci. Sports Exerc. 2011;43:365–372. doi: 10.1249/MSS.0b013e3181ebec3c. PubMed DOI

Troped P.J., Oliveira M.S., Matthews C.E., Cromley E.K., Melly S.J., Craig B.A. Prediction of activity mode with global positioning system and accelerometer data. Med. Sci. Sports Exerc. 2008;40:972–978. doi: 10.1249/MSS.0b013e318164c407. PubMed DOI

Schipperijn J., Kerr J., Duncan S., Madsen T., Klinker C.D., Troelsen J. Dynamic Accuracy of GPS Receivers for Use in Health Research: A Novel Method to Assess GPS Accuracy in Real-World Settings. Front. Public Health. 2014;2:21. doi: 10.3389/fpubh.2014.00021. PubMed DOI PMC

Vorlicek M., Stewart T., Dygryn J., Rubin L., Mitas J., Schipperijn J. The comparison of Holux and Qstarz GPS receivers in free living conditions: Dynamic accuracy in different active transport modes. Acta Gymnica. 2019;49:109–114. doi: 10.5507/ag.2019.009. DOI

Cooper A.R., Page A.S., Wheeler B.W., Hillsdon M., Griew P., Jago R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: The PEACH project. Int. J. Behav. Nutr. Phys. Act. 2010;7:31. doi: 10.1186/1479-5868-7-31. PubMed DOI PMC

Kerr J., Duncan S., Schipperijn J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011;41:532–540. doi: 10.1016/j.amepre.2011.07.017. PubMed DOI

Andersen H.B., Christiansen L.B., Klinker C.D., Ersbøll A.K., Troelsen J., Kerr J., Schipperijn J. Increases in use and activity due to urban renewal: Effect of a natural experiment. Am. J. Prev. Med. 2017;53:e81–e87. doi: 10.1016/j.amepre.2017.03.010. PubMed DOI

Carlson J.A., Saelens B.E., Kerr J., Schipperijn J., Conway T.L., Frank L.D., Chapman J.E., Glanz K., Cain K.L., Sallis J.F. Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health Place. 2015;32:1–7. doi: 10.1016/j.healthplace.2014.12.008. PubMed DOI PMC

Klinker C.D., Schipperijn J., Christian H., Kerr J., Ersbøll A.K., Troelsen J. Using accelerometers and global positioning system devices to assess gender and age differences in children’s school, transport, leisure and home based physical activity. Int. J. Behav. Nutr. Phys. Act. 2014;11:8. doi: 10.1186/1479-5868-11-8. PubMed DOI PMC

Pizarro A.N., Schipperijn J., Ribeiro J.C., Figueiredo A., Mota J., Santos M.P. Gender differences in the domain-specific contributions to MVPA, accessed by GPS. J. Phys. Act. Health. 2017;14:474–478. doi: 10.1123/jpah.2016-0346. PubMed DOI

Duncan S., Stewart T.I., Oliver M., Mavoa S., MacRae D., Badland H.M., Duncan M.J. Portable global positioning system receivers: Static validity and environmental conditions. Am. J. Prev. Med. 2013;44:e19–e29. doi: 10.1016/j.amepre.2012.10.013. PubMed DOI

Muñoz-Lopez A., Granero-Gil P., Pino-Ortega J., De Hoyo M. The validity and reliability of a 5-hz GPS device for quantifying athletes’ sprints and movement demands specific to team sports. J. Hum. Sport Exerc. 2017;12:156–166. doi: 10.14198/jhse.2017.121.13. DOI

Hoppe M.W., Baumgart C., Polglaze T., Freiwald J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE. 2018;13:e0192708. doi: 10.1371/journal.pone.0192708. PubMed DOI PMC

Scott M.T., Scott T.J., Kelly V.G. The validity and reliability of global positioning systems in team sport: A brief review. J. Strength Cond. Res. 2016;30:1470–1490. doi: 10.1519/JSC.0000000000001221. PubMed DOI

Garnett R., Stewart R. Comparison of GPS units and mobile Apple GPS capabilities in an urban landscape. Cartogr. Geogr. Inf. Sci. 2015;42:1470–1490. doi: 10.1080/15230406.2014.974074. DOI

Lee L., Jones M., Ridenour G.S., Testa M.P., Wilson M.J. Investigating and comparing spatial accuracy and precision of GPS-enabled devices in Middle Tennessee; Proceedings of the Communications in Computer and Information Science; Ypsilanti, MI, USA. 3–5 October 2014; New York, NY, USA: Springer; 2015.

Wlaź M., Kozieł G. Verification of the precision of GSM and GPS signals available on mobile devices. J. Comput. Sci. Inst. 2020;15:143–149. doi: 10.35784/jcsi.2046. DOI

Zandbergen P.A., Barbeau S.J. Positional accuracy of assisted GPS data from high-sensitivity GPS-enabled mobile phones. J. Navig. 2011;64:381–399. doi: 10.1017/S0373463311000051. DOI

Wing M.G., Eklund A. Performance comparison of a low-cost mapping grade global positioning systems (GPS) receiver and consumer grade GPS receiver under dense forest canopy. J. For. 2007;105:9–14. doi: 10.1093/jof/105.1.9. DOI

Edson C., Wing M.G. Tree location measurement accuracy with a mapping-grade GPS receiver under forest canopy. For. Sci. 2012;58:567–576. doi: 10.5849/forsci.11-015. DOI

Valbuena R., Mauro F., Rodriguez-Solano R., Manzanera J.A. Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Span. J. Agric. Res. 2010;8:1047–1057. doi: 10.5424/sjar/2010084-1242. DOI

Gilgen-Ammann R., Schweizer T., Wyss T. Accuracy of distance recordings in eight positioning-enabled sport watches: Instrument validation study. JMIR mHealth uHealth. 2020;8:e17118. doi: 10.2196/17118. PubMed DOI PMC

Ordóñez Galán C., Rodríguez-Pérez J.R., Martínez Torres J., García Nieto P.J. Analysis of the influence of forest environments on the accuracy of GPS measurements by using genetic algorithms. Math. Comput. Model. 2011;54:1829–1834. doi: 10.1016/j.mcm.2010.11.077. DOI

Rodríguez-Pérez J.R., Álvarez M.F., Sanz-Ablanedo E. Assessment of Low-Cost GPS Receiver Accuracy and Precision in Forest Environments. J. Surv. Eng. 2007;133:159–167. doi: 10.1061/(ASCE)0733-9453(2007)133:4(159). DOI

Costa E. Simulation of the effects of different urban environments on gps performance using digital elevation models and building databases. IEEE Trans. Intell. Transp. Syst. 2011;12:819–829. doi: 10.1109/TITS.2011.2122258. DOI

Pobiruchin M., Suleder J., Zowalla R., Wiesner M. Accuracy and adoption of wearable technology used by active citizens: A marathon event field study. JMIR mHealth uHealth. 2017;5:e6395. doi: 10.2196/mhealth.6395. PubMed DOI PMC

Technology H. HOLUX. [(accessed on 1 January 2017)]. Available online: http://www.holux.com/JCore/en/products/products_content.jsp?pno=440.

Van Brummelen G. Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. Princeton University Press; Princeton, NJ, USA: 2012.

Carlson J.A., Schipperijn J., Kerr J., Saelens B.E., Natarajan L., Frank L.D., Glanz K., Conway T.L., Chapman J.E., Cain K.L., et al. Locations of Physical Activity as Assessed by GPS in Young Adolescents. Pediatrics. 2016;137:e20152430. doi: 10.1542/peds.2015-2430. PubMed DOI PMC

Klinker C.D., Schipperijn J., Toftager M., Kerr J., Troelsen J. When cities move children: Development of a new methodology to assess context-specific physical activity behaviour among children and adolescents using accelerometers and GPS. Health Place. 2015;31:90–99. doi: 10.1016/j.healthplace.2014.11.006. PubMed DOI

Nikam T., Mathew R. Lecture Notes on Data Engineering and Communications Technologies. Volume 31. Springer; New York, NY, USA: 2020. Comparison of Various Wearable Activity Trackers; pp. 173–179.

Dygrýn J., Medrano M., Molina-Garcia P., Rubín L., Jakubec L., Janda D., Gába A. Associations of novel 24-h accelerometer-derived metrics with adiposity in children and adolescents. Environ. Health Prev. Med. 2021;26:66. doi: 10.1186/s12199-021-00987-5. PubMed DOI PMC

Duncan S., Stewart T., Mackay L., Neville J., Narayanan A., Walker C., Berry S., Morton S. Wear-time compliance with a dual-accelerometer system for capturing 24-h behavioural profiles in children and adults. Int. J. Environ. Res. Public Health. 2018;15:1296. doi: 10.3390/ijerph15071296. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...