Smart Watch Versus Classic Receivers: Static Validity of Three GPS Devices in Different Types of Built Environments
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_FTK_2018_002
Palacký University, Olomouc
PubMed
34770539
PubMed Central
PMC8588079
DOI
10.3390/s21217232
PII: s21217232
Knihovny.cz E-zdroje
- Klíčová slova
- GPS, Garmin smart watch, accuracy, environment, geodetic point, logger,
- MeSH
- cvičení * MeSH
- lidé MeSH
- vytvořené prostředí * MeSH
- zdroje elektrické energie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In order to study the relationship between human physical activity and the design of the built environment, it is important to measure the location of human movement accurately. In this study, we compared an inexpensive GPS receiver (Holux RCV-3000) and a frequently used Garmin Forerunner 35 smart watch, with a device that has been validated and recommended for physical activity research (Qstarz BT-Q1000XT). These instruments were placed on six geodetic points, which represented a range of different environments (e.g., residential, open space, park). The coordinates recorded by each device were compared with the known coordinates of the geodetic points. There were no differences in accuracy among the three devices when averaged across the six sites. However, the Garmin was more accurate in the city center and the Holux was more accurate in the park and housing estate areas compared to the other devices. We consider the location accuracy of the Holux and the Garmin to be comparable to that of the Qstarz. Therefore, we consider these devices to be suitable instruments for locating physical activity. Researchers must also consider other differences among these devices (such as battery life) when determining if they are suitable for their research studies.
Faculty of Physical Culture Palacký University Olomouc 771 11 Olomouc Czech Republic
Faculty of Science Palacký University Olomouc 771 11 Olomouc Czech Republic
School of Sport and Recreation Auckland University of Technology Auckland 1010 New Zealand
Zobrazit více v PubMed
Frank L., Giles-Corti B., Ewing R. The influence of the built environment on transport and health. J. Transp. Health. 2016;3:423–425. doi: 10.1016/j.jth.2016.11.004. DOI
Sallis J.F., Cerin E., Conway T.L., Adams M.A., Frank L.D., Pratt M., Salvo D., Schipperijn J., Smith G., Cain K.L., et al. Physical activity in relation to urban environments in 14 cities worldwide: A cross-sectional study. Lancet. 2016;387:2207–2217. doi: 10.1016/S0140-6736(15)01284-2. PubMed DOI PMC
Sallis J.F., Conway T.L., Cain K.L., Carlson J.A., Frank L.D., Kerr J., Glanz K., Chapman J.E., Saelens B.E. Neighborhood built environment and socioeconomic status in relation to physical activity, sedentary behavior, and weight status of adolescents. Prev. Med. 2018;110:47–54. doi: 10.1016/j.ypmed.2018.02.009. PubMed DOI PMC
Kerr J., Emond J.A., Badland H., Reis R., Sarmiento O., Carlson J., Sallis J.F., Cerin E., Cain K., Conway T., et al. Perceived Neighborhood Environmental Attributes Associated with Walking and Cycling for Transport among Adult Residents of 17 Cities in 12 Countries: The IPEN Study. Environ. Health Perspect. 2016;124:290–298. doi: 10.1289/ehp.1409466. PubMed DOI PMC
Oreskovic N.M., Blossom J., Field A.E., Chiang S.R., Winickoff J.P., Kleinman R.E. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat. Health. 2012;6:263–272. doi: 10.4081/gh.2012.144. PubMed DOI
Oliver M., Badland H., Mavoa S., Duncan M.J., Duncan S. Combining GPS, GIS, and accelerometry: Methodological issues in the assessment of location and intensity of travel behaviors. J. Phys. Act. Health. 2010;7:102–108. doi: 10.1123/jpah.7.1.102. PubMed DOI
Vorlíček M., Rubín L., Dygrýn J., Mitáš J., Voženílek V. The use of GPS devices to monitor physical activity—Potencial and limits. Stud. Kinanthropologica. 2016;17:131–138. doi: 10.32725/sk.2016.066. DOI
Krenn P.J., Titze S., Oja P., Jones A., Ogilvie D. Use of global positioning systems to study physical activity and the environment: A systematic review. Am. J. Prev. Med. 2011;41:508–515. doi: 10.1016/j.amepre.2011.06.046. PubMed DOI PMC
Yi L., Wilson J.P., Mason T.B., Habre R., Wang S., Dunton G.F. Methodologies for assessing contextual exposure to the built environment in physical activity studies: A systematic review. Health Place. 2019;60:102226. doi: 10.1016/j.healthplace.2019.102226. PubMed DOI PMC
Jones A.P., Coombes E.G., Griffin S.J., van Sluijs E.M. Environmental supportiveness for physical activity in English schoolchildren: A study using Global Positioning Systems. Int. J. Behav. Nutr. Phys. Act. 2009;6:42. doi: 10.1186/1479-5868-6-42. PubMed DOI PMC
Quigg R., Gray A., Reeder A.I., Holt A., Waters D.L. Using accelerometers and GPS units to identify the proportion of daily physical activity located in parks with playgrounds in New Zealand children. Prev. Med. 2010;50:235–240. doi: 10.1016/j.ypmed.2010.02.002. PubMed DOI
Troped P.J., Wilson J.S., Matthews C.E., Cromley E.K., Melly S.J. The Built Environment and Location-Based Physical Activity. Am. J. Prev. Med. 2010;38:429–438. doi: 10.1016/j.amepre.2009.12.032. PubMed DOI PMC
Cho G.H., Rodríguez D.A., Evenson K.R. Identifying walking trips using GPS data. Med. Sci. Sports Exerc. 2011;43:365–372. doi: 10.1249/MSS.0b013e3181ebec3c. PubMed DOI
Troped P.J., Oliveira M.S., Matthews C.E., Cromley E.K., Melly S.J., Craig B.A. Prediction of activity mode with global positioning system and accelerometer data. Med. Sci. Sports Exerc. 2008;40:972–978. doi: 10.1249/MSS.0b013e318164c407. PubMed DOI
Schipperijn J., Kerr J., Duncan S., Madsen T., Klinker C.D., Troelsen J. Dynamic Accuracy of GPS Receivers for Use in Health Research: A Novel Method to Assess GPS Accuracy in Real-World Settings. Front. Public Health. 2014;2:21. doi: 10.3389/fpubh.2014.00021. PubMed DOI PMC
Vorlicek M., Stewart T., Dygryn J., Rubin L., Mitas J., Schipperijn J. The comparison of Holux and Qstarz GPS receivers in free living conditions: Dynamic accuracy in different active transport modes. Acta Gymnica. 2019;49:109–114. doi: 10.5507/ag.2019.009. DOI
Cooper A.R., Page A.S., Wheeler B.W., Hillsdon M., Griew P., Jago R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: The PEACH project. Int. J. Behav. Nutr. Phys. Act. 2010;7:31. doi: 10.1186/1479-5868-7-31. PubMed DOI PMC
Kerr J., Duncan S., Schipperijn J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011;41:532–540. doi: 10.1016/j.amepre.2011.07.017. PubMed DOI
Andersen H.B., Christiansen L.B., Klinker C.D., Ersbøll A.K., Troelsen J., Kerr J., Schipperijn J. Increases in use and activity due to urban renewal: Effect of a natural experiment. Am. J. Prev. Med. 2017;53:e81–e87. doi: 10.1016/j.amepre.2017.03.010. PubMed DOI
Carlson J.A., Saelens B.E., Kerr J., Schipperijn J., Conway T.L., Frank L.D., Chapman J.E., Glanz K., Cain K.L., Sallis J.F. Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health Place. 2015;32:1–7. doi: 10.1016/j.healthplace.2014.12.008. PubMed DOI PMC
Klinker C.D., Schipperijn J., Christian H., Kerr J., Ersbøll A.K., Troelsen J. Using accelerometers and global positioning system devices to assess gender and age differences in children’s school, transport, leisure and home based physical activity. Int. J. Behav. Nutr. Phys. Act. 2014;11:8. doi: 10.1186/1479-5868-11-8. PubMed DOI PMC
Pizarro A.N., Schipperijn J., Ribeiro J.C., Figueiredo A., Mota J., Santos M.P. Gender differences in the domain-specific contributions to MVPA, accessed by GPS. J. Phys. Act. Health. 2017;14:474–478. doi: 10.1123/jpah.2016-0346. PubMed DOI
Duncan S., Stewart T.I., Oliver M., Mavoa S., MacRae D., Badland H.M., Duncan M.J. Portable global positioning system receivers: Static validity and environmental conditions. Am. J. Prev. Med. 2013;44:e19–e29. doi: 10.1016/j.amepre.2012.10.013. PubMed DOI
Muñoz-Lopez A., Granero-Gil P., Pino-Ortega J., De Hoyo M. The validity and reliability of a 5-hz GPS device for quantifying athletes’ sprints and movement demands specific to team sports. J. Hum. Sport Exerc. 2017;12:156–166. doi: 10.14198/jhse.2017.121.13. DOI
Hoppe M.W., Baumgart C., Polglaze T., Freiwald J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE. 2018;13:e0192708. doi: 10.1371/journal.pone.0192708. PubMed DOI PMC
Scott M.T., Scott T.J., Kelly V.G. The validity and reliability of global positioning systems in team sport: A brief review. J. Strength Cond. Res. 2016;30:1470–1490. doi: 10.1519/JSC.0000000000001221. PubMed DOI
Garnett R., Stewart R. Comparison of GPS units and mobile Apple GPS capabilities in an urban landscape. Cartogr. Geogr. Inf. Sci. 2015;42:1470–1490. doi: 10.1080/15230406.2014.974074. DOI
Lee L., Jones M., Ridenour G.S., Testa M.P., Wilson M.J. Investigating and comparing spatial accuracy and precision of GPS-enabled devices in Middle Tennessee; Proceedings of the Communications in Computer and Information Science; Ypsilanti, MI, USA. 3–5 October 2014; New York, NY, USA: Springer; 2015.
Wlaź M., Kozieł G. Verification of the precision of GSM and GPS signals available on mobile devices. J. Comput. Sci. Inst. 2020;15:143–149. doi: 10.35784/jcsi.2046. DOI
Zandbergen P.A., Barbeau S.J. Positional accuracy of assisted GPS data from high-sensitivity GPS-enabled mobile phones. J. Navig. 2011;64:381–399. doi: 10.1017/S0373463311000051. DOI
Wing M.G., Eklund A. Performance comparison of a low-cost mapping grade global positioning systems (GPS) receiver and consumer grade GPS receiver under dense forest canopy. J. For. 2007;105:9–14. doi: 10.1093/jof/105.1.9. DOI
Edson C., Wing M.G. Tree location measurement accuracy with a mapping-grade GPS receiver under forest canopy. For. Sci. 2012;58:567–576. doi: 10.5849/forsci.11-015. DOI
Valbuena R., Mauro F., Rodriguez-Solano R., Manzanera J.A. Accuracy and precision of GPS receivers under forest canopies in a mountainous environment. Span. J. Agric. Res. 2010;8:1047–1057. doi: 10.5424/sjar/2010084-1242. DOI
Gilgen-Ammann R., Schweizer T., Wyss T. Accuracy of distance recordings in eight positioning-enabled sport watches: Instrument validation study. JMIR mHealth uHealth. 2020;8:e17118. doi: 10.2196/17118. PubMed DOI PMC
Ordóñez Galán C., Rodríguez-Pérez J.R., Martínez Torres J., García Nieto P.J. Analysis of the influence of forest environments on the accuracy of GPS measurements by using genetic algorithms. Math. Comput. Model. 2011;54:1829–1834. doi: 10.1016/j.mcm.2010.11.077. DOI
Rodríguez-Pérez J.R., Álvarez M.F., Sanz-Ablanedo E. Assessment of Low-Cost GPS Receiver Accuracy and Precision in Forest Environments. J. Surv. Eng. 2007;133:159–167. doi: 10.1061/(ASCE)0733-9453(2007)133:4(159). DOI
Costa E. Simulation of the effects of different urban environments on gps performance using digital elevation models and building databases. IEEE Trans. Intell. Transp. Syst. 2011;12:819–829. doi: 10.1109/TITS.2011.2122258. DOI
Pobiruchin M., Suleder J., Zowalla R., Wiesner M. Accuracy and adoption of wearable technology used by active citizens: A marathon event field study. JMIR mHealth uHealth. 2017;5:e6395. doi: 10.2196/mhealth.6395. PubMed DOI PMC
Technology H. HOLUX. [(accessed on 1 January 2017)]. Available online: http://www.holux.com/JCore/en/products/products_content.jsp?pno=440.
Van Brummelen G. Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry. Princeton University Press; Princeton, NJ, USA: 2012.
Carlson J.A., Schipperijn J., Kerr J., Saelens B.E., Natarajan L., Frank L.D., Glanz K., Conway T.L., Chapman J.E., Cain K.L., et al. Locations of Physical Activity as Assessed by GPS in Young Adolescents. Pediatrics. 2016;137:e20152430. doi: 10.1542/peds.2015-2430. PubMed DOI PMC
Klinker C.D., Schipperijn J., Toftager M., Kerr J., Troelsen J. When cities move children: Development of a new methodology to assess context-specific physical activity behaviour among children and adolescents using accelerometers and GPS. Health Place. 2015;31:90–99. doi: 10.1016/j.healthplace.2014.11.006. PubMed DOI
Nikam T., Mathew R. Lecture Notes on Data Engineering and Communications Technologies. Volume 31. Springer; New York, NY, USA: 2020. Comparison of Various Wearable Activity Trackers; pp. 173–179.
Dygrýn J., Medrano M., Molina-Garcia P., Rubín L., Jakubec L., Janda D., Gába A. Associations of novel 24-h accelerometer-derived metrics with adiposity in children and adolescents. Environ. Health Prev. Med. 2021;26:66. doi: 10.1186/s12199-021-00987-5. PubMed DOI PMC
Duncan S., Stewart T., Mackay L., Neville J., Narayanan A., Walker C., Berry S., Morton S. Wear-time compliance with a dual-accelerometer system for capturing 24-h behavioural profiles in children and adults. Int. J. Environ. Res. Public Health. 2018;15:1296. doi: 10.3390/ijerph15071296. PubMed DOI PMC