• This record comes from PubMed

Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate

. 2019 Oct 07 ; 9 (55) : 32058-32065. [epub] 20191008

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Cerium oxide nanoparticles were prepared by calcination of basic cerous carbonate (as a precursor) obtained by precipitation from an aqueous solution. Prepared samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HRSEM), BET (Brunauer-Emmett-Teller) surface area and porosity measurement. Prepared cerium oxide was applied as a destructive sorbent for the fast and safe degradation of organophosphorus flame retardant triphenyl phosphate (TPP). It was shown that cerium dioxide was effective in the decomposition of TPP by cleavage of the P-O-aryl bond in the flame retardant molecule. A degradation mechanism for TPP on the ceria surface was proposed. The degradation is governed by conversion of TPP via diphenyl phosphate (DPP) to the final product identified as phenol (Ph). The key parameter increasing the degradation efficiency of CeO2 is the temperature of calcination. At optimum calcination temperature (500 °C), the produced ceria retains a sufficiently high surface area and attains an optimum degree of crystallinity (related to a number of crystal defects, and thus potential reactive sites). The fast and efficient degradation of organophosphorus flame retardant TPP was observed in a polar aprotic solvent (acetonitrile) that is miscible with water.

See more in PubMed

Möller A. Sturm R. Xie Z. Cai M. He J. Ebinghaus R. Environ. Sci. Technol. 2012;46:3127–3134. doi: 10.1021/es204272v. PubMed DOI

Zhang C. C. Zhang F. S. Chem. Eng. J. 2014;240:10–15. doi: 10.1016/j.cej.2013.11.048. DOI

Anderson C. Wischer D. Schmieder A. Spiteller M. Chemosphere. 1993;27:869–879. doi: 10.1016/0045-6535(93)90017-Y. DOI

Lin K. Environ. Chem. Lett. 2009;7:309–312. doi: 10.1007/s10311-008-0170-1. DOI

Brandsma S. H. De Boer J. Leonards P. E. G. Cofino W. P. Covaci A. TrAC, Trends Anal. Chem. 2013;43:217–228. doi: 10.1016/j.trac.2012.12.004. DOI

Meyer H. Neupert M. Pump W. Willenberg B. Kunstst. Ger. Plast. 1993;83:3–6.

Suuronen K. Pesonen M. Henriks-Eckerman M. L. Aalto-Korte K. Contact Dermatitis. 2013;68:42–49. doi: 10.1111/j.1600-0536.2012.02159.x. PubMed DOI

Keogh T. P. J. Am. Dent. Assoc. 1999;130:474–476. doi: 10.14219/jada.archive.1999.0231. PubMed DOI

Kawagoshi Y. Nakamura S. Fukunaga I. Chemosphere. 2002;48:219–225. doi: 10.1016/S0045-6535(02)00051-6. PubMed DOI

Janoš P. Kuráň P. Kormunda M. Štengl V. Grygar T. M. Došek M. Štastný M. Ederer J. Pilařová V. Vrtoch L. J. Rare Earths. 2014;32:360–370. doi: 10.1016/S1002-0721(14)60079-X. DOI

Zhou Y. Switzer J. a. J. Alloys Compd. 1996;237:1–5. doi: 10.1016/0925-8388(95)02048-9. DOI

Bumajdad A. Eastoe J. Mathew A. Adv. Colloid Interface Sci. 2009;147–148:56–66. doi: 10.1016/j.cis.2008.10.004. PubMed DOI

Pollard K. D. Jenkins H. A. Puddephatt R. J. Chem. Mater. 2000;12:701–710. doi: 10.1021/cm990455r. DOI

Zhou Y. Phillips R. J. Switzer J. A. J. Am. Ceram. Soc. 1995;78:981–985. doi: 10.1111/j.1151-2916.1995.tb08425.x. DOI

Lin K. S. Chowdhury S. Int. J. Mol. Sci. 2010;11:3226–3251. doi: 10.3390/ijms11093226. PubMed DOI PMC

Gel B. M. Priya G. S. Kanneganti A. Kumar K. A. Rao K. V. Bykkam S. International Journal of Scientific and Research Publications. 2014;4:1–4.

Li M. Liu Z. Hu Y. Shi Z. Li H. Colloids Surf., A. 2007;301:153–157. doi: 10.1016/j.colsurfa.2006.12.042. DOI

Cho M.-Y. Roh K.-C. Park S.-M. Choi H.-J. Lee J.-W. Mater. Lett. 2010;64:323–326. doi: 10.1016/j.matlet.2009.11.004. DOI

Zhai Y. Zhang S. Pang H. Mater. Lett. 2007;61:1863–1866. doi: 10.1016/j.matlet.2006.07.146. DOI

Janoš P. Hladík T. Kormunda M. Ederer J. Šťastný M. Adv. Mater. Sci. Eng. 2014;2014:1–12. doi: 10.1155/2014/706041. DOI

Luňáček J. Životský O. Janoš P. Došek M. Chrobak A. Maryško M. Buršík J. Jirásková Y. J. Alloys Compd. 2018;753:167–175. doi: 10.1016/j.jallcom.2018.04.115. DOI

Janoš P. Ederer J. Došek M. Nova Biotechnol. Chim. 2014;13:148–161.

Eguchi K. Setoguchi T. Inoue T. Arai H. Solid State Ionics. 1992;52:165–172. doi: 10.1016/0167-2738(92)90102-U. DOI

Janoš P. Kuráň P. Ederer J. Šastný M. Vrtoch L. Pšenička M. Henych J. Mazanec K. Skoumal M. Adv. Mater. Sci. Eng. 2015;2015:1–8. doi: 10.1155/2015/241421. DOI

Janoš P. Ederer J. Pilařová V. Henych J. Tolasz J. Milde D. Opletal T. Wear. 2016;362–363:114–120. doi: 10.1016/j.wear.2016.05.020. DOI

Hirst S. M. Karakoti A. S. Tyler R. D. Sriranganathan N. Seal S. Reilly C. M. Small. 2009;5:2848–2856. doi: 10.1002/smll.200901048. PubMed DOI

Deshpande S. Patil S. Kuchibhatla S. V. Seal S. Appl. Phys. Lett. 2005;87:133113. doi: 10.1063/1.2061873. DOI

Minervini L. Solid State Ionics. 1999;116:339–349. doi: 10.1016/S0167-2738(98)00359-2. DOI

Aškrabiac̈ S. Dohčeviac̈-Mitrovia Z. Kremenoviac̈ A. Lazareviac̈ N. Kahlenberg V. Popoviac̈ Z. V. J. Raman Spectrosc. 2012;43:76–81. doi: 10.1002/jrs.2987. DOI

Caruso F., Gmbh W. V. and Isbn W., Colloids and Colloid Assemblies, 2004, vol. 14

Chelliah M. Rayappan J. B. B. Krishnan U. M. J. Appl. Sci. 2012;12:1734–1737. doi: 10.3923/jas.2012.1734.1737. DOI

Mecozzi M. Pietrantonio E. Amici M. Romanelli G. Analyst. 2001;126:144–146. doi: 10.1039/B009031J. PubMed DOI

Kovac N. Faganeli J. Bajt O. Orel B. Surca Vuk A. Mater. Geoenvirnment. 2005;52:81–85.

Ansari A. a. Solanki P. R. Malhotra B. D. J. Biotechnol. 2009;142:179–184. doi: 10.1016/j.jbiotec.2009.04.005. PubMed DOI

Štengl V. Houšková V. Bakardjieva S. Murafa N. Maříková M. Opluštil F. Němec T. Mater. Charact. 2010;61:1080–1088. doi: 10.1016/j.matchar.2010.06.021. DOI

Rajagopalan S. Koper O. Decker S. Klabunde K. J. Chem. - Eur. J. 2002;8:2602–2607. doi: 10.1002/1521-3765(20020603)8:11<2602::AID-CHEM2602>3.0.CO;2-3. PubMed DOI

Mahato T. H. Prasad G. K. Singh B. Batra K. Ganesan K. Microporous Mesoporous Mater. 2010;132:15–21. doi: 10.1016/j.micromeso.2009.05.035. DOI

Wagner G. W. Koper O. B. Lucas E. Decker S. Klabunde K. J. J. Phys. Chem. B. 2000;104:5118–5123. doi: 10.1021/jp000101j. DOI

Missen R. W., Mims C. A. and Saville B. A., Introduction to Chemical Reaction Engineering, Wiley, 1998

Bondarenko S. Gan J. Environ. Toxicol. Chem. 2004;23:1809. doi: 10.1897/03-344. PubMed DOI

Lee S.-Y. Park S.-J. J. Ind. Eng. Chem. 2014;23:1–11.

Carnes C. L. Klabunde K. J. J. Mol. Catal. A: Chem. 2003;194:227–236. doi: 10.1016/S1381-1169(02)00525-3. DOI

Mahato T. H. Prasad G. K. Singh B. Acharya J. Srivastava a. R. Vijayaraghavan R. J. Hazard. Mater. 2009;165:928–932. doi: 10.1016/j.jhazmat.2008.10.126. PubMed DOI

Sharma N. Kakkar R. Adv. Mater. Lett. 2013;4:508–521. doi: 10.5185/amlett.2012.12493. DOI

Zhang Y.-C. Li Z. Zhang L. Pan L. Zhang X. Wang L. Fazal-e-Aleem Zou J.-J. Appl. Catal., B. 2018;224:101–108. doi: 10.1016/j.apcatb.2017.10.049. DOI

Rao Y. Antonelli D. M. J. Mater. Chem. 2009;19:1937. doi: 10.1039/B813533A. DOI

Mitchell M. B. Sheinker V. N. a Mintz E. J. Phys. Chem. B. 1997;101:11192–11203. doi: 10.1021/jp972724b. DOI

Lucas E. Decker S. Khaleel A. Seitz A. Fultz S. Ponce A. Li W. Carnes C. Klabunde K. J. Chem. - Eur. J. 2001;7:2505–2510. doi: 10.1002/1521-3765(20010618)7:12<2505::AID-CHEM25050>3.0.CO;2-R. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...