Hemodynamic Mechanisms Initiating Salt-Sensitive Hypertension in Rat Model of Primary Aldosteronism

. 2024 Apr 18 ; 73 (Suppl 1) : S365-S376. [epub] 20240418

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38634648

Few studies have investigated the hemodynamic mechanism whereby primary hyperaldosteronism causes hypertension. The traditional view holds that hyperaldosteronism initiates hypertension by amplifying salt-dependent increases in cardiac output (CO) by promoting increases in sodium retention and blood volume. Systemic vascular resistance (SVR) is said to increase only as a secondary consequence of the increased CO and blood pressure. Recently, we investigated the primary hemodynamic mechanism whereby hyperaldosteronism promotes salt sensitivity and initiation of salt-dependent hypertension. In unilaterally nephrectomized male Sprague-Dawley rats given infusions of aldosterone or vehicle, we found that aldosterone promoted salt sensitivity and initiation of salt-dependent hypertension by amplifying salt-induced increases in SVR while decreasing CO. In addition, we validated mathematical models of human integrative physiology, derived from Guyton's classic 1972 model - Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4. Neither model accurately predicted the usual changes in sodium balance, CO, and SVR that normally occur in response to clinically realistic increases in salt intake. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models. Together these findings challenge the traditional view of the hemodynamic mechanisms that cause salt-sensitive hypertension in primary aldosteronism. Key words: Aldosterone, Blood pressure, Salt, Sodium, Rat.

Zobrazit více v PubMed

Ezzati M, Riboli E. Behavioral and dietary risk factors for noncommunicable diseases. N Engl J Med. 2013;369:954–964. doi: 10.1056/NEJMra1203528. PubMed DOI

Kotchen TA, Cowley AW, Jr, Frohlich ED. Salt in health and disease a delicate balance. N Engl J Med. 2013;368:1229–1237. doi: 10.1056/NEJMra1212606. PubMed DOI

Calhoun DA. Hyperaldosteronism as a common cause of resistant hypertension. Annu Rev Med. 2013;4:233–247. doi: 10.1146/annurev-med-042711-135929. PubMed DOI

Stowasser M, Gordon RD. The renaissance of primary aldosteronism: what has it taught us? Heart Lung Circ. 2013;22:412–420. doi: 10.1016/j.hlc.2013.01.006. PubMed DOI

Funder JW. Primary aldosteronism and salt. Pflugers Arch. 2015;467:587–594. doi: 10.1007/s00424-014-1658-0. PubMed DOI

Egan BM, Li J. Role of aldosterone blockade in resistant hypertension. Semin Nephrol. 2014;34:273–284. doi: 10.1016/j.semnephrol.2014.04.004. PubMed DOI

Montani JP, Mizelle HL, Adair TH, Guyton AC. Regulation of cardiac output during aldosterone-induced hypertension. J Hypertens Suppl. 1989;7:S206–207. doi: 10.1097/00004872-198900076-00099. PubMed DOI

Distler A, Philipp T, Luth B, Wucherer G. Studies on the mechanism of mineralocorticoid-induced blood pressure increase in man. Clin Sci. 1979;57:303s–305s. doi: 10.1042/cs057303s. PubMed DOI

Schalekamp MA, Wenting GJ, Man In 'T Veld AJ. Pathogenesis of mineralocorticoid hypertension. Clin Endocrinol Metab. 1981;10:397–417. doi: 10.1016/S0300-595X(81)80005-9. PubMed DOI

Conway J, Hatton R. Development of deoxycorticosterone acetate hypertension in the dog. Circ Res. 1978;43(suppl 1):I-82-I6. PubMed

Obst M, Gross V, Luft FC. Systemic hemodynamics in non-anesthetized L-NAME- and DOCA-salt-treated mice. J Hypertens. 2004;22:1889–1894. https://doi.org/10.1097/00004872-200410000-00010, https://doi.org/10.1097/00004872-200406002-01038. PubMed DOI

May CN. Differential regional haemodynamic changes during mineralocorticoid hypertension. J Hypertens. 2006;24:1137–1146. doi: 10.1097/01.hjh.0000226204.57818.46. PubMed DOI

Gomez-Sanchez EP. Mineralocorticoid receptors in the brain and cardiovascular regulation: minority rule? Trends Endocrinol Metab. 1990;22:179–187. doi: 10.1016/j.tem.2011.02.001. PubMed DOI PMC

Miller AWH, Bohr DF, Schork AM, Terris JM. Hemodynamic responses to DOCA in young pigs. Hypertension. 1979;1:591–597. doi: 10.1161/01.HYP.1.6.591. PubMed DOI

Guyton AC, Hall JE, Coleman TG, Manning RD, Norman RA., Jr . The Dominant Role of the Kidneys in Long-Term Arterial Pressure Regulation in Normal and Hypertensive States. In: Laragh JH, Brenner BM, editors. Hypertension: Pathophysiology, Diagnosis, and Management. 2 ed. New York: Raven Press, Ltd; 1995. pp. 1311–26.

Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–556. doi: 10.1016/S0092-8674(01)00241-0. PubMed DOI

Kawarazaki W, Fujita T. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2013;40:929–936. doi: 10.1111/1440-1681.12177. PubMed DOI

Hall JE. Guyton and Hall Textbook of Medical Physiology. 12th ed. Philadelphia: Saunders Elsevier; 2012.

Morris RC, Jr, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation. 2016;133:881–893. doi: 10.1161/CIRCULATIONAHA.115.017923. PubMed DOI PMC

Kurtz TW, Dicarlo SE, Pravenec M, Schmidlin O, Tanaka M, Morris RC., Jr An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 2016;90:965–973. doi: 10.1016/j.kint.2016.05.032. PubMed DOI PMC

Kurtz TW, Morris RC, Jr, Pravenec M, Lujan HL, Dicarlo SE. Hypertension in primary aldosteronism is initiated by salt-induced increases in vascular resistance with reductions in cardiac output. Hypertension. 2023;80:1077–1091. doi: 10.1161/HYPERTENSIONAHA.123.20953. PubMed DOI

Greene AS, Yu ZY, Roman RJ, Cowley AW., Jr Role of blood volume expansion in Dahl rat model of hypertension. Am J Physiol. 1990;258:H508–H514. doi: 10.1152/ajpheart.1990.258.2.H508. PubMed DOI

Krieger Je, Liard Jf, Cowley AW., Jr Hemodynamics, fluid volume, and hormonal responses to chronic high-salt intake in dogs. Am J Physiol. 1990;259(6 Pt 2):H1629–1636. doi: 10.1152/ajpheart.1990.259.6.H1629. PubMed DOI

Schmidlin O, Sebastian AF, Morris RC., Jr What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension. 2007;49:1032–1039. doi: 10.1161/HYPERTENSIONAHA.106.084640. PubMed DOI PMC

Schmidlin O, Forman A, Leone A, Sebastian A, Morris RC., Jr Salt sensitivity in blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension. 2011;58:380–385. doi: 10.1161/HYPERTENSIONAHA.111.170175. PubMed DOI

Guyton AC, Coleman TG, Young DB, Lohmeier TE, Declue JW. Salt balance and long-term blood pressure control. Ann Rev Med. 1980;31:15–27. doi: 10.1146/annurev.me.31.020180.000311. PubMed DOI

Guyton AC. Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol. 1990;259(5 Pt 2):R865–877. doi: 10.1152/ajpregu.1990.259.5.R865. PubMed DOI

Hall JE. Dominant Role of the Kidney in Long-Term Regulation of Arterial Pressure and in Hypertension: The Integrated System for Pressure Control. In: Guyton AC, Hall JE, editors. Guyton and Hall Textbook of Medical Physiology. 12 ed. Philadelphia: Saunders Elsevier; 2011.

Hall JE, Granger JP, Do Carmo JM, Da Silva AA, Dubinion J, George E, Hamza S, Speed J, Hall ME. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2:2393–2442. doi: 10.1002/cphy.c110058. PubMed DOI

Ishii M, Atarashi K, Ikeda T, Hirata Y, Igari T, Uehara Y, Takagi M, Matsuoka H, Takeda T, Murao S. Role of the aldosterone system in the salt-sensitivity of patients with benign essential hypertension. Jpn Heart J. 1983;24:79–89. doi: 10.1536/ihj.24.79. PubMed DOI

Wedler B, Brier M, Wiersbitzky M, Gruska S, Wolf E, Kallwellis R, Aronoff GR, Luft FC. Sodium kinetics in salt-sensitive and salt-resistant normotensive and hypertensive subjects. J Hypertens. 1992;10:663–669. doi: 10.1097/00004872-199207000-00010. PubMed DOI

Bravo EL, Tarazi RC, Dustan HP. Multifactorial analysis of chronic hypertension induced by electrolyte-active steroids in trained, unanesthetized dogs. Circ Res. 1977;40(5 Suppl 1):I140–I145. PubMed

Cowley AW. The concept of autoregulation of total blood flow and its role in hypertension. Am J Med. 1980;68:906–916. doi: 10.1016/0002-9343(80)90225-9. PubMed DOI

Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Annu Rev Physiol. 1972;34:13–46. doi: 10.1146/annurev.ph.34.030172.000305. PubMed DOI

Guyton AC, Montani JP, Hall JE, Manning RD., Jr Computer models for designing hypertension experiments and studying concepts. Am J Med Sci. 1988;295:320–326. doi: 10.1097/00000441-198804000-00018. PubMed DOI

Hester RL, Brown AJ, Husband L, Iliescu R, Pruett D, Summers R, Coleman TG. HumMod: A modeling environment for the simulation of integrative human physiology. Front Physiol. 2011;2:12. doi: 10.3389/fphys.2011.00012. PubMed DOI PMC

Kurtz TW, Dicarlo SE, Pravenec M, Ježek F, Šilar J, Kofránek J, Morris RC., Jr Testing computer models predicting human responses to a high-salt diet. Hypertension. 2018;72:1407–1416. doi: 10.1161/HYPERTENSIONAHA.118.11552. PubMed DOI PMC

Beard DA. Assessing the validity and utility of the Guyton model of arterial blood pressure control. Hypertension. 2018;72:1272–1273. doi: 10.1161/HYPERTENSIONAHA.118.11998. PubMed DOI PMC

Kurtz TW, Dicarlo SE, Pravenec M, Morris RC., Jr The American Heart Association Scientific Statement on Salt Sensitivity of Blood Pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens. 2017;25:2214–2225. doi: 10.1097/HJH.0000000000001458. PubMed DOI

Coleman TG, Manning RD, Jr, Norman RA, Jr, Granger HJ, Guyton AC. The role of salt in experimental and human hypertension. Am J Med Sci. 1972;264:103–110. doi: 10.1097/00000441-197208000-00002. PubMed DOI

Clore J, Schoolwerth A, Watlington CO. When is cortisol a mineralocorticoid? Kidney Int. 1992;42:1297–1308. doi: 10.1038/ki.1992.421. PubMed DOI

Scholl Ui, Lifton R. Inherited disorders of renal salt homeostasis: Insights from molecular genetics studies. In: Alpern RJ, Moe OW, Caplan M, editors. Seldin and Giebisch's The Kidney. Elsevier; 2013. pp. 1213–1240. DOI

Hall JE. Guyton and Hall Textbook of Medical Physiology. Elsevier; 2015.

Hall JE. Guyton and Hall Textbook of Medical Physiology. Elsevier; 2021.

Brailoiu GC, Benamar K, Arterburn JB, Gao E, Rabinowitz JE, Koch WJ, Brailoiu E. Aldosterone increases cardiac vagal tone via G protein-coupled oestrogen receptor activation. J Physiol. 2013;591:4223–4235. doi: 10.1113/jphysiol.2013.257204. PubMed DOI PMC

Jacob F, Clark LA, Guzman PA, Osborn JW. Role of renal nerves in development of hypertension in DOCA-salt model in rats: a telemetric approach. Am J Physiol Heart Circ Physiol. 2005;289:H1519–H1529. doi: 10.1152/ajpheart.00206.2005. PubMed DOI

Kurtz TW, Pravenec M, Dicarlo SE. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin Sci (Lond) 2022;136:599–620. doi: 10.1042/CS20210566. PubMed DOI PMC

Kurtz TW, Pravenec M, Dicarlo SE. Strategies are needed to prevent salt-induced hypertension that do not depend on reducing salt intake. Am J Hypertens. 2020;33:116–118. doi: 10.1093/ajh/hpz173. PubMed DOI PMC

Little R, Ellison DH. Modifying dietary sodium and potassium intake: An end to the salt wars?: Salt series. Hypertension. 2023 doi: 10.1161/HYPERTENSIONAHA.123.19487. Online ahead of print. PubMed DOI PMC

Morris RC, Jr, Pravenec M, Šilhavý J, Dicarlo SE, Kurtz TW. Small amounts of inorganic nitrate or beetroot provide substantial protection from salt-induced increases in blood pressure. Hypertension. 2019;73:1042–1048. doi: 10.1161/HYPERTENSIONAHA.118.12234. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...