Field and laboratory perspectives on fentanyl and carfentanil decontamination
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
869178
The collaborative international consortium GreenWaterTech financed under the ERA-NET AquaticPollutants Joint Transnational Call
869178
The collaborative international consortium GreenWaterTech financed under the ERA-NET AquaticPollutants Joint Transnational Call
PubMed
39455665
PubMed Central
PMC11511980
DOI
10.1038/s41598-024-74594-z
PII: 10.1038/s41598-024-74594-z
Knihovny.cz E-zdroje
- MeSH
- dekontaminace * metody MeSH
- fentanyl * analogy a deriváty farmakologie MeSH
- jaterní mikrozomy metabolismus MeSH
- lidé MeSH
- opioidní analgetika farmakologie MeSH
- receptory opiátové mu metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- carfentanil MeSH Prohlížeč
- fentanyl * MeSH
- opioidní analgetika MeSH
- receptory opiátové mu MeSH
Abuse of the highly toxic compound fentanyl and its analogues is increasing, raising serious public health concerns due to their potency and availability. Therefore, there is a need for decontamination methodologies to safely remove fentanyl to avoid harmful exposure. In this study, the efficacy of commercial and in-house synthesized decontamination agents (Dahlgren Decon, RSDL (Reactive Skin Decontamination Lotion), FAST-ACT (First applied sorbent treatment against chemical threats), GDS2000, alldecont MED, bleach, Domestos Spray Bleach, Effekt Klor, MgO, TiO2-nanodiamond, and CeO2) were evaluated for the degradation of fentanyl and carfentanil under controlled laboratory conditions and on wooden floor surfaces. Liquid chromatography/mass spectrometry analysis showed that oxidative decontamination agents were the most effective, with N-oxides identified as major degradation products. The physiological effects of these N-oxides were also investigated regarding their ability to activate the µ-opioid receptor and their metabolism in human liver microsomes. The results provide empirical evidence that complements prior research findings on the degradation of fentanyl and carfentanil using a variety of decontamination agents.
Institute of Inorganic Chemistry of the Czech Academy of Sciences Husinec Řež 250 68 Czech Republic
Swedish Defence Research Agency Division of CBRN Defence and Security Umeå 901 82 Sweden
Zobrazit více v PubMed
Stanley, T. H. The fentanyl story. J. Pain. 15, 1215–1226 (2014). PubMed
Shafi, A., Berry, A. J., Sumnall, H., Wood, D. M. & Tracy, D. K. Synthetic opioids: a review and clinical update. Therapeutic Adv. Psychopharmacol.12, 20451253221139616 (2022). PubMed PMC
Jannetto, P. J. et al. The fentanyl epidemic and evolution of fentanyl analogs in the United States and the European Union. Clin. Chem.65, 242–253 (2019). PubMed
Burns, S. M., Cunningham, C. W. & Mercer, S. L. DARK classics in chemical neuroscience: fentanyl. ACS Chem. Neurosci.9, 2428–2437 (2018). PubMed
Patocka, J. et al. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon. 10, e28795 (2024). PubMed PMC
Gardner, E. A., McGrath, S. A., Dowling, D. & Bai, D. The opioid crisis: prevalence and markets of opioids. Forensic Sci. Rev.34, 43–70 (2022). PubMed
Pierce, M., van Amsterdam, J., Kalkman, G. A., Schellekens, A. & van den Brink, W. Is Europe facing an opioid crisis like the United States? An analysis of opioid use and related adverse effects in 19 European countries between 2010 and 2018. Eur. Psychiatry. 64, e47 (2021). PubMed PMC
Zawilska, J., Kuczynska, K., Kosmal, W., Markiewicz, K. & Adamowicz, P. Carfentanil-from an animal anesthetic to a deadly illicit drug. Forensic Sci. Int.320, 110715 (2021). PubMed
Ringuette, A. E., Spock, M., Lindsley, C. W. & Bender A. M. DARK classics in chemical neuroscience: carfentanil. ACS Chem. Neurosci.11, 3955–3967 (2020). PubMed
Thomas, A. R. & Schwartz, R. M. At-risk populations to unintentional and intentional fentanyl and fentanyl + exposure. J. Transp. Secur.12, 73–82 (2019).
Dalton, C., Watkins, R., Pritchard, S. & Graham, S. Skin decontamination of carfentanil in vitro. Toxicol. Lett.388, 56–63 (2023). PubMed
de Bruin-Hoegée, M., de Koning, M. C., Cochrane, L. & Joosen, M. J. Contact transfer risk from fentanyl-contaminated RSDL® kit. Toxicol. Lett.319, 237–241 (2020). PubMed
Thors, L. et al. Skin penetration and decontamination efficacy following human skin exposure to fentanyl. Toxicol. In Vitro. 67, 104914 (2020). PubMed
Cibulsky, S. M. et al. Public health and medical preparedness for mass casualties from the deliberate release of synthetic opioids. Front. Public. Health. 11, 1158479 (2023). PubMed PMC
Basham, C. et al. Occupational safety and health and illicit opioids: state of the research on protecting against the threat of occupational exposure. NEW. SOLUTIONS: J. Environ. Occup. Health Policy. 31, 315–329 (2021). PubMed PMC
Bazley, M. M., Logan, M., Baxter, C., Robertson, A. A. B. & Blanchfield, J. T. Decontamination of fentanyl and fentanyl analogues in field and laboratory settings: a review of fentanyl degradation. Aust. J. Chem.73, 868–879 (2020).
Qi, L., Cheng, Z., Zuo, G., Li, S. & Fan, Q. Oxidative degradation of fentanyl in aqueous solutions of peroxides and hypochlorites. Def. Sci. J.61, 30–35 (2011).
Garg, A., Solas, D. W., Takahashi, L. H. & Cassella, J. V. Forced degradation of fentanyl: identification and analysis of impurities and degradants. J. Pharm. Biomed. Anal.53, 325–334 (2010). PubMed
Manral, L., Gupta, P., Suryanarayana, M., Ganesan, K. & Malhotra, R. Thermal behaviour of fentanyl and its analogues during flash pyrolysis. J. Therm. Anal. Calorim.96, 531–534 (2009).
Xu, L. et al. Oxidative treatment of fentanyl compounds in water by sodium bromate combined with sodium sulphite. Water Sci. Technol.72, 38–44 (2015). PubMed
Froelich, N. M., Sprague, J. E. & Worst, T. J. Letter to the editor — elbow grease and OxiClean™ for cleaning fentanyl- and acetylfentanyl-contaminated surfaces. J. Forensic Sci.63, 336–338 (2018). PubMed
Durnal, E., Kelsey, P. & Sam, H. First Line Technology, LLC. Dahlgren Decontamination Studies, Final Project Report R1 (First Line Technology, LLC, Chantilly, 2018).
DahlgrenDecon Datasheet. (https://www.epequip.com/wp-content/uploads/2020/03/DahlgrenDecon_Datasheet_07062016_EPE-Branded-compressed.pdf).
Sisco, E., Najarro, M. & Burns, A. Quantifying the effectiveness of cleaning agents at removing drugs from laboratory benches and floor tiles. Forensic Chem.12, 1–7 (2019).
Oudejans, L., See, D., Dodds, C., Corlew, M. & Magnuson, M. Decontamination options for indoor surfaces contaminated with realistic fentanyl preparations. J. Environ. Manage.297, 113327 (2021). PubMed PMC
Vol. Version 1.0 05/22/2018 (Environmental Protection Agency, Washington, DC, U.S., Available online at: (2018). https://www.epa.gov/emergency-response/fact-sheet-fentanyl-and-fentanyl-analogs.
Langmaier, J. et al. Ion transfer voltammetric and LC/MS investigations of the oxidative degradation process of fentanyl and some of its structural analogs. Electrochim. Acta. 441, 141848 (2023).
Lambropoulos, J., Spanos, G. A., Lazaridis, N. V., Ingallinera, T. S. & Rodriguez, V. K. Development and validation of an HPLC assay for fentanyl and related substances in fentanyl citrate injection, USP. J. Pharm. Biomed. Anal.20, 705–716 (1999). PubMed
Verheij, E. R., Joosen, M. J. A., Cochrane, L., de Bruin-Hoegee, M. & de Koning, M. C. Decontamination of toxic industrial chemicals and fentanyl by application of the RSDL® kit. J. Special Oper. Medicine: Peer Reviewed J. SOF Med. Professionals. 20, 55–59 (2020). PubMed
Henych, J. et al. Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites. Appl. Catal. B. 259, 118097 (2019).
Love, A. H. et al. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces. J. Hazard. Mater.196, 115–122 (2011). PubMed
Feasel, M. et al. Metabolism of carfentanil, an ultra-potent opioid, in human liver microsomes and human hepatocytes by high-resolution mass spectrometry. AAPS J.18, 1489–1499 (2016). PubMed
Safetey Data Sheet. (2010). www.clasohlson.com/medias/sys_master/9542894682142.pdf.
Safetey Data Sheet (https://images2.europris.no/dokumenter/188761/188761.pdf, 2015)
Mörén, L. et al. Rapid screening of riot control agents using DART-TD-HRMS. Forensic. Toxicol. s11419 (2024). PubMed PMC
Brown, H., Oktem, B., Windom, A., Doroshenko, V. & Evans-Nguyen, K. Direct analysis in real time (DART) and a portable mass spectrometer for rapid identification of common and designer drugs on-site. Forensic Chem.1, 66–73 (2016).
Sisco, E., Forbes, T. P., Staymates, M. E. & Gillen, G. Rapid analysis of trace drugs and metabolites using a thermal desorption DART-MS configuration. Anal. Methods. 8, 6494–6499 (2016). PubMed PMC
Cooman, T. et al. Screening of seized drugs utilizing portable Raman spectroscopy and direct analysis in real time-mass spectrometry (DART-MS). Forensic Chem.25, 100352 (2021).
Pasternak, G. W. & Pan, Y. X. Mu opioids and their receptors: evolution of a concept. Pharmacol. Rev.65, 1257–1317 (2013). PubMed PMC
Langston, J. L., Moffett, M. C., Makar, J. R., Burgan, B. M. & Myers, T. M. Carfentanil toxicity in the African green monkey: therapeutic efficacy of naloxone. Toxicol. Lett.325, 34–42 (2020). PubMed
Hsu, F. L. et al. Synthesis and µ-opioid activity of the primary metabolites of carfentanil. ACS Med. Chem. Lett.10, 1568–1572 (2019). PubMed PMC
Bird, H. E., Huhn, A. S. & Dunn, K. E. Fentanyl absorption, distribution, metabolism, and excretion: narrative review and clinical significance related to illicitly manufactured fentanyl. J. Addicttion Med.17, 503–508 (2023). PubMed PMC
Adams, A. P. & Pybus, D. A. Delayed respiratory depression after use of fentanyl during anaesthesia. Brittish Med. J.4, 278–279 (1978). PubMed PMC
Dalton, C., Watkins, R., Pritchard, S. & Graham, S. Percutaneous absorption of Carfentanil in vitro. Toxicol. Vitro. 72, 105100 (2021). PubMed
Mörén, L. et al. Attribution of fentanyl analogue synthesis routes by multivariate data analysis of orthogonal mass spectral data. Talanta. 203, 122–130 (2019). PubMed
Aggarwal, V. K., Gültekin, Z., Grainger, R. S., Adams, H. & Spargo, P. L. 1R, 3R)-2-Methylene-1, 3-dithiolane 1, 3-dioxide: a highly reactive and highly selective chiral ketene equivalent in cycloaddition reactions with a broad range of dienes. J. Chem. Soc. Perkin Trans.1, 2771–2782 (1998).
Ederer, J., Šťastný, M., Došek, M., Henych, J. & Janoš, P. Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate. RSC Adv.9, 32058–32065 (2019). PubMed PMC
Lave, T. et al. The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humans. Pharm. Res.14, 152–155 (1997). PubMed
Lau, Y. Y. et al. The use of in vitro metabolic stability for rapid selection of compounds in early discovery based on their expected hepatic extraction ratios. Pharm. Res.19, 1606–1610 (2002). PubMed