Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension

. 2022 Apr 29 ; 136 (8) : 599-620.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35452099

High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.

Zobrazit více v PubMed

Institute of Medicine, National Academy of Sciences (2010) A Population-Based Policy and Systems Change Approach to Prevent and Control Hypertension, p. 236, The National Academies Press, Washington, DC, U.S.A. PubMed

GBD 2017 Collaborators (2019) Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 10.1016/S0140-6736(19)30041-8 PubMed DOI PMC

Mozaffarian D., Fahimi S., Singh G.M., Micha R., Khatibzadeh S., Engell R.E.et al. . (2014) Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 371, 624–634 10.1056/NEJMoa1304127 PubMed DOI

Webster J., Trieu K., Dunford E. and Hawkes C. (2014) Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods. Nutrients 6, 3274–3287 10.3390/nu6083274 PubMed DOI PMC

Davies S. (2018) Chief Medical Officer U.K. Annual Report 2018: better health within reach 2018. https://www.gov.uk/government/publications/chief-medical-officer-annual-report-2018-better-health-within-reach

Center for Food Safety and Applied Nutrition, US Food and Drug Administration (2021) Guidance for industry: voluntary sodium reduction goals. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-voluntary-sodium-reduction-goals

Santos J.A., Tekle D., Rosewarne E., Flexner N., Cobb L., Al-Jawaldeh A.et al. . (2021) A systematic review of salt reduction initiatives around the world: a midterm evaluation of progress towards the 2025 global non-communicable diseases salt reduction target. Adv. Nutr. 12, 1768–1780 10.1093/advances/nmab008 PubMed DOI PMC

Trieu K., Neal B., Hawkes C., Dunford E., Campbell N., Rodriguez-Fernandez R.et al. . (2015) Salt reduction initiatives around the world - a systematic review of progress towards the global target. PLoS ONE 10, e0130247 10.1371/journal.pone.0130247 PubMed DOI PMC

Webster J.L., Dunford E.K., Hawkes C. and Neal B.C. (2011) Salt reduction initiatives around the world. J. Hypertens. 29, 1043–1050 10.1097/HJH.0b013e328345ed83 PubMed DOI

Sanchez-Castillo C.P., Warrender S., Whitehead T.P. and James W.P. (1987) An assessment of the sources of dietary salt in a British population. Clin. Sci. (Lond.) 72, 95–102 10.1042/cs0720095 PubMed DOI

Capuano E., van der Veer G., Verheijen P.J.J., Heenan S.P., van de Laak L.F.J., Koopmans H.B.M.et al. . (2013) Comparison of a sodium-based and a chloride-based approach for the determination of sodium chloride content of processed foods in the Netherlands. J. Food Compos. Anal. 31, 129–136 10.1016/j.jfca.2013.04.004 DOI

McCallum L., Lip S. and Padmanabhan S. (2015) The hidden hand of chloride in hypertension. Pflugers Arch. 467, 595–603 10.1007/s00424-015-1690-8 PubMed DOI PMC

Kurtz T.W., Al-Bander H.A. and Morris R.C. (1987) Salt-sensitive essential-hypertension in men - is the sodium-ion alone important? N. Eng. J. Med. 317, 1043–1048 10.1056/NEJM198710223171702 PubMed DOI

Larsen F.J., Ekblom B., Sahlin K., Lundberg J.O. and Weitzberg E. (2006) Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 355, 2792–2793 10.1056/NEJMc062800 PubMed DOI

Morris R.C. Jr, Pravenec M., Silhavy J., DiCarlo S.E. and Kurtz T.W. (2019) Small amounts of inorganic nitrate or beetroot provide substantial protection from salt-induced increases in blood pressure. Hypertension 73, 1042–1048 10.1161/HYPERTENSIONAHA.118.12234 PubMed DOI PMC

Alderman M.H. (2016) Dietary sodium: where science and policy diverge. Am. J. Hypertens. 29, 424–427 10.1093/ajh/hpu256 PubMed DOI PMC

Mancia G., Oparil S., Whelton P.K., McKee M., Dominiczak A., Luft F.C.et al. . (2017) The technical report on sodium intake and cardiovascular disease in low- and middle-income countries by the joint working group of the World Heart Federation, the European Society of Hypertension and the European Public Health Association. Eur. Heart J. 38, 712–719 10.1093/eurheartj/ehw549 PubMed DOI

Graudal N. and Jurgens G. (2018) Conflicting evidence on health effects associated with salt reduction calls for a redesign of the salt dietary guidelines. Prog. Cardiovasc. Dis. 61, 20–26 10.1016/j.pcad.2018.04.008 PubMed DOI

O'Donnell M., Mente A., Alderman M.H., Brady A.J.B., Diaz R., Gupta R.et al. . (2020) Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. Eur. Heart J. 41, 3363–3373 10.1093/eurheartj/ehaa586 PubMed DOI

Mente A., O’Donnell M. and Yusuf S. (2021) Sodium intake and health: what should we recommend based on the current evidence? Nutrients 13, 3232–3242[PMC8468043] https://www.mdpi.com/2072-6643/13/9/3232 10.3390/nu13093232 PubMed DOI PMC

United States Dietary Guidelines Advisory Committee (2020) Dietary Guidelines for Americans, 2020-2025, 9th edn, U.S. Department of Health and Human Services and U.S. Department of Agriculture, Washington, D.C., U.S.A.

Whelton P.K., Carey R.M., Aronow W.S., Casey D.E. Jr, Collins K.J., Dennison Himmelfarb C.et al. . (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 138, e426–e483 PubMed

World Health Organization Nutrition (2012) Guideline: Sodium Intake for Adults and Children, World Health Organization (WHO), Geneva, Switzerland PubMed

National Academies of Sciences (2019) Dietary Reference Intakes for Sodium and Potassium(Stallings V.A., Harrison M. and Oria M., eds), p. 594, The National Academies Press, Washington, DC, U.S.A. PubMed

National Health Service of the U.K. (2021) Salt: the facts. https://www.nhs.uk/live-well/eat-well/salt-nutrition/

Cook N.R., He F.J., MacGregor G.A. and Graudal N. (2020) Sodium and health—concordance and controversy. BMJ 369, m2440 10.1136/bmj.m2440 PubMed DOI PMC

Stolarz-Skrzypek K. and Staessen J.A. (2015) Reducing salt intake for prevention of cardiovascular disease–times are changing. Adv. Chronic Kidney Dis. 22, 108–115 10.1053/j.ackd.2014.12.002 PubMed DOI

Campbell N.R.C., He F.J., Cappuccio F.P. and MacGregor G.A. (2021) Dietary sodium ‘controversy’-issues and potential solutions. Curr. Nutr. Rep. 10, 188–199 10.1007/s13668-021-00357-1 PubMed DOI

He F.J., Campbell N.R.C., Woodward M. and MacGregor G.A. (2021) Salt reduction to prevent hypertension: the reasons of the controversy. Eur. Heart J. 42, 2501–2505 10.1093/eurheartj/ehab274 PubMed DOI

Henney J.E., O’Hara J.A. III and Taylor C.L. (2019) Sodium-intake reduction and the food industry. N. Engl. J. Med. 381, 201–203 10.1056/NEJMp1905244 PubMed DOI

Ma Y., He F.J., Sun Q., Yuan C., Kieneker L.M., Curhan G.C.et al. . (2021) 24-hour urinary sodium and potassium excretion and cardiovascular risk. N. Engl. J. Med. 386, 252–263 10.1056/NEJMoa2109794 PubMed DOI PMC

Public Health England (2020) National Diet and Nutrition Survey: assessment of salt intake from urinary sodium in adults in England, 2018-2019. https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-assessment-of-salt-intake-from-urinary-sodium-in-adults-aged-19-to-64-years-in-england-2018-to-2019

Clarke L.S., Overwyk K., Bates M., Park S., Gillespie C. and Cogswell M.E. (2021) Temporal trends in dietary sodium intake among adults aged >= 19 years - United States, 2003-2016. MMWR Morb. Mortal. Wkly. Rep. 70, 1478–1482 10.15585/mmwr.mm7042a4 PubMed DOI PMC

McCarron D.A., Kazaks A.G., Geerling J.C., Stern J.S. and Graudal N.A. (2013) Normal range of human dietary sodium intake: a perspective based on 24-hour urinary sodium excretion worldwide. Am. J. Hypertens. 26, 1218–1223 10.1093/ajh/hpt139 PubMed DOI

McCarron D.A., Geerling J.C., Kazaks A.G. and Stern J.S. (2009) Can dietary sodium intake be modified by public policy? Clin. J. Am. Soc. Nephrol. 4, 1878–1882 10.2215/CJN.04660709 PubMed DOI

Kurtz T.W., Pravenec M. and DiCarlo S.E. (2020) Strategies are needed to prevent salt-induced hypertension that do not depend on reducing salt intake. Am. J. Hypertens. 33, 116–118 PubMed PMC

Kurtz T.W., Pravenec M. and DiCarlo S.E. (2022) Will Food and Drug Administration guidance to reduce salt content of processed foods reduce salt intake and save lives? Hypertension 79, 809–812 10.1161/HYPERTENSIONAHA.121.18942 PubMed DOI PMC

He F.J., Brinsden H.C. and MacGregor G.A. (2014) Salt reduction in the United Kingdom: a successful experiment in public health. J. Hum. Hypertens. 28, 345–352 10.1038/jhh.2013.105 PubMed DOI

Wyness L.A., Butriss J.L. and Stanner S.A. (2012) Reducing the population’s sodium intake: the U.K. Food Standards Agency’s salt reduction programme. Public Health Nutr. 15, 254–261 10.1017/S1368980011000966 PubMed DOI

Brown I.J., Tzoulaki I., Candeias V. and Elliott P. (2009) Salt intakes around the world: implications for public health. Int. J. Epidemiol. 38, 791–813 10.1093/ije/dyp139 PubMed DOI

Food Standards Agency (2009) Impact assessment of the revised salt reduction targets. https://www.legislation.gov.uk/ukia/2009/86/pdfs/ukia_20090086_en.pdf

Jacobson M.F., Havas S. and McCarter R. (2013) Changes in sodium levels in processed and restaurant foods, 2005 to 2011. JAMA Intern. Med. 173, 1285–1291 10.1001/jamainternmed.2013.6154 PubMed DOI

He F.J., Jenner K.H. and Macgregor G.A. (2010) WASH-world action on salt and health. Kidney Int. 78, 745–753 10.1038/ki.2010.280 PubMed DOI

He F.J., Tan M., Ma Y. and MacGregor G.A. (2020) Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 632–647 10.1016/j.jacc.2019.11.055 PubMed DOI

He F.J. and MacGregor G.A. (2009) A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 23, 363–384 10.1038/jhh.2008.144 PubMed DOI

Gressier M., Sassi F. and Frost G. (2021) Contribution of reformulation, product renewal, and changes in consumer behavior to the reduction of salt intakes in the U.K. population between 2008/2009 and 2016/2017. Am. J. Clin. Nutr. 114, 1092–1099 10.1093/ajcn/nqab130 PubMed DOI PMC

Public Health England (2016) National Diet and Nutrition Survey: assessment of dietary sodium in adults in England, 2014. https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-assessment-of-dietary-sodium-in-adults-in-england-2014

Millett C., Laverty A.A., Stylianou N., Bibbins-Domingo K. and Pape U.J. (2012) Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. PLoS ONE 7, e29836 10.1371/journal.pone.0029836 PubMed DOI PMC

Institute for Health Metrics and Evaluation, University of Washington (2021) Global burden of disease study. https://vizhub.healthdata.org/gbd-compare/

Alonso S., Tan M., Wang C., Kent S., Cobiac L., MacGregor G.A.et al. . (2021) Impact of the 2003 to 2018 population salt intake reduction program in England: a modeling study. Hypertension 77, 1086–1094 10.1161/HYPERTENSIONAHA.120.16649 PubMed DOI PMC

Song J., Brown M.K., Cobb L.K., Jacobson M.F., Ide N., MacGregor G.A.et al. . (2022) Delayed finalization of sodium targets in the United States may cost over 250 000 lives by 2031. Hypertension 79, 798–808 10.1161/HYPERTENSIONAHA.121.18475 PubMed DOI

MacGregor G.A., He F.J. and Pombo-Rodrigues S. (2015) Food and the responsibility deal: how the salt reduction strategy was derailed. BMJ 350, h1936 10.1136/bmj.h1936 PubMed DOI

Geerling J.C. and Loewy A.D. (2008) Central regulation of sodium appetite. Exp. Physiol. 93, 177–209 10.1113/expphysiol.2007.039891 PubMed DOI

McCarron D.A. (2013) Physiology, not policy, drives sodium intake. Am. J. Hypertens. 26, 1191–1193 10.1093/ajh/hpt151 PubMed DOI

Lowell B.B. (2019) New neuroscience of homeostasis and drives for food, water, and salt. N. Engl. J. Med. 380, 459–471 10.1056/NEJMra1812053 PubMed DOI

McCarron D.A. (2014) What determines human sodium intake: policy or physiology? Adv. Nutr. 5, 578–584 10.3945/an.114.006502 PubMed DOI PMC

Anderson C.A.M., Appel L.J., Okuda N., Brown I.J., Chan Q., Zhao L.et al. . (2010) Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J. Am. Diet. Assoc. 110, 736–745 10.1016/j.jada.2010.02.007 PubMed DOI PMC

Bhat S., Marklund M., Henry M.E., Appel L.J., Croft K.D., Neal B.et al. . (2020) A systematic review of the sources of dietary salt around the world. Adv. Nutr. 11, 677–686 10.1093/advances/nmz134 PubMed DOI PMC

Girgis S., Neal B., Prescott J., Prendergast J., Dumbrell S., Turner C.et al. . (2003) A one-quarter reduction in the salt content of bread can be made without detection. Eur. J. Clin. Nutr. 57, 616–620 10.1038/sj.ejcn.1601583 PubMed DOI

Teow B.H., Di Nicolantonio R. and Morgan T.O. (1985) Sodium chloride preference and recognition threshold in normotensive subjects on high and low salt diet. Clin. Exp. Hypertens. A7, 1681–1695 10.3109/10641968509073618 PubMed DOI

Kurtz T.W., DiCarlo S.E., Pravenec M. and Morris R.C. (2017) An appraisal of methods recently recommended for testing salt sensitivity of blood pressure. J. Am. Heart Assoc. 6, e005653, [6:e005653 p.] 10.1161/JAHA.117.005653 PubMed DOI PMC

Morimoto A., Uzu T., Fujii T., Nishimura M., Kuroda S., Nakamura S.et al. . (1997) Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 350, 1734–1737 10.1016/S0140-6736(97)05189-1 PubMed DOI

Kurtz T.W., DiCarlo S.E., Pravenec M., Schmidlin O., Tanaka M. and Morris R.C. (2016) An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 90, 965–973 10.1016/j.kint.2016.05.032 PubMed DOI PMC

Overlack A., Ruppert M., Kolloch R., Gobel B., Kraft K., Diehl J.et al. . (1993) Divergent hemodynamic and hormonal responses to varying salt intake in normotensive subjects. Hypertension 22, 331–338 10.1161/01.HYP.22.3.331 PubMed DOI

Hall J.E. (2016) Guyton and Hall Textbook of Medical Physiology, 13th edn, Elsevier, Philadelphia, 2015

Guyton A.C. (1990) Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am. J. Physiol. 259, R865–R877 10.1152/ajpregu.1990.259.5.R865 PubMed DOI

Guyton A.C. (1980) Arterial Pressure and Hypertension, W.B. Saunders, Philadelphia

Guyton A.C., Manning R.D. Jr, Hall J.E., Norman R.A. Jr, Young D.B. and Pan Y.J. (1984) The pathogenic role of the kidney. J. Cardiovasc. Pharmacol. 6, S151–S161 10.1097/00005344-198400061-00025 PubMed DOI

Guyton A.C., Hall J.E., Coleman T.G., Manning R.D. and Norman R.A. Jr (1995) The dominant role of the kidneys in long-term arterial pressure regulation in normal and hypertensive states. In Hypertension: Pathophysiology, Diagnosis, and Management, 2nd edn, (Laragh J.H. and Brenner B.M., eds), pp. 1311–1326, Raven Press, Ltd., New York

Lifton R.P., Gharavi A.G. and Geller D.S. (2001) Molecular mechanisms of human hypertension. Cell 104, 545–556 10.1016/S0092-8674(01)00241-0 PubMed DOI

Cruz D.N., Simon D.B., Nelson-Williams C., Farhi A., Finberg K., Burleson L.et al. . (2001) Mutations in the Na-Cl cotransporter reduce blood pressure in humans. Hypertension 37, 1458–1464 10.1161/01.HYP.37.6.1458 PubMed DOI

Brands M.W. (2012) Chronic blood pressure control. Compr. Physiol. 2, 2481–2494 10.1002/cphy.c100056 PubMed DOI

Crowley S.D. and Coffman T.M. (2014) The inextricable role of the kidney in hypertension. J. Clin. Invest. 124, 2341–2347 10.1172/JCI72274 PubMed DOI PMC

Schrier R.W. (2018) Renal and Electrolyte Disorders, 8th edn, Wolters Kluwer, Philadelphia

Hall J.E., Mizelle H.L., Hildebrandt D.A. and Brands M.W. (1990) Abnormal pressure natriuresis: a cause or a consequence of hypertension? Hypertension 15, 547–559 10.1161/01.HYP.15.6.547 PubMed DOI

Hall J.E., Guyton A.C. and Brands M.W. (1996) Pressure-volume regulation in hypertension. Kidney Int. Suppl. 55, S35–S41 PubMed

Kotchen T.A., Cowley A.W. Jr and Frohlich E.D. (2013) Salt in health and disease–a delicate balance. N. Engl. J. Med. 368, 1229–1237 10.1056/NEJMra1212606 PubMed DOI

Cowley A.W. Jr, Abe M., Mori T., O’Connor P.M., Ohsaki Y. and Zheleznova N.N. (2015) Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am. J. Physiol. Renal Physiol. 308, F179–F197 10.1152/ajprenal.00455.2014 PubMed DOI PMC

Hall J.E. (2016) Renal dysfunction, rather than non-renal vascular dysfunction, mediates salt-induced hypertension. Circulation 133, 894–907 10.1161/CIRCULATIONAHA.115.018526 PubMed DOI PMC

Scholl U.I. and Lifton R.P. (2013) Inherited disorders of renal salt homeostasis: Insights from molecular genetics studies. In Seldin and Giebisch’s The Kidney. 1 (III). 5th edn, (Alpern R.J., Moe O.W. and Caplan M., eds), pp. 1213–1240, Elsevier, London

Cowley A.W. (1980) The concept of autoregulation of total blood flow and its role in hypertension. Am. J. Med. 68, 906–916 10.1016/0002-9343(80)90225-9 PubMed DOI

Morris R.C., Schmidlin O., Sebastian A., Tanaka M. and Kurtz T.W. (2016) Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation 133, 881–893 10.1161/CIRCULATIONAHA.115.017923 PubMed DOI PMC

Kurtz T.W., DiCarlo S.E., Pravenec M. and Morris R.C. Jr (2018) The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Curr. Opin. Nephrol. Hypertens. 27, 83–92 10.1097/MNH.0000000000000394 PubMed DOI

Langston J.B., Guyton A.C., Douglas B.H. and Dorsett P.E. (1963) Effect of changes in salt intake on arterial pressure and renal function in partially nephrectomized dogs. Circ. Res. 12, 508–513 10.1161/01.RES.12.5.508 DOI

Douglas B.H., Guyton A.C., Langston J.B. and Bishop V.S. (1964) Hypertension caused by salt loading. ii. fluid volume and tissue pressure changes. Am. J. Physiol. 207, 669–671 10.1152/ajplegacy.1964.207.3.669 PubMed DOI

Coleman T.G. and Guyton A.C. (1969) Hypertension caused by salt loading in the dog. 3. Onset transients of cardiac output and other circulatory variables. Circ. Res. 25, 153–160 10.1161/01.RES.25.2.153 PubMed DOI

Kawasaki T., Delea C.S., Bartter F.C. and Smith H. (1978) The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med. 64, 193–198 10.1016/0002-9343(78)90045-1 PubMed DOI

Manning R.D. Jr, Coleman T.G., Guyton A.C., Norman R.A. Jr and McCaa R.E. (1979) Essential role of mean circulatory filling pressure in salt-induced hypertension. Am. J. Physiol. 236, R40–R47 10.1152/ajpregu.1979.236.1.R40 PubMed DOI

Fujita T., Henry W.L., Bartter F.C., Lake C.R. and Delea C.S. (1980) Factors influencing blood pressure in salt-sensitive patients with hypertension. Am. J. Med. 80, 234 10.1016/0002-9343(80)90002-9 PubMed DOI

Ishii M., Atarashi K., Ikeda T., Hirata Y., Igari T., Uehara Y.et al. . (1983) Role of the aldosterone system in the salt-sensitivity of patients with benign essential hypertension. Jpn. Heart J. 24, 79–89 10.1536/ihj.24.79 PubMed DOI

Wedler B., Brier M.E., Wiersbitzky M., Gruska S., Wolf E., Kallwellis R.et al. . (1992) Sodium kinetics in salt-sensitive and salt-resistant normotensive and hypertensive subjects. J. Hypertens. 10, 663–669 10.1097/00004872-199207000-00010 PubMed DOI

Schmidlin O., Sebastian A.F. and Morris R.C. Jr (2007) What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks Hypertension 49, 1032–1039 10.1161/HYPERTENSIONAHA.106.084640 PubMed DOI PMC

Schmidlin O., Forman A., Leone A., Sebastian A. and Morris R.C. Jr (2011) Salt sensitivity in blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension 58, 380–385 10.1161/HYPERTENSIONAHA.111.170175 PubMed DOI

Roman R.J. and Osborn J.L. (1987) Renal function and sodium balance in conscious Dahl S and R rats. Am. J. Physiol. 252, R833–R841 10.1152/ajpregu.1987.252.5.R833 PubMed DOI

Nakamura K. and Cowley A.W. Jr (1989) Sequential changes of cerebrospinal fluid sodium during the development of hypertension in Dahl rats. Hypertension 13, 243–249 10.1161/01.HYP.13.3.243 PubMed DOI

Hu L. and Manning R.D. Jr (1995) Role of nitric oxide in regulation of long-term pressure-natriuresis relationship in Dahl rats. Am. J. Physiol. 268, H2375–H2383 10.1152/ajpheart.1995.268.6.H2375 PubMed DOI

Kanagy N.L. and Fink G.D. (1993) Losartan prevents salt-induced hypertension in reduced renal mass rats. J. Pharmacol. Exp. Ther. 265, 1131–1136 PubMed

Beard D.A. (2018) Assessing the validity and utility of the Guyton model of arterial blood pressure control. Hypertension 72, 1272–1273 10.1161/HYPERTENSIONAHA.118.11998 PubMed DOI PMC

Kurtz T.W., DiCarlo S.E., Pravenec M., Ježek F., Šilar J., Kofránek J.et al. . (2018) Testing computer models predicting human responses to a high-salt diet. Hypertension 72, 1407–1416 10.1161/HYPERTENSIONAHA.118.11552 PubMed DOI PMC

Kurtz T.W., DiCarlo S.E., Pravenec M. and Morris R.C. Jr (2017) The American Heart Association Scientific Statement on Salt Sensitivity of Blood Pressure: prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J. Hypertens. 25, 2214–2225 10.1097/HJH.0000000000001458 PubMed DOI

Hollenberg N.K., Chenitz W.R., Adams D.F. and Williams G.H. (1974) Reciprocal influence of salt intake on adrenal glomerulosa and renal vascular responses to angiotensin II in normal man. J. Clin. Invest. 54, 34–42 10.1172/JCI107748 PubMed DOI PMC

Redgrave J., Rabinowe S., Hollenberg N. and Williams G.H. (1985) Correction of abnormal renal blood flow response to angiotensin II by converting enzyme inhibition in essential hypertension. J. Clin. Invest. 75, 1285–1290 10.1172/JCI111828 PubMed DOI PMC

van Paassen P., de Zeeuw D., Navis G. and de Jong P.E. (1996) Does the renin-angiotensin system determine the renal and systemic hemodynamic response to sodium in patients with essential hypertension? Hypertension 27, 202–208 10.1161/01.HYP.27.2.202 PubMed DOI

Bech J.N., Nielsen C.B., Ivarsen P., Jensen K.T. and Pedersen E.B. (1998) Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Am. J. Physiol. 274, F914–F923 10.1152/ajprenal.1998.274.5.F914 PubMed DOI

Fujita T., Ando K. and Ogata E. (1990) Systemic and regional hemodynamics in patients with salt-sensitive hypertension. Hypertension 16, 235–244 10.1161/01.HYP.16.3.235 PubMed DOI

Campese V.M., Parise M., Karubian F. and Bigazzi R. (1991) Abnormal renal hemodynamics in black salt-sensitive patients with hypertension. Hypertension 18, 805–812 10.1161/01.HYP.18.6.805 PubMed DOI

Bigazzi R., Bianchi S., Baldari D., Sgherri G., Baldari G. and Campese V.M. (1994) Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension 23, 195–199 10.1161/01.HYP.23.2.195 PubMed DOI

Higashi Y., Oshima T., Watanabe M., Matsuura H. and Kajiyama G. (1996) Renal response to L-arginine in salt-sensitive patients with essential hypertension. Hypertension 27, 643–648 10.1161/01.HYP.27.3.643 PubMed DOI

Schmidlin O., Forman A., Tanaka M., Sebastian A. and Morris R.C. Jr (1999) NaCl-induced renal vasoconstriction in salt-sensitive African Americans: antipressor and hemodynamic effects of potassium bicarbonate. Hypertension 33, 633–639 10.1161/01.HYP.33.2.633 PubMed DOI

Obst M., Gross V. and Luft F.C. (2004) Systemic hemodynamics in non-anesthetized L-NAME- and DOCA-salt-treated mice. J. Hypertens. 22, 1889–1894 10.1097/00004872-200410000-00010 PubMed DOI

Ueno Y., Mohara O., Brosnihan K.B. and Ferrario C.M. (1988) Characteristics of hormonal and neurogenic mechanisms of deoxycorticosterone-induced hypertension. Hypertension 11, I–172-I-7 10.1161/01.HYP.11.2_Pt_2.I172 PubMed DOI

Montani J.P., Mizelle H.L., Adair T.H. and Guyton A.C. (1989) Regulation of cardiac output during aldosterone-induced hypertension. J. Hypertens. Suppl. 7, S206–S207 10.1097/00004872-198900076-00099 PubMed DOI

Bravo E.L., Tarazi R.C. and Dustan H.P. (1977) Multifactorial analysis of chronic hypertension induced by electrolyte-active steroids in trained, unanesthetized dogs. Circ. Res. 40, I140–I145 PubMed

May C.N. (2006) Differential regional haemodynamic changes during mineralocorticoid hypertension. J. Hypertens. 24, 1137–1146 10.1097/01.hjh.0000226204.57818.46 PubMed DOI

Miller A.W.H., Bohr D.F., Schork A.M. and Terris J.M. (1979) Hemodynamic responses to DOCA in young pigs. Hypertension 1, 591–597 10.1161/01.HYP.1.6.591 PubMed DOI

Pan Y.J. and Young D.B. (1982) Experimental aldosterone hypertension in the dog. Hypertension 4, 279–287 10.1161/01.HYP.4.2.279 PubMed DOI

Guyton A.C. (1987) Renal function curve - a key to understanding the pathogenesis of hypertension. Hypertension 10, 1–6 10.1161/01.HYP.10.1.1 PubMed DOI

Ball J.P., Syed M., Marañon R.O., Hall M.E., Kc R., Reckelhoff J.F.et al. . (2017) Role and regulation of microRNAs in aldosterone-mediated cardiac injury and dysfunction in male rats. Endocrinology 158, 1859–1874 10.1210/en.2016-1707 PubMed DOI PMC

Kurtz T.W. and Morris R.C. Jr (2017) What abnormalities initiate salt-induced increases in blood pressure according to the autoregulation and vasodysfunction theories for salt sensitivity? Kidney Int. 92, 1015–1016 10.1016/j.kint.2017.06.004 PubMed DOI

Brooks V.L. and Osborn J.W. (1995) Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis. Am. J. Physiol. 268, R1343–R1358 10.1152/ajpregu.1995.268.6.R1343 PubMed DOI

Averina V.A., Othmer H.G., Fink G.D. and Osborn J.W. (2015) A mathematical model of salt-sensitive hypertension: the neurogenic hypothesis. J. Physiol. 593, 3065–3075 10.1113/jphysiol.2014.278317 PubMed DOI PMC

Gavras I. and Gavras H. (2012) ‘Volume-expanded’ hypertension: the effect of fluid overload and the role of the sympathetic nervous system in salt-dependent hypertension. J. Hypertens. 30, 655–659 10.1097/HJH.0b013e32834f6de1 PubMed DOI

Mark A.L. (1991) Sympathetic neural contribution to salt-induced hypertension in Dahl rats. Hypertension 17, I86–I90 10.1161/01.HYP.17.1_Suppl.I86 PubMed DOI

Leenen F.H. (2010) The central role of the brain aldosterone-”ouabain” pathway in salt-sensitive hypertension. Biochim. Biophys. Acta 1802, 1132–1139 10.1016/j.bbadis.2010.03.004 PubMed DOI

Blaustein M.P., Leenen F.H., Chen L., Golovina V.A., Hamlyn J.M., Pallone T.L.et al. . (2012) How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am. J. Physiol. Heart Circ. Physiol. 302, H1031–H1049 10.1152/ajpheart.00899.2011 PubMed DOI PMC

Blaustein M.P., Chen L., Hamlyn J.M., Leenen F.H., Lingrel J.B., Wier W.G.et al. . (2016) Pivotal role of alpha2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J. Physiol. 594, 6079–6103 10.1113/JP272419 PubMed DOI PMC

Pettersen K.H., Bugenhagen S.M., Nauman J., Beard D.A. and Omholt S.W. (2014) Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Comput. Biol. 10, e1003634 10.1371/journal.pcbi.1003634 PubMed DOI PMC

Choe K.Y., Han S.Y., Gaub P., Shell B., Voisin D.L., Knapp B.A.et al. . (2015) High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron 85, 549–560 10.1016/j.neuron.2014.12.048 PubMed DOI PMC

Kim Y.B., Kim Y.S., Kim W.B., Shen F.Y., Lee S.W., Chung H.J.et al. . (2013) GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ. Res. 113, 1296–1307 10.1161/CIRCRESAHA.113.301814 PubMed DOI

Matsuguchi H., Schmid P.G., Van Orden D. and Mark A.L. (1981) Does vasopressin contribute to salt-induced hypertension in the Dahl strain? Hypertension 3, 174–181 10.1161/01.HYP.3.2.174 PubMed DOI

Hatzinikolaou P., Gavras H., Brunner H.R. and Gavras I. (1980) Sodium-induced elevation of blood pressure in the anephric state. Science 209, 935–936 10.1126/science.7403861 PubMed DOI

Chamarthi B., Williams J.S. and Williams G.H. (2010) A mechanism for salt-sensitive hypertension: abnormal dietary sodium-mediated vascular response to angiotensin-II. J. Hypertens. 28, 1020–1026 10.1097/HJH.0b013e3283375974 PubMed DOI PMC

Ying W.Z. and Sanders P.W. (2003) The interrelationship between TGF-beta1 and nitric oxide is altered in salt-sensitive hypertension. Am. J. Physiol. Renal Physiol. 285, F902–F908 10.1152/ajprenal.00177.2003 PubMed DOI

Kanbay M., Chen Y., Solak Y. and Sanders P.W. (2011) Mechanisms and consequences of salt sensitivity and dietary salt intake. Curr. Opin. Nephrol. Hypertens. 20, 37–43 10.1097/MNH.0b013e32834122f1 PubMed DOI PMC

Feng W., Ying W.Z., Aaron K.J. and Sanders P.W. (2015) Transforming growth factor-beta mediates endothelial dysfunction in rats during high salt intake. Am. J. Physiol. Renal Physiol. 309, F1018–F1025 10.1152/ajprenal.00328.2015 PubMed DOI PMC

Wiig H., Luft F.C. and Titze J.M. (2018) The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol. (Oxf.) 222, 10.1111/apha.13006 PubMed DOI

Helle F., Karlsen T.V., Tenstad O., Titze J. and Wiig H. (2013) High-salt diet increases hormonal sensitivity in skin pre-capillary resistance vessels. Acta Physiol. (Oxf.) 207, 577–581 10.1111/apha.12049 PubMed DOI

Wiig H., Schroder A., Neuhofer W., Jantsch J., Kopp C., Karlsen T.V.et al. . (2013) Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Invest. 123, 2803–2815 10.1172/JCI60113 PubMed DOI PMC

Bevan J.A. (1993) Flow regulation of vascular tone. Its sensitivity to changes in sodium and calcium. Hypertension 22, 273–281 10.1161/01.HYP.22.3.273 PubMed DOI

Oberleithner H., Riethmuller C., Schillers H., MacGregor G.A., de Wardener H.E. and Hausberg M. (2007) Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl. Acad. Sci. U.S.A. 104, 16281–16286 10.1073/pnas.0707791104 PubMed DOI PMC

Oberleithner H. (2012) A physiological concept unmasking vascular salt sensitivity in man. Pflugers Arch. 464, 287–293 10.1007/s00424-012-1128-5 PubMed DOI PMC

Kusche-Vihrog K. and Oberleithner H. (2012) An emerging concept of vascular salt sensitivity. F1000 Biol. Rep. 4, 20 10.3410/B4-20 PubMed DOI PMC

Kusche-Vihrog K., Jeggle P. and Oberleithner H. (2014) The role of ENaC in vascular endothelium. Pflugers Arch. 466, 851–859 10.1007/s00424-013-1356-3 PubMed DOI

Matsuoka H., Itoh S., Kimoto M., Kohno K., Tamai O., Wada Y.et al. . (1997) Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 29, 242–247 10.1161/01.HYP.29.1.242 PubMed DOI

Fujiwara N., Osanai T., Kamada T., Katoh T., Takahashi K. and Okumura K. (2000) Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation 101, 856–861 10.1161/01.CIR.101.8.856 PubMed DOI

Feng W., Dell'Italia L.J. and Sanders P.W. (2017) Novel paradigms of salt and hypertension. J. Am. Soc. Nephrol. 28, 1362–1369 10.1681/ASN.2016080927 PubMed DOI PMC

Kitiyakara C., Chabrashvili T., Chen Y., Blau J., Karber A., Aslam S.et al. . (2003) Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J. Am. Soc. Nephrol. 14, 2775–2782 10.1097/01.ASN.0000092145.90389.65 PubMed DOI

Toda N. and Arakawa K. (2011) Salt-induced hemodynamic regulation mediated by nitric oxide. J. Hypertens. 29, 415–424 10.1097/HJH.0b013e328341d19e PubMed DOI

Chen P.Y. and Sanders P.W. (1991) L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J. Clin. Invest. 88, 1559–1567 10.1172/JCI115467 PubMed DOI PMC

Facchini F.S., DoNascimento C., Reaven G.M., Yip J.W., Ni X.P. and Humphreys M.H. (1999) Blood pressure, sodium intake, insulin resistance, and urinary nitrate excretion. Hypertension 33, 1008–1012 10.1161/01.HYP.33.4.1008 PubMed DOI

Bragulat E. and de la Sierra A. (2002) Salt intake, endothelial dysfunction, and salt-sensitive hypertension. J. Clin. Hypertens. (Greenwich) 4, 41–46 10.1111/j.1524-6175.2002.00503.x PubMed DOI PMC

Manning R.D. Jr., Meng S. and Tian N. (2003) Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol. Scand. 179, 243–250 10.1046/j.0001-6772.2003.01204.x PubMed DOI

Fang Y., Mu J.J., He L.C., Wang S.C. and Liu Z.Q. (2006) Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive asians. Hypertension 48, 724–729 10.1161/01.HYP.0000238159.19614.ce PubMed DOI

Cao Y., Mu J.J., Fang Y., Yuan Z.Y. and Liu F.Q. (2013) Impact of high salt independent of blood pressure on PRMT/ADMA/DDAH pathway in the aorta of Dahl salt-sensitive rats. Int. J. Mol. Sci. 14, 8062–8072 10.3390/ijms14048062 PubMed DOI PMC

Cubeddu L.X., Alfieri A.B., Hoffmann I.S., Jimenez E., Roa C.M., Cubeddu R.et al. . (2000) Nitric oxide and salt sensitivity. Am. J. Hypertens. 13, 973–979 10.1016/S0895-7061(00)00283-1 PubMed DOI

Majid D.S. and Kopkan L. (2007) Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin. Exp. Pharmacol. Physiol. 34, 946–952 10.1111/j.1440-1681.2007.04642.x PubMed DOI

Kopkan L. and Cervenka L. (2009) Renal interactions of renin-angiotensin system, nitric oxide and superoxide anion: implications in the pathophysiology of salt-sensitivity and hypertension. Physiol. Res. 58, S55–S67 10.33549/physiolres.931917 PubMed DOI

Wilcox C.S. (2005) Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R913–R935 10.1152/ajpregu.00250.2005 PubMed DOI

Wilcox C.S. (2012) Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables. Hypertension 59, 375–381 10.1161/HYPERTENSIONAHA.111.187310 PubMed DOI PMC

Kurtz T.W., DiCarlo S.E., Pravenec M. and Morris R.C. (2019) Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens. Res. 42, 6–18 10.1038/s41440-018-0122-5 PubMed DOI

Siani A., Pagano E., Iacone R., Iacoviello L., Scopacasa F. and Strazzullo P. (2000) Blood pressure and metabolic changes during dietary L-arginine supplementation in humans. Am. J. Hypertens. 13, 547–551 10.1016/S0895-7061(99)00233-2 PubMed DOI

Schulman S.P., Becker L.C., Kass D.A., Champion H.C., Terrin M.L., Forman S.et al. . (2006) L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA 295, 58–64 10.1001/jama.295.1.58 PubMed DOI

Hezel M.P. and Weitzberg E. (2015) The oral microbiome and nitric oxide homoeostasis. Oral Dis. 21, 7–16 10.1111/odi.12157 PubMed DOI

Webb A.J., Patel N., Loukogeorgakis S., Okorie M., Aboud Z., Misra S.et al. . (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51, 784–790 10.1161/HYPERTENSIONAHA.107.103523 PubMed DOI PMC

Gee L.C. and Ahluwalia A. (2016) Dietary nitrate lowers blood pressure: epidemiological, pre-clinical experimental and clinical trial evidence. Curr. Hypertens. Rep. 18, 17 10.1007/s11906-015-0623-4 PubMed DOI PMC

Khatri J., Mills C.E., Maskell P., Odongerel C. and Webb A.J. (2017) It is Rocket Science - Why dietary nitrate is hard to beet! Part I: Twists and turns in the realisation of the nitrate-nitrite-NO pathway. Br. J. Clin. Pharmacol. 83, 129–139 10.1111/bcp.12913 PubMed DOI PMC

Mills C.E., Khatri J., Maskell P., Odongerel C. and Webb A.J. (2017) It is rocket science - why dietary nitrate is hard to Beet! part II: further mechanisms and therapeutic potential of the nitrate-nitrite-NO pathway. Br. J. Clin. Pharmacol. 83, 140–151 10.1111/bcp.12918 PubMed DOI PMC

Lundberg J.O., Feelisch M., Bjorne H., Jansson E.A. and Weitzberg E. (2006) Cardioprotective effects of vegetables: is nitrate the answer? Nitric Oxide 15, 359–362 10.1016/j.niox.2006.01.013 PubMed DOI

Hord N.G., Tang Y. and Bryan N.S. (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am. J. Clin. Nutr. 90, 1–10 10.3945/ajcn.2008.27131 PubMed DOI

Kapil V., Khambata R.S., Robertson A., Caulfield M.J. and Ahluwalia A. (2015) Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension 65, 320–327 10.1161/HYPERTENSIONAHA.114.04675 PubMed DOI PMC

Hord N.G. and Conley M.N. (2017) Regulation of dietary nitrate and nitrite: balancing essential physiological roles with potential health risks. In Nitrite and Nitrate in Human Health and Disease 2nd edn, (Bryan N.S. and Loscalzo J., eds), pp. 153–162, Springer International Publishing, Cham, Nutrition and Health 10.1007/978-3-319-46189-2_12 DOI

European Food Safety Authority (2008) Nitrate in vegetables: scientific opinion of the panel on contaminants in the food chain. EFSA J. 689, 1–79 10.2903/j.efsa.2008.689 PubMed DOI PMC

Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services (2015) Nitrate and nitrite toxicity. What are U.S. standards and regulations for nitrates and nitrites exposure? https://www.atsdr.cdc.gov/csem/nitrate-nitrite/standards.html

Chhikara N., Kushwaha K., Sharma P., Gat Y. and Panghal A. (2019) Bioactive compounds of beetroot and utilization in food processing industry: a critical review. Food Chem. 272, 192–200 10.1016/j.foodchem.2018.08.022 PubMed DOI

WHO (2012) World Health Organization Guideline: Potassium intake for adults and children. https://www.who.int/publications/i/item/9789241504829 PubMed

National Health Service of the U.K. (2021) Vitamins and other minerals. https://www.nhs.uk/conditions/vitamins-and-minerals/others/

Morris R.C. Jr, Sebastian A., Forman A., Tanaka M. and Schmidlin O. (1999) Normotensive salt sensitivity - Effects of race and dietary potassium. Hypertension 33, 18–23 10.1161/01.HYP.33.1.18 PubMed DOI

Kurtz T.W., DiCarlo S.E., Pravenec M. and Morris R.C. Jr (2021) No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines. Am. J. Physiol. Heart Circ. Physiol. 320, H1903–H1918 10.1152/ajpheart.00980.2020 PubMed DOI PMC

Oberleithner H., Callies C., Kusche-Vihrog K., Schillers H., Shahin V., Riethmuller C.et al. . (2009) Potassium softens vascular endothelium and increases nitric oxide release. Proc. Natl. Acad. Sci. U.S.A. 106, 2829–2834 10.1073/pnas.0813069106 PubMed DOI PMC

Filippini T., Naska A., Kasdagli M.-I., Torres D., Lopes C., Carvalho C.et al. . (2020) Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 9, e015719–e 10.1161/JAHA.119.015719 PubMed DOI PMC

Krishna G.G., Miller E. and Kapoor S. (1989) Increased blood pressure during potassium depletion in normotensive men. N. Eng. J. Med. 320, 1177–1182 10.1056/NEJM198905043201804 PubMed DOI

Siani A., Strazzullo P., Russo L., Guglielmi S., Iacoviello L., Ferrara L.A.et al. . (1987) Controlled trial of long term oral potassium supplements in patients with mild hypertension. Br. Med. J. 294, 1453–1456 10.1136/bmj.294.6585.1453 PubMed DOI PMC

Fujita T. and Ando K. (1984) Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension 6, 184–192 10.1161/01.HYP.6.2.184 PubMed DOI

Iimura O., Kijima T., Kikuchi K., Miyama A., Ando T., Nakao T.et al. . (1981) Studies on the hypotensive effect of high potassium intake in patients with essential hypertension. Clin. Sci. 61, 77s–80s 10.1042/cs061077s PubMed DOI

MacGregor G.A., Markandu N.D., Smith S.J., Banks R.A. and Sagnella G.A. (1982) Moderate potassium supplementation in essential hypertension. Lancet ii, 567–570 10.1016/S0140-6736(82)90657-2 PubMed DOI

Smith S.J., Markandu N.D., Sagnella G.A. and MacGregor G.A. (1985) Moderate potassium chloride supplementation in essential hypertension: is it additive to moderate sodium restriction? Br. Med. J. 290, 110–113 10.1136/bmj.290.6462.110 PubMed DOI PMC

Grimm R.H. Jr, Neaton J.D., Elmer P.J., Svendsen K.H., Levin J., Segal M.et al. . (1990) The influence of oral potassium chloride on blood pressure in hypertensive men on a low-sodium diet. N. Engl. J. Med. 322, 569–574 10.1056/NEJM199003013220901 PubMed DOI

Drewnowski A., Rehm C.D., Maillot M., Mendoza A. and Monsivais P. (2015) The feasibility of meeting the WHO guidelines for sodium and potassium: a cross-national comparison study. BMJ Open 5, e006625 10.1136/bmjopen-2014-006625 PubMed DOI PMC

Aburto N.J., Hanson S., Gutierrez H., Hooper L., Elliott P. and Cappuccio F.P. (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346, f1378 10.1136/bmj.f1378 PubMed DOI PMC

Sinopoli D.A. and Lawless H.T. (2012) Taste properties of potassium chloride alone and in mixtures with sodium chloride using a check-all-that-apply method. J. Food Sci. 77, S319–S322 10.1111/j.1750-3841.2012.02862.x PubMed DOI

Greer R.C., Marklund M., Anderson C.A.M., Cobb L.K., Dalcin A.T., Henry M.et al. . (2020) Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension 75, 266–274 10.1161/HYPERTENSIONAHA.119.13241 PubMed DOI

Neal B., Wu Y., Feng X., Zhang R., Zhang Y., Shi J.et al. . (2021) Effect of salt substitution on cardiovascular events and death. N. Engl. J. Med. 385, 1067–1077 10.1056/NEJMoa2105675 PubMed DOI

Eren O.C., Ortiz A., Afsar B., Covic A., Kuwabara M., Lanaspa M.A.et al. . (2019) Multilayered interplay between fructose and salt in development of hypertension. Hypertension 73, 265–272 10.1161/HYPERTENSIONAHA.118.12150 PubMed DOI PMC

Rocchini A.P., Key J., Bondie D., Chico R., Moorehead C., Katch V.et al. . (1989) The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N. Engl. J. Med. 321, 580–585 10.1056/NEJM198908313210905 PubMed DOI

Krishna G.G. (1990) Effect of potassium intake on blood pressure. J. Am. Soc. Nephrol. 1, 43–52 10.1681/ASN.V1143 PubMed DOI

Sacks F.M., Svetkey L.P., Vollmer W.M., Appel L.J., Bray G.A., Harsha D.et al. . (2001) Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 344, 3–10 10.1056/NEJM200101043440101 PubMed DOI

Public Health England (2018) National Diet and Nutrition Survey: results from years 7 and 8 (combined) data tables. https://www.gov.uk/government/statistics/ndns-results-from-years-7-and-8-combined

Cheteu Wabo T.M., Wu X., Sun C., Boah M., Ngo Nkondjock V.R., Kosgey Cheruiyot J.et al. . (2022) Association of dietary calcium, magnesium, sodium, and potassium intake and hypertension: a study on an 8-year dietary intake data from the National Health and Nutrition Examination Survey. Nutr. Res. Pract. 16, 74–93 10.4162/nrp.2022.16.1.74 PubMed DOI PMC

Bray G.A., Vollmer W.M., Sacks F.M., Obarzanek E., Svetkey L.P., Appel L.J.et al. . (2004) A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium Trial. Am. J. Cardiol. 94, 222–227 10.1016/j.amjcard.2004.03.070 PubMed DOI

National Academies of Sciences, Engineering, and Medicine (2019) Dietary Reference Intakes for Sodium and Potassium(Stallings V.A., Harrison M. and Oria M., eds), p. 594, The National Academies Press, Washington, D.C., U.S.A. PubMed

Turck D., Castenmiller J., de Henauw S., Hirsch-Ernst K.I., Kearney J., Knutsen H.K.et al. . (2019) Dietary reference values for sodium. EFSA J. 17, e05778. PubMed PMC

Steinberg D., Bennett G.G. and Svetkey L. (2017) The DASH diet, 20 years later. JAMA 317, 1529–1530 10.1001/jama.2017.1628 PubMed DOI PMC

Kwan M.W., Wong M.C., Wang H.H., Liu K.Q., Lee C.L., Yan B.P.et al. . (2013) Compliance with the Dietary Approaches to Stop Hypertension (DASH) diet: a systematic review. PLoS ONE 8, e78412 10.1371/journal.pone.0078412 PubMed DOI PMC

Keller R.M., Beaver L., Prater M.C. and Hord N.G. (2020) Dietary nitrate and nitrite concentrations in food patterns and dietary supplements. Nutr. Today 55, 218–226 10.1097/NT.0000000000000253 DOI

Gangolli S.D., van den Brandt P.A., Feron V.J., Janzowsky C., Koeman J.H., Speijers G.J.et al. . (1994) Nitrate, nitrite and N-nitroso compounds. Eur. J. Pharmacol. 292, 1–38 10.1016/0926-6917(94)90022-1 PubMed DOI

, EFSA Panel on Dietetic Products Nutrition and Allergies Turck D., Bresson J.-L., Burlingame B., Dean T.et al. . (2016) Dietary reference values for potassium. EFSA J. 14, e04592 10.2903/j.efsa.2016.4592 DOI

Al-Solaiman Y., Jesri A., Mountford W.K., Lackland D.T., Zhao Y. and Egan B.M. (2010) DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fiber. J. Hum. Hypertens. 24, 237–246 10.1038/jhh.2009.58 PubMed DOI PMC

Institute for Health Metrics and Evaluation, University of Washington (2022) Global burden of diseases, injuries, and risk factors study. https://vizhub.healthdata.org/gbd-compare/

Kirkendall W.M., Connor W.E., Abboud F., Rastogi S.P., Anderson T.A. and Fry M. (1972) The effect of dietary sodium on the blood pressure of normotensive men. In Hypertension - 1972 International Symposium on Renin-Angiotensin-Aldosterone-Sodium in Hypertension(Genest J. and Koiw E., eds), pp. 360–373, Springer, Berlin

Ganguli M., Tobian L. and Iwai J. (1979) Cardiac output and peripheral resistance in strains of rats sensitive and resistant to NaCl hypertension. Hypertension 1, 3–7 10.1161/01.HYP.1.1.3 PubMed DOI

Weinberger M.H., Luft F.C., Bloch R., Henry D.P., Pratt J.H., Weyman A.E.et al. . (1982) The blood pressure-raising effects of high dietary sodium intake: racial differences and the role of potassium. J. Am. Coll. Cardiol. 1, 139–148 10.1080/07315724.1982.10718981 PubMed DOI

Sullivan J.M., Prewitt R.L., Ratts T.E., Josephs J.A. and Connor M.J. (1987) Hemodynamic characteristics of sodium-sensitive human subjects. Hypertension 9, 398–406 10.1161/01.HYP.9.4.398 PubMed DOI

Sagnella G.A., Markandu N.D., Buckley M.G., Miller M.A., Singer D.R. and MacGregor G.A. (1989) Hormonal responses to gradual changes in dietary sodium intake in humans. Am. J. Physiol. 256, R1171–R1175 10.1152/ajpregu.1989.256.6.R1171 PubMed DOI

Simchon S., Manger W.M., Carlin R.D., Peeters L.L., Rodriguez J., Batista D.et al. . (1989) Salt-induced hypertension in Dahl salt-sensitive rats: hemodynamics and renal responses. Hypertension 13, 612–621 10.1161/01.HYP.13.6.612 PubMed DOI

Greene A.S., Yu Z.Y., Roman R.J. and Cowley A.W. Jr (1990) Role of blood volume expansion in Dahl rat model of hypertension. Am. J. Physiol. 258, H508–H514 10.1152/ajpheart.1990.258.2.H508 PubMed DOI

Krieger J.E., Liard J.F. and Cowley A.W. Jr (1990) Hemodynamics, fluid volume, and hormonal responses to chronic high-salt intake in dogs. Am. J. Physiol. 259, H1629–H1636 10.1152/ajpheart.1990.259.6.H1629 PubMed DOI

Heer M., Baisch F., Kropp J., Gerzer R. and Drummer C. (2000) High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Renal Physiol. 278, F585–F595 10.1152/ajprenal.2000.278.4.F585 PubMed DOI

Damgaard M., Gabrielsen A., Heer M., Warberg J., Bie P., Christensen N.J.et al. . (2002) Effects of sodium intake on cardiovascular variables in humans during posture changes and ambulatory conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1404–R1411 10.1152/ajpregu.00198.2002 PubMed DOI

Damgaard M., Norsk P., Gustafsson F., Kanters J.K., Christensen N.J., Bie P.et al. . (2006) Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1294–R1301 10.1152/ajpregu.00738.2005 PubMed DOI

Heer M., Frings-Meuthen P., Titze J., Boschmann M., Frisch S., Baecker N.et al. . (2009) Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently. Br. J. Nutr. 101, 1286–1294 10.1017/S0007114508088041 PubMed DOI

Mark A.L., Lawton W.J., Abboud F.M., Fitz A.E., Connor W.E. and Heistad D.D. (1975) Effects of high and low sodium intake on arterial pressure and forearm vascular resistance in borderline hypertension. Circ. Res. 36/37, I–194-I-8 10.1161/01.RES.36.6.194 PubMed DOI

Juraschek S.P., Woodward M., Sacks F.M., Carey V.J., Miller E.R. III and Appel L.J. (2017) Time course of change in blood pressure from sodium reduction and the DASH diet. Hypertension 70, 923–929 10.1161/HYPERTENSIONAHA.117.10017 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...