Testing Computer Models Predicting Human Responses to a High-Salt Diet

. 2018 Dec ; 72 (6) : 1407-1416.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30571226

Grantová podpora
M01 RR000079 NCRR NIH HHS - United States
R01 HL064230 NHLBI NIH HHS - United States

Recently, mathematical models of human integrative physiology, derived from Guyton's classic 1972 model of the circulation, have been used to investigate potential mechanistic abnormalities mediating salt sensitivity and salt-induced hypertension. We performed validation testing of 2 of the most evolved derivatives of Guyton's 1972 model, Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4, to determine whether the models accurately predict sodium balance and hemodynamic responses of normal subjects to increases in salt intake within the real-life range of salt intake in humans. Neither model, nor the 1972 Guyton model, accurately predicts the usual changes in sodium balance, cardiac output, and systemic vascular resistance that normally occur in response to clinically realistic increases in salt intake. Furthermore, although both contemporary models are extensions of the 1972 Guyton model, testing revealed major inconsistencies between model predictions with respect to sodium balance and hemodynamic responses of normal subjects to short-term and long-term salt loading. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models regarding the usual regulation of sodium balance, cardiac output, and vascular resistance in response to increased salt intake in normal salt-resistant humans. Accurate understanding of the normal responses to salt loading is a prerequisite for accurately establishing abnormal responses to salt loading. Accordingly, the present results raise concerns about the interpretation of studies of salt sensitivity with the various Guyton models. These findings indicate a need for continuing development of alternative models that incorporate mechanistic concepts of blood pressure regulation fundamentally different from those in the 1972 Guyton model and its contemporary derivatives.

Komentář v

PubMed

Zobrazit více v PubMed

Hester RL, Iliescu R, Summers R, Coleman TG. Systems biology and integrative physiological modelling. J Physiol 2011;589(Pt 5): 1053–1060. PubMed PMC

Beard DA, Bassingthwaighte JB, Greene AS. Computational modeling of physiological systems. Physiol Genomics 2005;23(1):1–3; discussion 4. PubMed

Guyton AC, Coleman TG. Quantitative analysis of the pathophysiology of hypertension. Circ Res 1969;XXIV(5)(Supplement 1):1–19. PubMed

Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu Rev Physiol 1972;34:13–46. PubMed

Guyton AC, Coleman TG, Cowley AW, Liard J-F, Norman RA, Manning RD. Systems analysis of arterial pressure regulation and hypertension. Annals of Biomedical Engineering 1972;1(2):254–281. PubMed

Guyton AC, Montani JP, Hall JE, Manning RD Jr., Computer models for designing hypertension experiments and studying concepts. Am J Med Sci 1988;295(4):320–326. PubMed

Thomas SR, Baconnier P, Fontecave J, Francoise JP, Guillaud F, Hannaert P, Hernandez A, Le Rolle V, Maziere P, Tahi F, White RJ. SAPHIR: a physiome core model of body fluid homeostasis and blood pressure regulation. Philos Trans A Math Phys Eng Sci 2008;366(1878):3175–3197. PubMed

Guyton AC, Coleman TG. Long-term regulation of the circulation: interrelationships with body fluid volumes. In: Reeve EB, Guyton AC, eds. Physical bases of circulatory transport: regulation and exchange Philadelphia,: Saunders; 1967:179–201.

Montani JP, Van Vliet BN. Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure. Exp Physiol 2009;94(4):382–388. PubMed

Hall JE. The pioneering use of systems analysis to study cardiac output regulation. Am J Physiol Regul Integr Comp Physiol 2004;287(5):R1009–1011. PubMed

HC Simulation LLC. HumMod Available at: www.hummod.org. Accessed 01/11/2018, 2018.

Hester RL, Brown AJ, Husband L, Iliescu R, Pruett D, Summers R, Coleman TG. HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology. Front Physiol 2011;2:12. PubMed PMC

Clemmer JS, Pruett WA, Coleman TG, Hall JE, Hester RL. Mechanisms of Blood Pressure Salt Sensitivity: New Insights from Mathematical Modeling. Am J Physiol Regul Integr Comp Physiol 2017;312:R451–R456. PubMed PMC

HC Simulation LLC. HumMod origin story Available at: http://hummod.org/origin-story/. Accessed 2/10/2018, 2018.

Schmidlin O, Forman A, Leone A, Sebastian A, Morris RC Jr. Salt sensitivity in blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension 2011;58(3):380–385. PubMed

Ishii M, Atarashi K, Ikeda T, Hirata Y, Igari T, Uehara Y, Takagi M, Matsuoka H, Takeda T, Murao S. Role of the aldosterone system in the salt-sensitivity of patients with benign essential hypertension. Jpn Heart J 1983;24:79–89. PubMed

Kurtz TW, DiCarlo SE, Pravenec M, Schmidlin O, Tanaka M, Morris RC. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int 2016;90(5):965–973. PubMed PMC

Morris RC, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation 2016;133:881–893. PubMed PMC

Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr. The American Heart Association Scientific Statement on Salt Sensitivity of Blood Pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity ? Journal of Hypertension 2017;25:2214–2225. PubMed

Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016;68(3):e7–e46. PubMed

Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. An Appraisal of Methods Recently Recommended for Testing Salt Sensitivity of Blood Pressure. Journal of the American Heart Association Vol 6:e005653; 2017:6:e005653. PubMed PMC

Guyton AC, Coleman TG, Cowley AW Jr., Manning RD Jr., Norman RA Jr., Ferguson JD. A systems analysis approach to understanding long-range arterial blood pressure control and hypertension. Circulation Research 1974;35(2):159–176.

Abram SR, Hodnett BL, Summers RL, Coleman TG, Hester RL. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education. Adv Physiol Educ 2007;31(2):202–210. PubMed

Van Vliet BN, Montani JP. Circulation and fluid volume control. In: Walz W, ed. Integrative physiology in the proteomics and post-genomics agen Totowa, N.J.: Humana Press; 2005:43–64.

Clemmer JS, Hester RL, Pruett WA. Simulating a virtual population’s sensitivity to salt and uninephrectomy. Interface focus 2018;8(1):20160134. PubMed PMC

Kurtz TW, Dominiczak AF, DiCarlo SE, Pravenec M, Morris RC. Molecular based mechanisms of Mendelian forms of salt-dependent hypertension: Questioning the prevailing theory. Hypertension 2015;65:932–941. PubMed

Guyton AC, ed. Arterial Pressure and Hypertension. Philadelphia: W.B. Saunders; 1980. Circulatory Physiology III.

Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001;104(4):545–556. PubMed

Scholl UI, Lifton RP. Inherited disorders of renal salt homeostasis: Insights from molecular genetics studies. In: Alpern RJ, Moe OW, Caplan M, eds. Seldin and Giebisch’s The Kidney Vol 1 (III). 5 ed. London: Elsevier; 2013:1213–1240.

Ando K, Fujita T. Pathophysiology of salt sensitivity hypertension. Ann Med 2012;44 Suppl 1:S119–126. PubMed

Rossier BC, Staub O, Hummler E. Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett 2013;587(13):1929–1941. PubMed

Hall JE. Guyton and Hall Textbook of Medical Physiology 13th ed. Philadelphia: Elsevier; 2015.

Hall JE. Renal dysfunction, rather than non-renal vascular dysfunction, mediates salt-induced hypertension. Circulation 2016;133:894–907. PubMed PMC

Guyton AC, Hall JE, Lohmeier TE, Manning RD Jr., Jackson TE. Position paper: The concept of whole body autoregulation and the dominant role of the kidneys for long-term blood pressure regulation. In: Laragh JH, Buhler FR, Seldin DW, eds. Frontiers in Hypertension Research New York: Springer-Verlag; 1981:125–134.

Osborn JW, Averina VA, Fink GD. Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure. Exp Physiol 2009;94(4):389–396. PubMed PMC

Averina VA, Othmer HG, Fink GD, Osborn JW. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis. J Physiol 2015;593:3065–3075. PubMed PMC

Averina VA, Othmer HG, Fink GD, Osborn JW. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach. J Physiol 2012;590(Pt 23):5975–5992. PubMed PMC

Beard DA, Pettersen KH, Carlson BE, Omholt SW, Bugenhagen SM. A computational analysis of the long-term regulation of arterial pressure. F1000Res 2013;2:208. PubMed PMC

Beard DA. Tautology vs. physiology in the etiology of hypertension. Physiology (Bethesda) 2013;28(5):270–271. PubMed PMC

Beard DA. Tautological Nature of Guyton’s Theory of Blood Pressure Control. Am J Hypertens 2017;30:e5. PubMed

Kurtz TW, DiCarlo SE, Morris RC. Logical issues with the pressure natriuresis theory of chronic hypertension. Am.J.Hypertens 2016;29(12):1325–1331. PubMed PMC

Kurtz TW, DiCarlo SE, Morris RC. Response to tautological nature of Guyton’s theory of blood pressure control. Am.J.Hypertens 2017;30:e6. PubMed

Kofranek J, Rusz J. Restoration of Guyton’s diagram for regulation of the circulation as a basis for quantitative physiological model development. Physiol Res 2010;59(6):897–908. PubMed

Kofranek J, Matejak M, Privitzer P. HumMod - Large Scale Physiological Models in Modelica. Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical University; Dresden; Germany: Linköping University Electronic Press; Linköpings universitet; 2011:713–724.

Fritzson PA. Principles of object oriented modeling and simulation with Modelica 3.3 : a cyber-physical approach. Second edition ed. Piscataway, New Jersey: IEEE Press/Wiley; 2015.

Matejak M, Kofranek J. Physiomodel - an integrative physiology in Modelica. Conf Proc IEEE Eng Med Biol Soc 2015;2015:1464–1467. PubMed

Ganguli M, Tobian L, Iwai J. Cardiac output and peripheral resistance in strains of rats sensitive and resistant to NaCl hypertension. Hypertension 1979;1:3–7. PubMed

Simchon S, Manger WM, Carlin RD, Peeters LL, Rodriguez J, Batista D, Brown T, Merchant NB, Jan K-M, Chien S. Salt-induced hypertension in Dahl salt-sensitive rats: Hemodynamics and renal responses. Hypertension 1989;13:612–621. PubMed

Greene AS, Yu ZY, Roman RJ, Cowley AW Jr. Role of blood volume expansion in Dahl rat model of hypertension. Am J Physiol 1990;258:H508–H514. PubMed

Krieger JE, Liard JF, Cowley AW Jr. Hemodynamics, fluid volume, and hormonal responses to chronic high-salt intake in dogs. Am J Physiol 1990;259(6 Pt 2):H1629–1636. PubMed

Sullivan JM, Prewitt RL, Ratts TE, Josephs JA, Connor MJ. Hemodynamic characteristics of sodium-sensitive human subjects. Hypertension 1987;9:398–406. PubMed

Schmidlin O, Sebastian AF, Morris RC Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension 2007;49(5):1032–1039. PubMed PMC

Pettersen KH, Bugenhagen SM, Nauman J, Beard DA, Omholt SW. Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Comput Biol 2014;10(5):e1003634. PubMed PMC

Feng W, Dell’Italia LJ, Sanders PW. Novel Paradigms of Salt and Hypertension. J Am Soc Nephrol 2017;28:1362–1369. PubMed PMC

Leenen FH. The central role of the brain aldosterone-”ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Acta 2010;1802(12):1132–1139. PubMed

Blaustein MP, Chen L, Hamlyn JM, Leenen FH, Lingrel JB, Wier WG, Zhang J. Pivotal role of alpha2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016;594:6079–6103. PubMed PMC

Prager-Khoutorsky M, Choe KY, Levi DI, Bourque CW. Role of Vasopressin in Rat Models of Salt-Dependent Hypertension. Curr Hypertens Rep 2017;19(5):42. PubMed

Cannon WB. Organization for physiological homeostasis. Physiol.Rev 1929;9:399–431.

Greene RW, Sapirstein LA. Total body sodium, potassium and nitrogen in rats made hypertensive by subtotal nephrectomy. Am J Physiol 1952;169(2):343–349. PubMed

Ezrow L, Sapirstein LA. Excretion of sodium and water in rats made hypertensive by subtotal nephrectomy. Am J Physiol 1958;194(2):436–440. PubMed

Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf) 2018;222(3). PubMed

Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 2000;278(4):F585–595. PubMed

Titze J, Muller DN, Luft FC. Taking another “look” at sodium. Can J Cardiol 2014;30(5):473–475. PubMed

Titze J Water-free Na+ retention: interaction with hypertension and tissue hydration. Blood Purif 2008;26(1):95–99. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...