Early reduction of skin potassium without sodium accumulation in the pathogenesis of salt sensitivity in primary aldosteronism

. 2025 ; 16 () : 1575972. [epub] 20250429

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40365307

INTRODUCTION: Primary aldosteronism is the most common form of secondary hypertension and blood pressure salt sensitivity. In the setting of hyperaldosteronism and a high-salt diet, disturbances in tissue sodium and potassium levels may contribute to salt sensitivity. This study aimed to determine whether aldosterone-dependent changes in tissue and plasma sodium and potassium concentrations occur before or after the development of salt sensitivity and hypertension in a rat model of primary aldosteronism. Previous studies in this model show that aldosterone-dependent salt sensitivity develops after 7-10 days on a high-salt diet. A secondary objective was to investigate differences in skin gene expression between aldosterone-treated rats and vehicle-treated controls. METHODS: Unilaterally nephrectomized male Sprague-Dawley rats received continuous infusions of aldosterone or vehicle while being fed a high-salt diet. Electrolyte concentrations in plasma, carcass, and skin were measured after 2 and 14 days of high-salt feeding. Tissue sodium and potassium concentrations were determined by atomic absorption spectroscopy and expressed as mmol/g tissue dry weight, while plasma ions (mmol/L) were measured using ion-selective electrodes. RNA sequencing (RNAseq) was used to identify differentially expressed genes in the skin, and gene set enrichment analysis (GSEA) was performed to explore biological processes associated with aldosterone treatment. RESULTS: After 2 days on the high-salt diet, aldosterone-treated rats showed significantly lower skin and plasma potassium concentrations compared to vehicle-treated controls, while sodium concentrations in the carcass, skin, and plasma did not differ significantly. At 14 days, aldosterone-treated rats continued to exhibit lower plasma potassium levels, although skin potassium differences were no longer significant. Carcass sodium concentrations were significantly higher in aldosterone-treated rats at 14 days. GSEA revealed that, at 2 days, aldosterone treatment affected biological processes related to electrolyte homeostasis and hyperosmotic responses. At 14 days, biological processes related to muscle function and calcium ion transport were significantly altered. CONCLUSION: Aldosterone-treated rats on a high-salt diet for 2 days had lower skin and plasma potassium levels compared to salt-loaded controls, suggesting early potassium depletion precedes significant sodium accumulation and blood pressure increases. These findings raise the possibility that early potassium depletion contributes to the development of aldosterone-induced salt sensitivity. Further studies with detailed time-course analysis will be of interest to elucidate the role of early potassium depletion in increasing vascular resistance and triggering aldosterone-dependent salt sensitivity and hypertension.

Zobrazit více v PubMed

Bilbrey G. L., Carter N. W., White M. G., Schilling J. F., Knochel J. P. (1973). Potassium deficiency in chronic renal failure. Kidney Int. 4, 423–430. 10.1038/ki.1973.138 PubMed DOI

Blasi E. R., Rocha R., Rudolph A. E., Blomme E. A., Polly M. L., McMahon E. G. (2003). Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 63, 1791–1800. 10.1046/j.1523-1755.2003.00929.x PubMed DOI

Büssemaker E., Hillebrand U., Hausberg M., Pavenstädt H., Oberleithner H. (2010). Pathogenesis of hypertension: interactions among sodium, potassium, and aldosterone. Am. J. Kidney Dis. 55, 1111–1120. 10.1053/j.ajkd.2009.12.022 PubMed DOI

Chachaj A., Stanimirova I., Chabowski M., Gomułkiewicz A., Hodurek P., Glatzel-Plucińska N., et al. (2023). Sodium accumulation in the skin is associated with higher density of skin lymphatic vessels in patients with arterial hypertension. Adv. Med. Sci. 68, 276–289. 10.1016/j.advms.2023.08.001 PubMed DOI

Claridge-Chang A., Assam P. (2016). Estimation statistics should replace significance testing. Nat. Methods 13, 108–109. 10.1038/nmeth.3729 PubMed DOI

Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC

Funder J. (2022). Primary aldosteronism. Trends Cardiovasc Med. 32, 228–233. 10.1016/j.tcm.2021.03.005 PubMed DOI

Funder J. W. (2015). Primary aldosteronism and salt. Pflugers Arch. 467, 587–594. 10.1007/s00424-014-1658-0 PubMed DOI

Gohar E. Y., De Miguel C., Obi I. E., Daugherty E. M., Hyndman K. A., Becker B. K., et al. (2022). Acclimation to a high-salt diet is sex dependent. J. Am. Heart Assoc. 11 (5), e020450. 10.1161/JAHA.120.020450 PubMed DOI PMC

Goto A., Tobian L., Iwai J. (1981). Potassium feeding reduces hyperactive central nervous system pressor responses in Dahl salt sensitive rats. Hypertension 3 (Suppl. I), I-128–I134. 10.1161/01.HYP.3.3_Pt_2.I128 PubMed DOI

Gruber S., Beuschlein F. (2020). Hypokalemia and the prevalence of primary aldosteronism. Horm. Metab. Res. 52, 347–356. 10.1055/a-1134-4980 PubMed DOI

Gu H., Ma Z., Wang J., Zhu T., Du N., Shatara A., et al. (2017). Salt dependent blood pressure in human aldosterone synthase-transgenic mice. Sci. Rep. 7, 492. 10.1038/s41598-017-00461-9 PubMed DOI PMC

Guerrero-Hernández A., Gómez-Viquez L., Guerrero-Serna G., Rueda A. (2002). Ryanodine receptors in smooth muscle. Front. Biosci. 7, d1676–d1688. 10.2741/a871 PubMed DOI

Gutierrez-Pajares J. L., Iturrieta J., Dulam V., Wang Y., Pavlides S., Malacari G., et al. (2015). Caveolin-3 promotes a vascular smooth muscle contractile phenotype. Front. Cardiovasc. Med. 11 (2), 27. 10.3389/fcvm.2015.00027 PubMed DOI PMC

Helle F., Karlsen T. V., Tenstad O., Titze J., Wiig H. (2013). High-salt diet increases hormonal sensitivity in skin pre-capillary resistance vessels. Acta Physiol. (Oxf) 207, 577–581. 10.1111/apha.12049 PubMed DOI

Ho J., Tumkaya T., Aryal S., Choi H., Claridge-Chang A. (2019). Moving beyond P values: data analysis with estimation graphics. Nat. Method. 16, 565–566. 10.1038/s41592-019-0470-3 PubMed DOI

Houston M. C. (2011). The importance of potassium in managing hypertension. Curr. Hypertens. Rep. 13, 309–317. 10.1007/s11906-011-0197-8 PubMed DOI

Johnson R. S., Titze J., Weller R. (2016). Cutaneous control of blood pressure. Curr. Opin. Nephrol. Hypertens. 25, 11–15. 10.1097/MNH.0000000000000188 PubMed DOI PMC

Kassan M., Ait-Aissa K., Radwan E., Mali V., Haddox S., Gabani M., et al. (2016). Essential role of smooth muscle STIM1 in hypertension and cardiovascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 36, 1900–1909. 10.1161/ATVBAHA.116.307869 PubMed DOI PMC

Kurtz T. W., DiCarlo S. E., Pravenec M., Morris R. C., Jr (2021). No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines. Am. J. Physiol. Heart Circ. Physiol. 320, H1903–H1918. 10.1152/ajpheart.00980.2020 PubMed DOI PMC

Kurtz T. W., Morris R. C., Jr., Pravenec M., Lujan H. L., DiCarlo S. E. (2023). Hypertension in primary aldosteronism is initiated by salt-induced increases in vascular resistance with reductions in cardiac output. Hypertension 80, 1077–1091. 10.1161/HYPERTENSIONAHA.123.20953 PubMed DOI

Kusche-Vihrog K., Tarjus A., Fels J., Jaisser F. (2014). The epithelial Na+ channel: a new player in the vasculature. Curr. Opin. Nephrol. Hypertens. 23, 143–148. 10.1097/01.mnh.0000441054.88962.2c PubMed DOI

Liu J.-X., Huang T., Xie D., Yu Q. (2022). Bves maintains vascular smooth muscle cell contractile phenotype and protects against transplant vasculopathy via Dusp1-dependent p38MAPK and ERK1/2 signaling. Atherosclerosis 357, 20–32. 10.1016/j.atherosclerosis.2022.08.010 PubMed DOI

Mancarella S., Potireddy S., Wang Y., Gao H., Gandhirajan R. K., Autieri M., et al. (2013). Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle. FASEB J. 27, 893–906. 10.1096/fj.12-215293 PubMed DOI PMC

Martus W., Kim D., Garvin J. L., Beierwaltes W. H. (2005). Commercial rodent diets contain more sodium than rats need. Am. J. Physiol. Ren. Physiol. 288, F428–F431. 10.1152/ajprenal.00310.2004 PubMed DOI

Miyauchi H., Geisberger S., Luft F. C., Wilck N., Stegbauer J., Wiig H., et al. (2024). Sodium as an important regulator of immunometabolism. Hypertension 81, 426–435. 10.1161/HYPERTENSIONAHA.123.19489 PubMed DOI PMC

National Research Council Board on Agriculture Committee on Animal Nutrition Subcommittee on Laboratory Animal Nutrition (1995). “Nutrient requirements of the rat,” in Nutrient requirements of laboratory animals (Washington, DC: National Academy Press; ).

Nørgaard A., Kjeldsen K. (1991). Interrelation of hypokalaemia and potassium depletion and its implications: a re-evaluation based on studies of the skeletal muscle sodium, potassium-pump. Clin. Sci. (Lond). 81, 449–455. 10.1042/cs0810449 PubMed DOI

Oberleithner H., Callies C., Kusche-Vihrog K., Schillers H., Shahin V., Riethmuller C., et al. (2009). Potassium softens vascular endothelium and increases nitric oxide release. Proc. Natl. Acad. Sci. U.S.A. 106, 2829–2834. 10.1073/pnas.0813069106 PubMed DOI PMC

Oberleithner H., Riethmüller C., Schillers H., MacGregor G. A., de Wardener H. E., Hausberg M. (2007). Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl. Acad. Sci. U. S. A. 104, 16281–16286. 10.1073/pnas.0707791104 PubMed DOI PMC

Panchatcharam M., Miriyala S., Salous A., Wheeler J., Dong A., Mueller P., et al. (2013). Lipid phosphate phosphatase 3 negatively regulates smooth muscle cell phenotypic modulation to limit intimal hyperplasia. Arterioscler. Thromb. Vasc. Biol. 33, 52–59. 10.1161/ATVBAHA.112.300527 PubMed DOI PMC

Patro R., Duggal G., Love M. I., Irizarry R. A., Kingsford C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Method. 14, 417–419. 10.1038/nmeth.4197 PubMed DOI PMC

Reil J. C., Hohl M., Selejan S., Lipp P., Drautz F., Kazakow A., et al. (2012). Aldosterone promotes atrial fibrillation. Eur. Heart J. 33, 2098–2108. 10.1093/eurheartj/ehr266 PubMed DOI

Rossitto G., Delles C. (2022). Does excess tissue sodium storage regulate blood pressure? Curr. Hypertens. Rep. 24, 115–122. 10.1007/s11906-022-01180-x PubMed DOI PMC

Shibata S., Mu S., Kawarazaki H., Muraoka K., Ishizawa K., Yoshida S., et al. (2011). Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J. Clin. Invest. 121, 3233–3243. 10.1172/JCI43124 PubMed DOI PMC

Šilhavý J., Mlejnek P., Šimáková M., Liška F., Kubovčiak J., Sticová E., et al. (2022). Sodium accumulation and blood capillary rarefaction in the skin predispose spontaneously hypertensive rats to salt sensitive hypertension. Biomedicines 10, 376. 10.3390/biomedicines10020376 PubMed DOI PMC

Titze J., Bauer K., Schafflhuber M., Dietsch P., Lang R., Schwind K. H., et al. (2005). Internal sodium balance in DOCA-salt rats: a body composition study. Am. J. Physiol. Ren. Physiol. 289, F793–F802. 10.1152/ajprenal.00096.2005 PubMed DOI

Torresan F., Rossi F. B., Caputo I., Zanin S., Caroccia B., Mattarei A., et al. (2024). Water and electrolyte content in hypertension in the skin (WHYSKI) in primary aldosteronism. Hypertension 81, 2468–2478. 10.1161/HYPERTENSIONAHA.124.23700 PubMed DOI

Turner S. R., Chappellaz M., Popowich B., Wooldridge A. A., Haystead T. A. J., Cole W. C., et al. (2019). Smoothelin-like 1 deletion enhances myogenic reactivity of mesenteric arteries with alterations in PKC and myosin phosphatase signaling. Sci. Rep. 9, 481. 10.1038/s41598-018-36564-0 PubMed DOI PMC

Williams E. D., Boddy K., Brown J. J., Cumming A. M., Davies D. L., Harvey I. R., et al. (1984). Body elemental composition, with particular reference to total and exchangeable sodium and potassium and total chlorine, in untreated and treated primary hyperaldosteronism. J. Hypertens. 2, 171–176. 10.1097/00004872-198404000-00008 PubMed DOI

Zhang J., Lee M. Y., Cavalli M., Chen L., Berra-Romani R., Balke C. W., et al. (2005). Sodium pump alpha2 subunits control myogenic tone and blood pressure in mice. J. Physiol. 569 (Pt 1), 243–256. 10.1113/jphysiol.2005.091801 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...