Field and laboratory perspectives on fentanyl and carfentanil decontamination

. 2024 Oct 25 ; 14 (1) : 25381. [epub] 20241025

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39455665

Grantová podpora
869178 The collaborative international consortium GreenWaterTech financed under the ERA-NET AquaticPollutants Joint Transnational Call
869178 The collaborative international consortium GreenWaterTech financed under the ERA-NET AquaticPollutants Joint Transnational Call

Odkazy

PubMed 39455665
PubMed Central PMC11511980
DOI 10.1038/s41598-024-74594-z
PII: 10.1038/s41598-024-74594-z
Knihovny.cz E-zdroje

Abuse of the highly toxic compound fentanyl and its analogues is increasing, raising serious public health concerns due to their potency and availability. Therefore, there is a need for decontamination methodologies to safely remove fentanyl to avoid harmful exposure. In this study, the efficacy of commercial and in-house synthesized decontamination agents (Dahlgren Decon, RSDL (Reactive Skin Decontamination Lotion), FAST-ACT (First applied sorbent treatment against chemical threats), GDS2000, alldecont MED, bleach, Domestos Spray Bleach, Effekt Klor, MgO, TiO2-nanodiamond, and CeO2) were evaluated for the degradation of fentanyl and carfentanil under controlled laboratory conditions and on wooden floor surfaces. Liquid chromatography/mass spectrometry analysis showed that oxidative decontamination agents were the most effective, with N-oxides identified as major degradation products. The physiological effects of these N-oxides were also investigated regarding their ability to activate the µ-opioid receptor and their metabolism in human liver microsomes. The results provide empirical evidence that complements prior research findings on the degradation of fentanyl and carfentanil using a variety of decontamination agents.

Zobrazit více v PubMed

Stanley, T. H. The fentanyl story. J. Pain. 15, 1215–1226 (2014). PubMed

Shafi, A., Berry, A. J., Sumnall, H., Wood, D. M. & Tracy, D. K. Synthetic opioids: a review and clinical update. Therapeutic Adv. Psychopharmacol.12, 20451253221139616 (2022). PubMed PMC

Jannetto, P. J. et al. The fentanyl epidemic and evolution of fentanyl analogs in the United States and the European Union. Clin. Chem.65, 242–253 (2019). PubMed

Burns, S. M., Cunningham, C. W. & Mercer, S. L. DARK classics in chemical neuroscience: fentanyl. ACS Chem. Neurosci.9, 2428–2437 (2018). PubMed

Patocka, J. et al. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon. 10, e28795 (2024). PubMed PMC

Gardner, E. A., McGrath, S. A., Dowling, D. & Bai, D. The opioid crisis: prevalence and markets of opioids. Forensic Sci. Rev.34, 43–70 (2022). PubMed

Pierce, M., van Amsterdam, J., Kalkman, G. A., Schellekens, A. & van den Brink, W. Is Europe facing an opioid crisis like the United States? An analysis of opioid use and related adverse effects in 19 European countries between 2010 and 2018. Eur. Psychiatry. 64, e47 (2021). PubMed PMC

Zawilska, J., Kuczynska, K., Kosmal, W., Markiewicz, K. & Adamowicz, P. Carfentanil-from an animal anesthetic to a deadly illicit drug. Forensic Sci. Int.320, 110715 (2021). PubMed

Ringuette, A. E., Spock, M., Lindsley, C. W. & Bender A. M. DARK classics in chemical neuroscience: carfentanil. ACS Chem. Neurosci.11, 3955–3967 (2020). PubMed

Thomas, A. R. & Schwartz, R. M. At-risk populations to unintentional and intentional fentanyl and fentanyl + exposure. J. Transp. Secur.12, 73–82 (2019).

Dalton, C., Watkins, R., Pritchard, S. & Graham, S. Skin decontamination of carfentanil in vitro. Toxicol. Lett.388, 56–63 (2023). PubMed

de Bruin-Hoegée, M., de Koning, M. C., Cochrane, L. & Joosen, M. J. Contact transfer risk from fentanyl-contaminated RSDL® kit. Toxicol. Lett.319, 237–241 (2020). PubMed

Thors, L. et al. Skin penetration and decontamination efficacy following human skin exposure to fentanyl. Toxicol. In Vitro. 67, 104914 (2020). PubMed

Cibulsky, S. M. et al. Public health and medical preparedness for mass casualties from the deliberate release of synthetic opioids. Front. Public. Health. 11, 1158479 (2023). PubMed PMC

Basham, C. et al. Occupational safety and health and illicit opioids: state of the research on protecting against the threat of occupational exposure. NEW. SOLUTIONS: J. Environ. Occup. Health Policy. 31, 315–329 (2021). PubMed PMC

Bazley, M. M., Logan, M., Baxter, C., Robertson, A. A. B. & Blanchfield, J. T. Decontamination of fentanyl and fentanyl analogues in field and laboratory settings: a review of fentanyl degradation. Aust. J. Chem.73, 868–879 (2020).

Qi, L., Cheng, Z., Zuo, G., Li, S. & Fan, Q. Oxidative degradation of fentanyl in aqueous solutions of peroxides and hypochlorites. Def. Sci. J.61, 30–35 (2011).

Garg, A., Solas, D. W., Takahashi, L. H. & Cassella, J. V. Forced degradation of fentanyl: identification and analysis of impurities and degradants. J. Pharm. Biomed. Anal.53, 325–334 (2010). PubMed

Manral, L., Gupta, P., Suryanarayana, M., Ganesan, K. & Malhotra, R. Thermal behaviour of fentanyl and its analogues during flash pyrolysis. J. Therm. Anal. Calorim.96, 531–534 (2009).

Xu, L. et al. Oxidative treatment of fentanyl compounds in water by sodium bromate combined with sodium sulphite. Water Sci. Technol.72, 38–44 (2015). PubMed

Froelich, N. M., Sprague, J. E. & Worst, T. J. Letter to the editor — elbow grease and OxiClean™ for cleaning fentanyl- and acetylfentanyl-contaminated surfaces. J. Forensic Sci.63, 336–338 (2018). PubMed

Durnal, E., Kelsey, P. & Sam, H. First Line Technology, LLC. Dahlgren Decontamination Studies, Final Project Report R1 (First Line Technology, LLC, Chantilly, 2018).

DahlgrenDecon Datasheet. (https://www.epequip.com/wp-content/uploads/2020/03/DahlgrenDecon_Datasheet_07062016_EPE-Branded-compressed.pdf).

Sisco, E., Najarro, M. & Burns, A. Quantifying the effectiveness of cleaning agents at removing drugs from laboratory benches and floor tiles. Forensic Chem.12, 1–7 (2019).

Oudejans, L., See, D., Dodds, C., Corlew, M. & Magnuson, M. Decontamination options for indoor surfaces contaminated with realistic fentanyl preparations. J. Environ. Manage.297, 113327 (2021). PubMed PMC

Vol. Version 1.0 05/22/2018 (Environmental Protection Agency, Washington, DC, U.S., Available online at: (2018). https://www.epa.gov/emergency-response/fact-sheet-fentanyl-and-fentanyl-analogs.

Langmaier, J. et al. Ion transfer voltammetric and LC/MS investigations of the oxidative degradation process of fentanyl and some of its structural analogs. Electrochim. Acta. 441, 141848 (2023).

Lambropoulos, J., Spanos, G. A., Lazaridis, N. V., Ingallinera, T. S. & Rodriguez, V. K. Development and validation of an HPLC assay for fentanyl and related substances in fentanyl citrate injection, USP. J. Pharm. Biomed. Anal.20, 705–716 (1999). PubMed

Verheij, E. R., Joosen, M. J. A., Cochrane, L., de Bruin-Hoegee, M. & de Koning, M. C. Decontamination of toxic industrial chemicals and fentanyl by application of the RSDL® kit. J. Special Oper. Medicine: Peer Reviewed J. SOF Med. Professionals. 20, 55–59 (2020). PubMed

Henych, J. et al. Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites. Appl. Catal. B. 259, 118097 (2019).

Love, A. H. et al. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces. J. Hazard. Mater.196, 115–122 (2011). PubMed

Feasel, M. et al. Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by high-resolution mass spectrometry. AAPS J.18, 1489–1499 (2016). PubMed

Safetey Data Sheet. (2010). www.clasohlson.com/medias/sys_master/9542894682142.pdf.

Safetey Data Sheet (https://images2.europris.no/dokumenter/188761/188761.pdf, 2015)

Mörén, L. et al. Rapid screening of riot control agents using DART-TD-HRMS. Forensic. Toxicol. s11419 (2024). PubMed PMC

Brown, H., Oktem, B., Windom, A., Doroshenko, V. & Evans-Nguyen, K. Direct analysis in real time (DART) and a portable mass spectrometer for rapid identification of common and designer drugs on-site. Forensic Chem.1, 66–73 (2016).

Sisco, E., Forbes, T. P., Staymates, M. E. & Gillen, G. Rapid analysis of trace drugs and metabolites using a thermal desorption DART-MS configuration. Anal. Methods. 8, 6494–6499 (2016). PubMed PMC

Cooman, T. et al. Screening of seized drugs utilizing portable Raman spectroscopy and direct analysis in real time-mass spectrometry (DART-MS). Forensic Chem.25, 100352 (2021).

Pasternak, G. W. & Pan, Y. X. Mu opioids and their receptors: evolution of a concept. Pharmacol. Rev.65, 1257–1317 (2013). PubMed PMC

Langston, J. L., Moffett, M. C., Makar, J. R., Burgan, B. M. & Myers, T. M. Carfentanil toxicity in the African green monkey: therapeutic efficacy of naloxone. Toxicol. Lett.325, 34–42 (2020). PubMed

Hsu, F. L. et al. Synthesis and µ-opioid activity of the primary metabolites of carfentanil. ACS Med. Chem. Lett.10, 1568–1572 (2019). PubMed PMC

Bird, H. E., Huhn, A. S. & Dunn, K. E. Fentanyl absorption, distribution, metabolism, and excretion: narrative review and clinical significance related to illicitly manufactured fentanyl. J. Addicttion Med.17, 503–508 (2023). PubMed PMC

Adams, A. P. & Pybus, D. A. Delayed respiratory depression after use of fentanyl during anaesthesia. Brittish Med. J.4, 278–279 (1978). PubMed PMC

Dalton, C., Watkins, R., Pritchard, S. & Graham, S. Percutaneous absorption of Carfentanil in vitro. Toxicol. Vitro. 72, 105100 (2021). PubMed

Mörén, L. et al. Attribution of fentanyl analogue synthesis routes by multivariate data analysis of orthogonal mass spectral data. Talanta. 203, 122–130 (2019). PubMed

Aggarwal, V. K., Gültekin, Z., Grainger, R. S., Adams, H. & Spargo, P. L. 1R, 3R)-2-Methylene-1, 3-dithiolane 1, 3-dioxide: a highly reactive and highly selective chiral ketene equivalent in cycloaddition reactions with a broad range of dienes. J. Chem. Soc. Perkin Trans.1, 2771–2782 (1998).

Ederer, J., Šťastný, M., Došek, M., Henych, J. & Janoš, P. Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate. RSC Adv.9, 32058–32065 (2019). PubMed PMC

Lave, T. et al. The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humans. Pharm. Res.14, 152–155 (1997). PubMed

Lau, Y. Y. et al. The use of in vitro metabolic stability for rapid selection of compounds in early discovery based on their expected hepatic extraction ratios. Pharm. Res.19, 1606–1610 (2002). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...