Testing Computer Models Predicting Human Responses to a High-Salt Diet
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
M01 RR000079
NCRR NIH HHS - United States
R01 HL064230
NHLBI NIH HHS - United States
PubMed
30571226
PubMed Central
PMC6309797
DOI
10.1161/hypertensionaha.118.11552
Knihovny.cz E-zdroje
- Klíčová slova
- blood pressure, cardiac output, hypertension, sodium chloride, vascular resistance,
- MeSH
- hemodynamika fyziologie MeSH
- hypertenze etiologie patofyziologie MeSH
- krevní tlak fyziologie MeSH
- kuchyňská sůl * MeSH
- lidé MeSH
- minutový srdeční výdej fyziologie MeSH
- modely kardiovaskulární * MeSH
- počítačová simulace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kuchyňská sůl * MeSH
Recently, mathematical models of human integrative physiology, derived from Guyton's classic 1972 model of the circulation, have been used to investigate potential mechanistic abnormalities mediating salt sensitivity and salt-induced hypertension. We performed validation testing of 2 of the most evolved derivatives of Guyton's 1972 model, Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4, to determine whether the models accurately predict sodium balance and hemodynamic responses of normal subjects to increases in salt intake within the real-life range of salt intake in humans. Neither model, nor the 1972 Guyton model, accurately predicts the usual changes in sodium balance, cardiac output, and systemic vascular resistance that normally occur in response to clinically realistic increases in salt intake. Furthermore, although both contemporary models are extensions of the 1972 Guyton model, testing revealed major inconsistencies between model predictions with respect to sodium balance and hemodynamic responses of normal subjects to short-term and long-term salt loading. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models regarding the usual regulation of sodium balance, cardiac output, and vascular resistance in response to increased salt intake in normal salt-resistant humans. Accurate understanding of the normal responses to salt loading is a prerequisite for accurately establishing abnormal responses to salt loading. Accordingly, the present results raise concerns about the interpretation of studies of salt sensitivity with the various Guyton models. These findings indicate a need for continuing development of alternative models that incorporate mechanistic concepts of blood pressure regulation fundamentally different from those in the 1972 Guyton model and its contemporary derivatives.
Department of Cybernetics Czech Technical University Prague
Department of Medicine School of Medicine University of California San Francisco
Department of Pathophysiology 1st Faculty of Medicine Charles University Prague
Department of Physiology College of Osteopathic Medicine Michigan State University East Lansing
From the Department of Laboratory Medicine School of Medicine University of California San Francisco
Institute of Physiology of the Czech Academy of Sciences Prague
Zobrazit více v PubMed
Hester RL, Iliescu R, Summers R, Coleman TG. Systems biology and integrative physiological modelling. J Physiol 2011;589(Pt 5): 1053–1060. PubMed PMC
Beard DA, Bassingthwaighte JB, Greene AS. Computational modeling of physiological systems. Physiol Genomics 2005;23(1):1–3; discussion 4. PubMed
Guyton AC, Coleman TG. Quantitative analysis of the pathophysiology of hypertension. Circ Res 1969;XXIV(5)(Supplement 1):1–19. PubMed
Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu Rev Physiol 1972;34:13–46. PubMed
Guyton AC, Coleman TG, Cowley AW, Liard J-F, Norman RA, Manning RD. Systems analysis of arterial pressure regulation and hypertension. Annals of Biomedical Engineering 1972;1(2):254–281. PubMed
Guyton AC, Montani JP, Hall JE, Manning RD Jr., Computer models for designing hypertension experiments and studying concepts. Am J Med Sci 1988;295(4):320–326. PubMed
Thomas SR, Baconnier P, Fontecave J, Francoise JP, Guillaud F, Hannaert P, Hernandez A, Le Rolle V, Maziere P, Tahi F, White RJ. SAPHIR: a physiome core model of body fluid homeostasis and blood pressure regulation. Philos Trans A Math Phys Eng Sci 2008;366(1878):3175–3197. PubMed
Guyton AC, Coleman TG. Long-term regulation of the circulation: interrelationships with body fluid volumes. In: Reeve EB, Guyton AC, eds. Physical bases of circulatory transport: regulation and exchange Philadelphia,: Saunders; 1967:179–201.
Montani JP, Van Vliet BN. Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure. Exp Physiol 2009;94(4):382–388. PubMed
Hall JE. The pioneering use of systems analysis to study cardiac output regulation. Am J Physiol Regul Integr Comp Physiol 2004;287(5):R1009–1011. PubMed
HC Simulation LLC. HumMod Available at: www.hummod.org. Accessed 01/11/2018, 2018.
Hester RL, Brown AJ, Husband L, Iliescu R, Pruett D, Summers R, Coleman TG. HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology. Front Physiol 2011;2:12. PubMed PMC
Clemmer JS, Pruett WA, Coleman TG, Hall JE, Hester RL. Mechanisms of Blood Pressure Salt Sensitivity: New Insights from Mathematical Modeling. Am J Physiol Regul Integr Comp Physiol 2017;312:R451–R456. PubMed PMC
HC Simulation LLC. HumMod origin story Available at: http://hummod.org/origin-story/. Accessed 2/10/2018, 2018.
Schmidlin O, Forman A, Leone A, Sebastian A, Morris RC Jr. Salt sensitivity in blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension 2011;58(3):380–385. PubMed
Ishii M, Atarashi K, Ikeda T, Hirata Y, Igari T, Uehara Y, Takagi M, Matsuoka H, Takeda T, Murao S. Role of the aldosterone system in the salt-sensitivity of patients with benign essential hypertension. Jpn Heart J 1983;24:79–89. PubMed
Kurtz TW, DiCarlo SE, Pravenec M, Schmidlin O, Tanaka M, Morris RC. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int 2016;90(5):965–973. PubMed PMC
Morris RC, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation 2016;133:881–893. PubMed PMC
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr. The American Heart Association Scientific Statement on Salt Sensitivity of Blood Pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity ? Journal of Hypertension 2017;25:2214–2225. PubMed
Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL. Salt Sensitivity of Blood Pressure: A Scientific Statement From the American Heart Association. Hypertension 2016;68(3):e7–e46. PubMed
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. An Appraisal of Methods Recently Recommended for Testing Salt Sensitivity of Blood Pressure. Journal of the American Heart Association Vol 6:e005653; 2017:6:e005653. PubMed PMC
Guyton AC, Coleman TG, Cowley AW Jr., Manning RD Jr., Norman RA Jr., Ferguson JD. A systems analysis approach to understanding long-range arterial blood pressure control and hypertension. Circulation Research 1974;35(2):159–176.
Abram SR, Hodnett BL, Summers RL, Coleman TG, Hester RL. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education. Adv Physiol Educ 2007;31(2):202–210. PubMed
Van Vliet BN, Montani JP. Circulation and fluid volume control. In: Walz W, ed. Integrative physiology in the proteomics and post-genomics agen Totowa, N.J.: Humana Press; 2005:43–64.
Clemmer JS, Hester RL, Pruett WA. Simulating a virtual population’s sensitivity to salt and uninephrectomy. Interface focus 2018;8(1):20160134. PubMed PMC
Kurtz TW, Dominiczak AF, DiCarlo SE, Pravenec M, Morris RC. Molecular based mechanisms of Mendelian forms of salt-dependent hypertension: Questioning the prevailing theory. Hypertension 2015;65:932–941. PubMed
Guyton AC, ed. Arterial Pressure and Hypertension. Philadelphia: W.B. Saunders; 1980. Circulatory Physiology III.
Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001;104(4):545–556. PubMed
Scholl UI, Lifton RP. Inherited disorders of renal salt homeostasis: Insights from molecular genetics studies. In: Alpern RJ, Moe OW, Caplan M, eds. Seldin and Giebisch’s The Kidney Vol 1 (III). 5 ed. London: Elsevier; 2013:1213–1240.
Ando K, Fujita T. Pathophysiology of salt sensitivity hypertension. Ann Med 2012;44 Suppl 1:S119–126. PubMed
Rossier BC, Staub O, Hummler E. Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension. FEBS Lett 2013;587(13):1929–1941. PubMed
Hall JE. Guyton and Hall Textbook of Medical Physiology 13th ed. Philadelphia: Elsevier; 2015.
Hall JE. Renal dysfunction, rather than non-renal vascular dysfunction, mediates salt-induced hypertension. Circulation 2016;133:894–907. PubMed PMC
Guyton AC, Hall JE, Lohmeier TE, Manning RD Jr., Jackson TE. Position paper: The concept of whole body autoregulation and the dominant role of the kidneys for long-term blood pressure regulation. In: Laragh JH, Buhler FR, Seldin DW, eds. Frontiers in Hypertension Research New York: Springer-Verlag; 1981:125–134.
Osborn JW, Averina VA, Fink GD. Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure. Exp Physiol 2009;94(4):389–396. PubMed PMC
Averina VA, Othmer HG, Fink GD, Osborn JW. A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis. J Physiol 2015;593:3065–3075. PubMed PMC
Averina VA, Othmer HG, Fink GD, Osborn JW. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach. J Physiol 2012;590(Pt 23):5975–5992. PubMed PMC
Beard DA, Pettersen KH, Carlson BE, Omholt SW, Bugenhagen SM. A computational analysis of the long-term regulation of arterial pressure. F1000Res 2013;2:208. PubMed PMC
Beard DA. Tautology vs. physiology in the etiology of hypertension. Physiology (Bethesda) 2013;28(5):270–271. PubMed PMC
Beard DA. Tautological Nature of Guyton’s Theory of Blood Pressure Control. Am J Hypertens 2017;30:e5. PubMed
Kurtz TW, DiCarlo SE, Morris RC. Logical issues with the pressure natriuresis theory of chronic hypertension. Am.J.Hypertens 2016;29(12):1325–1331. PubMed PMC
Kurtz TW, DiCarlo SE, Morris RC. Response to tautological nature of Guyton’s theory of blood pressure control. Am.J.Hypertens 2017;30:e6. PubMed
Kofranek J, Rusz J. Restoration of Guyton’s diagram for regulation of the circulation as a basis for quantitative physiological model development. Physiol Res 2010;59(6):897–908. PubMed
Kofranek J, Matejak M, Privitzer P. HumMod - Large Scale Physiological Models in Modelica. Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical University; Dresden; Germany: Linköping University Electronic Press; Linköpings universitet; 2011:713–724.
Fritzson PA. Principles of object oriented modeling and simulation with Modelica 3.3 : a cyber-physical approach. Second edition ed. Piscataway, New Jersey: IEEE Press/Wiley; 2015.
Matejak M, Kofranek J. Physiomodel - an integrative physiology in Modelica. Conf Proc IEEE Eng Med Biol Soc 2015;2015:1464–1467. PubMed
Ganguli M, Tobian L, Iwai J. Cardiac output and peripheral resistance in strains of rats sensitive and resistant to NaCl hypertension. Hypertension 1979;1:3–7. PubMed
Simchon S, Manger WM, Carlin RD, Peeters LL, Rodriguez J, Batista D, Brown T, Merchant NB, Jan K-M, Chien S. Salt-induced hypertension in Dahl salt-sensitive rats: Hemodynamics and renal responses. Hypertension 1989;13:612–621. PubMed
Greene AS, Yu ZY, Roman RJ, Cowley AW Jr. Role of blood volume expansion in Dahl rat model of hypertension. Am J Physiol 1990;258:H508–H514. PubMed
Krieger JE, Liard JF, Cowley AW Jr. Hemodynamics, fluid volume, and hormonal responses to chronic high-salt intake in dogs. Am J Physiol 1990;259(6 Pt 2):H1629–1636. PubMed
Sullivan JM, Prewitt RL, Ratts TE, Josephs JA, Connor MJ. Hemodynamic characteristics of sodium-sensitive human subjects. Hypertension 1987;9:398–406. PubMed
Schmidlin O, Sebastian AF, Morris RC Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension 2007;49(5):1032–1039. PubMed PMC
Pettersen KH, Bugenhagen SM, Nauman J, Beard DA, Omholt SW. Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Comput Biol 2014;10(5):e1003634. PubMed PMC
Feng W, Dell’Italia LJ, Sanders PW. Novel Paradigms of Salt and Hypertension. J Am Soc Nephrol 2017;28:1362–1369. PubMed PMC
Leenen FH. The central role of the brain aldosterone-”ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Acta 2010;1802(12):1132–1139. PubMed
Blaustein MP, Chen L, Hamlyn JM, Leenen FH, Lingrel JB, Wier WG, Zhang J. Pivotal role of alpha2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 2016;594:6079–6103. PubMed PMC
Prager-Khoutorsky M, Choe KY, Levi DI, Bourque CW. Role of Vasopressin in Rat Models of Salt-Dependent Hypertension. Curr Hypertens Rep 2017;19(5):42. PubMed
Cannon WB. Organization for physiological homeostasis. Physiol.Rev 1929;9:399–431.
Greene RW, Sapirstein LA. Total body sodium, potassium and nitrogen in rats made hypertensive by subtotal nephrectomy. Am J Physiol 1952;169(2):343–349. PubMed
Ezrow L, Sapirstein LA. Excretion of sodium and water in rats made hypertensive by subtotal nephrectomy. Am J Physiol 1958;194(2):436–440. PubMed
Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf) 2018;222(3). PubMed
Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 2000;278(4):F585–595. PubMed
Titze J, Muller DN, Luft FC. Taking another “look” at sodium. Can J Cardiol 2014;30(5):473–475. PubMed
Titze J Water-free Na+ retention: interaction with hypertension and tissue hydration. Blood Purif 2008;26(1):95–99. PubMed
Hemodynamic Mechanisms Initiating Salt-Sensitive Hypertension in Rat Model of Primary Aldosteronism
Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension