No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 HL064230
NHLBI NIH HHS - United States
PubMed
33797275
PubMed Central
PMC8163653
DOI
10.1152/ajpheart.00980.2020
Knihovny.cz E-zdroje
- Klíčová slova
- hypertension, nitrate, race, salt-sensitive, sodium,
- MeSH
- běloši MeSH
- černoši MeSH
- draslík dietní * MeSH
- hypertenze patofyziologie MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- rizikové faktory MeSH
- sodík dietní * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- draslík dietní * MeSH
- sodík dietní * MeSH
On average, black individuals are widely believed to be more sensitive than white individuals to blood pressure (BP) effects of changes in salt intake. However, few studies have directly compared the BP effects of changing salt intake in black versus white individuals. In this narrative review, we analyze those studies and note that when potassium intake substantially exceeds the recently recommended US dietary goal of 87 mmol/day, black adults do not appear more sensitive than white adults to BP effects of short-term or long-term increases in salt intake (from an intake ≤50 mmol/day up to 150 mmol/day or more). However, with lower potassium intakes, racial differences in salt sensitivity are observed. Mechanistic studies suggest that racial differences in salt sensitivity are related to differences in vascular resistance responses to changes in salt intake mediated by vasodilator and vasoconstrictor pathways. With respect to cause and prevention of racial disparities in salt sensitivity, it is noteworthy that 1) on average, black individuals consume less potassium than white individuals and 2) consuming supplemental potassium bicarbonate, or potassium rich foods can prevent racial disparities in salt sensitivity. However, the new US dietary guidelines reduced the dietary potassium goal well below the amount associated with preventing racial disparities in salt sensitivity. These observations should motivate research on the impact of the new dietary potassium guidelines on racial disparities in salt sensitivity, the risks and benefits of potassium-containing salt substitutes or supplements, and methods for increasing consumption of foods rich in nutrients that protect against salt-induced hypertension.
Department of Laboratory Medicine University of California San Francisco California
Department of Medicine University of California San Francisco California
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, Dart RA, Newton-Cheh CH, Sacks FM, Laffer CL; American Heart Association Professional and Public Education Committee of the Council on Hypertension; Council on Functional Genomics and Translational Biology; Stroke Council. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertension 68: e7–e46, 2016. doi:10.1161/HYP.0000000000000047. PubMed DOI
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr.. The American Heart Association Scientific Statement on salt sensitivity of blood pressure: prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens 35: 2214–2225, 2017. doi:10.1097/HJH.0000000000001458. PubMed DOI
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. An appraisal of methods recently recommended for testing salt sensitivity of blood pressure. J Am Heart Assoc 6: e005653, 2017. doi:10.1161/JAHA.117.005653. PubMed DOI PMC
Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, Inenaga T, Kimura G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 350: 1734–1737, 1997. doi:10.1016/S0140-6736(97)05189-1. PubMed DOI
Brothers RM, Fadel PJ, Keller DM. Racial disparities in cardiovascular disease risk: mechanisms of vascular dysfunction. Am J Physiol Heart Circ Physiol 317: H777–H789, 2019. doi:10.1152/ajpheart.00126.2019. PubMed DOI PMC
Wright JT Jr.Profile of systemic hypertension in black patients. Am J Cardiol 61: 41H–45H, 1988. doi:10.1016/0002-9149(88)91104-6. PubMed DOI
Howard G, Cushman M, Moy CS, Oparil S, Muntner P, Lackland DT, Manly JJ, Flaherty ML, Judd SE, Wadley VG, Long DL, Howard VJ. Association of clinical and social factors with excess hypertension risk in black compared with white US adults. JAMA 320: 1338–1348, 2018. doi:10.1001/jama.2018.13467. PubMed DOI PMC
Kris-Etherton PM, Petersen KS, Velarde G, Barnard ND, Miller M, Ros E, O'Keefe JH, Williams K Sr, Horn LV, Na M, Shay C, Douglass P, Katz DL, Freeman AM. Barriers, opportunities, and challenges in addressing disparities in diet-related cardiovascular disease in the United States. J Am Heart Assoc 9: e014433, 2020. doi:10.1161/jaha.119.014433. PubMed DOI PMC
Wolf ST, Jablonski NG, Kenney WL. Examining “race” in physiology. Am J Physiol Heart Circ Physiol 319: H1409–H1413, 2020. doi:10.1152/ajpheart.00698.2020. PubMed DOI PMC
Goodman AH. Why genes don’t count (for racial differences in health). Am J Public Health 90: 1699–1702, 2000. doi:10.2105/ajph.90.11.1699. PubMed DOI PMC
Nobles M. History counts: a comparative analysis of racial/color categorization in US and Brazilian censuses. Am J Public Health 90: 1738–1745, 2000. doi:10.2105/ajph.90.11.1738. PubMed DOI PMC
Kelly TN, He J. Genomic epidemiology of blood pressure salt sensitivity. J Hypertens 30: 861–873, 2012. doi:10.1097/HJH.0b013e3283524949. PubMed DOI
Mei H, Gu D, Hixson JE, Rice TK, Chen J, Shimmin LC, Schwander K, Kelly TN, Liu DP, Chen S, Huang JF, Jaquish CE, Rao DC, He J. Genome-wide linkage and positional association study of blood pressure response to dietary sodium intervention: the GenSalt Study. Am J Epidemiol 176, Suppl 7: S81–S90, 2012. doi:10.1093/aje/kws290. PubMed DOI PMC
Svetkey LP, McKeown SP, Wilson AF. Heritability of salt sensitivity in black Americans. Hypertension 28: 854–858, 1996. doi:10.1161/01.hyp.28.5.854. PubMed DOI
de Leeuw PW, Kroon AA. Salt and sensitivity. Hypertension 62: 461–462, 2013. doi:10.1161/HYPERTENSIONAHA.113.01831. PubMed DOI
GenSalt Collaborative Research Group. GenSalt: rationale, design, methods and baseline characteristics of study participants. J Hum Hypertens 21: 639–646, 2007. doi:10.1038/sj.jhh.1002207. PubMed DOI PMC
Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3–10, 2001. doi:10.1056/nejm200101043440101. PubMed DOI
Huang L, Trieu K, Yoshimura S, Neal B, Woodward M, Campbell NRC, Li Q, Lackland DT, Leung AA, Anderson CAM, MacGregor GA, He FJ. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ 368: m315, 2020. doi:10.1136/bmj.m315. PubMed DOI PMC
Appel LJ, Espeland MA, Easter L, Wilson AC, Folmar S, Lacy CR. Effects of reduced sodium intake on hypertension control in older individuals: results from the Trial of Nonpharmacologic Interventions in the Elderly (TONE). Arch Intern Med 161: 685–693, 2001. doi:10.1001/archinte.161.5.685. PubMed DOI
Bray GA, Vollmer WM, Sacks FM, Obarzanek E, Svetkey LP, Appel LJ; DASH Collaborative Research Group. A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium Trial. Am J Cardiol 94: 222–227, 2004. doi:10.1016/j.amjcard.2004.03.070. PubMed DOI
Campese VM, Parise M, Karubian F, Bigazzi R. Abnormal renal hemodynamics in black salt-sensitive patients with hypertension. Hypertension 18: 805–812, 1991. doi:10.1161/01.hyp.18.6.805. PubMed DOI
Dimsdale JE, Ziegler M, Mills P, Berry C. Prediction of salt sensitivity. Am J Hypertens 3: 429–435, 1990. doi:10.1093/ajh/3.6.429. PubMed DOI
Falkner B, Kushner H. Effect of chronic sodium loading on cardiovascular response in young blacks and whites. Hypertension 15: 36–43, 1990. doi:10.1161/01.hyp.15.1.36. PubMed DOI
He FJ, Marciniak M, Visagie E, Markandu ND, Anand V, Dalton RN, MacGregor GA. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension 54: 482–488, 2009. doi:10.1161/HYPERTENSIONAHA.109.133223. PubMed DOI
He FJ, Markandu ND, Sagnella GA, MacGregor GA. Importance of the renin system in determining blood pressure fall with salt restriction in black and white hypertensives. Hypertension 32: 820–824, 1998. doi:10.1161/01.HYP.32.5.820. PubMed DOI
Luft FC, Rankin LI, Bloch R, Weyman AE, Willis LR, Murray RH, Grim CE, Weinberger MH. Cardiovascular and humoral responses to extremes of sodium intake in normal black and white men. Circulation 60: 697–706, 1979. doi:10.1161/01.cir.60.3.697. PubMed DOI
Luft FC, Zemel MB, Sowers JA, Fineberg NS, Weinberger MH. Sodium bicarbonate and sodium chloride: effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J Hypertens 8: 663–670, 1990. doi:10.1097/00004872-199007000-00010. PubMed DOI
MacGregor GA, Markandu ND, Best FE, Elder DM, Cam JM, Sagnella GA, Squires M. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet 351–355, 1982. doi:10.1016/s0140-6736(82)91389-7. PubMed DOI
Morris RC Jr, Sebastian A, Forman A, Tanaka M, Schmidlin O. Normotensive salt sensitivity—effects of race and dietary potassium. Hypertension 33: 18–23, 1999. doi:10.1161/01.HYP.33.1.18. PubMed DOI
Parmer RJ, Stone RA, Cervenka JH. Renal hemodynamics in essential hypertension. Racial differences in response to changes in dietary sodium. Hypertension 24: 752–757, 1994. doi:10.1161/01.hyp.24.6.752. PubMed DOI
Sudhir K, Forman A, Yi S-L, Sorof J, Schmidlin O, Sebastian A, Morris RC. Reduced dietary potassium reversibly enhances vasopressor response to stress in African Americans. Hypertension 29: 1083–1090, 1997. doi:10.1161/01.hyp.29.5.1083. PubMed DOI
Sullivan JM. Salt sensitivity. Definition, conception, methodology, and long-term issues. Hypertension 17: I61–I68, 1991. doi:10.1161/01.hyp.17.1_suppl.i61. PubMed DOI
Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. Trials of Hypertension Prevention Collaborative Research Group. Arch Intern Med 157: 657–667, 1997. PubMed
Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG, Conlin PR, Svetkey LP, Erlinger TP, Moore TJ, Karanja N; DASH-Sodium Trial Collaborative Research Group. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med 135: 1019–1028, 2001. doi:10.7326/0003-4819-135-12-200112180-00005. PubMed DOI
Wedler B, Brier ME, Wiersbitzky M, Gruska S, Wolf E, Kallwellis R, Aronoff GR, Luft FC. Sodium kinetics in salt-sensitive and salt-resistant normotensive and hypertensive subjects. J Hypertens 10: 663–669, 1992. PubMed
Weir MR, Dengel DR, Behrens MT, Goldberg AP. Salt-induced increases in systolic blood pressure affect renal hemodynamics and proteinuria. Hypertension 25: 1339–1344, 1995. doi:10.1161/01.hyp.25.6.1339. PubMed DOI
Wright JT Jr, Rahman M, Scarpa A, Fatholahi M, Griffin V, Jean-Baptiste R, Islam M, Eissa M, White S, Douglas JG. Determinants of salt sensitivity in black and white normotensive and hypertensive women. Hypertension 42: 1087–1092, 2003. doi:10.1161/01.HYP.0000101687.89160.19. PubMed DOI
Fang Y, Mu J-J, He L-C, Wang S-C, Liu Z-Q. Salt loading on plasma asymmetrical dimethylarginine and the protective role of potassium supplement in normotensive salt-sensitive Asians. Hypertension 48: 724–729, 2006. doi:10.1161/01.HYP.0000238159.19614.ce. PubMed DOI
Elliott P, Brown I. Sodium Intakes Around the World. Geneva: World Health Organization, 2007.
United States Dietary Guidelines Advisory Committee. Dietary Guidelines for Americans, 2020–2025. Washington, DC: US Department of Health and Human Services and US Department of Agriculture, 2020. https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf
Kotchen TA, Cowley AW Jr, Frohlich ED. Salt in health and disease—a delicate balance. N Engl J Med 368: 1229–1237, 2013. doi:10.1056/NEJMra1212606. PubMed DOI
Al-Solaiman Y, Jesri A, Mountford WK, Lackland DT, Zhao Y, Egan BM. DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fiber. J Hum Hypertens 24: 237–246, 2010. doi:10.1038/jhh.2009.58. PubMed DOI PMC
Hord NG, Tang Y, Bryan NS. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90: 1–10, 2009. doi:10.3945/ajcn.2008.27131. PubMed DOI
Morris RC Jr, Pravenec M, Silhavy J, DiCarlo SE, Kurtz TW. Small amounts of inorganic nitrate or beetroot provide substantial protection from salt-induced increases in blood pressure. Hypertension 73: 1042–1048, 2019. doi:10.1161/HYPERTENSIONAHA.118.12234. PubMed DOI PMC
Cogswell ME, Zhang Z, Carriquiry AL, Gunn JP, Kuklina EV, Saydah SH, Yang Q, Moshfegh AJ. Sodium and potassium intakes among US adults: NHANES 2003-2008. Am J Clin Nutr 96: 647–657, 2012. doi:10.3945/ajcn.112.034413. PubMed DOI PMC
National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for Sodium and Potassium. Washington, DC: The National Academies Press, 2019. https://www.nap.edu/read/25353/chapter/1#ii. PubMed
Newby PK, Noel SE, Grant R, Judd S, Shikany JM, Ard J. Race and region are associated with nutrient intakes among black and white men in the United States. J Nutr 141: 296–303, 2011. doi:10.3945/jn.110.130583. PubMed DOI PMC
Newby PK, Noel SE, Grant R, Judd S, Shikany JM, Ard J. Race and region have independent and synergistic effects on dietary intakes in black and white women. Nutr J 11: 25, 2012. doi:10.1186/1475-2891-11-25. PubMed DOI PMC
Va P, Dodd KW, Zhao L, Thompson-Paul AM, Mercado CI, Terry AL, Jackson SL, Wang C-Y, Loria CM, Moshfegh AJ, Rhodes DG, Cogswell ME. Evaluation of measurement error in 24-hour dietary recall for assessing sodium and potassium intake among US adults—National Health and Nutrition Examination Survey (NHANES), 2014. Am J Clin Nutr 109: 1672–1682, 2019. doi:10.1093/ajcn/nqz044. PubMed DOI PMC
United States Dietary Guidelines Advisory Committee. Dietary Guidelines for Americans, 2005. Washington, DC: US Department of Health and Human Services and US Department of Agriculture, 2004. https://www.dietaryguidelines.gov/about-dietary-guidelines/previous-editions/2005-dietary-guidelines-americans.
National Academies of Sciences Engineering Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Washington, DC: The National Academies Press, 2005. doi:10.17226/10925. DOI
Brands MW. Chronic blood pressure control. Compr Physiol 2: 2481–2494, 2012. doi:10.1002/cphy.c100056. PubMed DOI
Guyton AC. Arterial pressure and hypertension. In: Circulatory Physiology III. Philadelphia: WB Saunders, 1980. https://ci.nii.ac.jp/naid/10009568978/.
Guyton AC. Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol Regul Integr Comp Physiol 259: R865–R877, 1990. doi:10.1152/ajpregu.1990.259.5.R865. PubMed DOI
Hall JE. Guyton and Hall Textbook of Medical Physiology. Philadelphia: Elsevier, 2015. https://www.elsevier.com/books/guyton-and-hall-textbook-of-medical-physiology/hall/978-1-4557-7005-2.
Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 104: 545–556, 2001. doi:10.1016/s0092-8674(01)00241-0. PubMed DOI
Schrier RW. Renal and Electrolyte Disorders. Philadelphia: Wolters Kluwer, 2018.
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr.. The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Curr Opin Nephrol Hypertens 27: 83–92, 2018. doi:10.1097/mnh.0000000000000394. PubMed DOI
Kurtz TW, DiCarlo SE, Pravenec M, Schmidlin O, Tanaka M, Morris RC. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int 90: 965–973, 2016. doi:10.1016/j.kint.2016.05.032. PubMed DOI PMC
Morris RC Jr, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation 133: 881–893, 2016. doi:10.1161/CIRCULATIONAHA.115.017923. PubMed DOI PMC
Beard DA. Assessing the validity and utility of the Guyton model of arterial blood pressure control. Hypertension 72: 1272–1273, 2018. doi:10.1161/HYPERTENSIONAHA.118.11998. PubMed DOI PMC
Kurtz TW, DiCarlo SE, Pravenec M, Jezek F, Silar J, Kofránek J, Morris RC Jr.. Testing computer models predicting human responses to a high-salt diet. Hypertension 72: 1407–1416, 2018. doi:10.1161/HYPERTENSIONAHA.118.11552. PubMed DOI PMC
Ishii M, Atarashi K, Ikeda T, Hirata Y, Igari T, Uehara Y, Takagi M, Matsuoka H, Takeda T, Murao S. Role of the aldosterone system in the salt-sensitivity of patients with benign essential hypertension. Jpn Heart J 24: 79–90, 1983. doi:10.1536/ihj.24.79. PubMed DOI
Laffer CL, Scott RC 3rd, Titze JM, Luft FC, Elijovich F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension 68: 195–203, 2016. doi:10.1161/HYPERTENSIONAHA.116.07289. PubMed DOI PMC
Schmidlin O, Forman A, Leone A, Sebastian A, Morris RC Jr.. Salt sensitivity in blacks: evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension 58: 380–385, 2011. doi:10.1161/hypertensionaha.111.170175. PubMed DOI
Schmidlin O, Sebastian AFA, Morris RC Jr.. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension 49: 1032–1039, 2007. doi:10.1161/HYPERTENSIONAHA.106.084640. PubMed DOI PMC
Flack JM, Ensrud KE, Mascioli S, Launer CA, Svendsen K, Elmer PJ, Grimm RH Jr.. Racial and ethnic modifiers of the salt-blood pressure response. Hypertension 17: I115–I121, 1991. doi:10.1161/01.hyp.17.1_suppl.i115. PubMed DOI
Richardson SI, Freedman BI, Ellison DH, Rodriguez CJ. Salt sensitivity: a review with a focus on non-Hispanic blacks and Hispanics. J Am Soc Hypertens 7: 170–179, 2013. doi:10.1016/j.jash.2013.01.003. PubMed DOI PMC
Krishna GG, Chusid P, Hoeldtke RD. Mild potassium depletion provokes renal sodium retention. J Lab Clin Med 109: 724–730, 1987. PubMed
Bragulat E, de la Sierra A. Salt intake, endothelial dysfunction, and salt-sensitive hypertension. J Clin Hypertens (Greenwich) 4: 41–46, 2002. doi:10.1111/j.1524-6175.2002.00503.x. PubMed DOI PMC
Cao Y, Mu J-J, Fang Y, Yuan Z-Y, Liu F-Q. Impact of high salt independent of blood pressure on PRMT/ADMA/DDAH pathway in the aorta of Dahl salt-sensitive rats. Int J Mol Sci 14: 8062–8072, 2013. doi:10.3390/ijms14048062. PubMed DOI PMC
Chen PY, Sanders PW. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest 88: 1559–1567, 1991. doi:10.1172/JCI115467. PubMed DOI PMC
Facchini FS, DoNascimento C, Reaven GM, Yip JW, Ni XP, Humphreys MH. Blood pressure, sodium intake, insulin resistance, and urinary nitrate excretion. Hypertension 33: 1008–1012, 1999. doi:10.1161/01.HYP.33.4.1008. PubMed DOI
Fujiwara N, Osanai T, Kamada T, Katoh T, Takahashi K, Okumura K. Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation 101: 856–861, 2000. doi:10.1161/01.cir.101.8.856. PubMed DOI
Manning RD Jr, Meng S, Tian N. Renal and vascular oxidative stress and salt-sensitivity of arterial pressure. Acta Physiol Scand 179: 243–250, 2003. doi:10.1046/j.0001-6772.2003.01204.x. PubMed DOI
Matsuoka H, Itoh S, Kimoto M, Kohno K, Tamai O, Wada Y, Yasukawa H, Iwami G, Okuda S, Imaizumi T. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 29: 242–247, 1997. doi:10.1161/01.HYP.29.1.242. PubMed DOI
Toda N, Arakawa K. Salt-induced hemodynamic regulation mediated by nitric oxide. J Hypertens 29: 415–424, 2011. doi:10.1097/HJH.0b013e328341d19e. PubMed DOI
DuPont JJ, Greaney JL, Wenner MM, Lennon-Edwards SL, Sanders PW, Farquhar WB, Edwards DG. High dietary sodium intake impairs endothelium-dependent dilation in healthy salt-resistant humans. J Hypertens 31: 530–536, 2013. doi:10.1097/HJH.0b013e32835c6ca8. PubMed DOI PMC
Matthews EL, Brian MS, Ramick MG, Lennon-Edwards S, Edwards DG, Farquhar WB. High dietary sodium reduces brachial artery flow-mediated dilation in humans with salt-sensitive and salt-resistant blood pressure. J Appl Physiol 118: 1510–1515, 2015. doi:10.1152/japplphysiol.00023.2015. PubMed DOI PMC
Higashi Y, Oshima T, Watanabe M, Matsuura H, Kajiyama G. Renal response to l-arginine in salt-sensitive patients with essential hypertension. Hypertension 27: 643–648, 1996. doi:10.1161/01.HYP.27.3.643. PubMed DOI
Houston MC. The importance of potassium in managing hypertension. Curr Hypertens Rep 13: 309–317, 2011. doi:10.1007/s11906-011-0197-8. PubMed DOI
Oberleithner H, Callies C, Kusche-Vihrog K, Schillers H, Shahin V, Riethmuller C, Macgregor GA, de Wardener HE. Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA 106: 2829–2834, 2009. doi:10.1073/pnas.0813069106. PubMed DOI PMC
Smiljanec K, Mbakwe A, Ramos Gonzalez M, Farquhar WB, Lennon SL. Dietary potassium attenuates the effects of dietary sodium on vascular function in salt-resistant adults. Nutrients 12: 1206, 2020. doi:10.3390/nu12051206. PubMed DOI PMC
He J, Klag MJ, Appel LJ, Charleston J, Whelton PK. The renin-angiotensin system and blood pressure: differences between blacks and whites. Am J Hypertens 12: 555–562, 1999. doi:10.1016/s0895-7061(99)00030-8. PubMed DOI
Rifkin DE, Khaki AR, Jenny NS, McClelland RL, Budoff M, Watson K, Ix JH, Allison MA. Association of renin and aldosterone with ethnicity and blood pressure: the multi-ethnic study of atherosclerosis. Am J Hypertens 27: 801–810, 2014. doi:10.1093/ajh/hpt276. PubMed DOI PMC
Campese VM, Romoff MS, Levitan D, Saglikes Y, Friedler RM, Massry SG. Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int 21: 371–378, 1982. doi:10.1038/ki.1982.32. PubMed DOI
Vranish JR, Holwerda SW, Young BE, Credeur DP, Patik JC, Barbosa TC, Keller DM, Fadel PJ. Exaggerated vasoconstriction to spontaneous bursts of muscle sympathetic nerve activity in healthy young black men. Hypertension 71: 192–198, 2018. doi:10.1161/HYPERTENSIONAHA.117.10229. PubMed DOI PMC
Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P. Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol Endocrinol Metab 247: E21–E28, 1984. doi:10.1152/ajpendo.1984.247.1.E21. PubMed DOI
Vlachakis ND, Frederics R, Velasquez M, Alexander N, Singer F, Maronde RF. Sympathetic system function and vascular reactivity in hypercalcemic patients. Hypertension 4: 452–458, 1982. doi:10.1161/01.hyp.4.3.452. PubMed DOI
Calhoun DA. Hypertension in Blacks—socioeconomic stress and sympathetic nervous-system activity. Am J Med Sci 304: 306–311, 1992. doi:10.1097/00000441-199211000-00008. PubMed DOI
Cogswell ME, Loria CM, Terry AL, Zhao L, Wang C-Y, Chen T-C, Wright JD, Pfeiffer CM, Merritt R, Moy CS, Appel LJ. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319: 1209–1220, 2018. doi:10.1001/jama.2018.1156. PubMed DOI PMC
Kurtz TW, Pravenec M, Dicarlo SE. Strategies are needed to prevent salt-induced hypertension that do not depend on reducing salt intake. Am J Hypertens 33: 116–118, 2020. doi:10.1093/ajh/hpz173. PubMed DOI PMC
Greer RC, Marklund M, Anderson CAM, Cobb LK, Dalcin AT, Henry M, Appel LJ. Potassium-enriched salt substitutes as a means to lower blood pressure: benefits and risks. Hypertension 75: 266–274, 2020. doi:10.1161/HYPERTENSIONAHA.119.13241. PubMed DOI
Keller RM, Beaver L, Prater MC, Hord NG. Dietary nitrate and nitrite concentrations in food patterns and dietary supplements. Nutr Today 55: 218–226, 2020. doi:10.1097/NT.0000000000000253. DOI
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan. J Cardiol 72: 42–49, 2018. doi:10.1016/j.jjcc.2018.02.003. PubMed DOI PMC
Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension