Mesoporous cerium oxide for fast degradation of aryl organophosphate flame retardant triphenyl phosphate
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
35530782
PubMed Central
PMC9072973
DOI
10.1039/c9ra06575j
PII: c9ra06575j
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Cerium oxide nanoparticles were prepared by calcination of basic cerous carbonate (as a precursor) obtained by precipitation from an aqueous solution. Prepared samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HRSEM), BET (Brunauer-Emmett-Teller) surface area and porosity measurement. Prepared cerium oxide was applied as a destructive sorbent for the fast and safe degradation of organophosphorus flame retardant triphenyl phosphate (TPP). It was shown that cerium dioxide was effective in the decomposition of TPP by cleavage of the P-O-aryl bond in the flame retardant molecule. A degradation mechanism for TPP on the ceria surface was proposed. The degradation is governed by conversion of TPP via diphenyl phosphate (DPP) to the final product identified as phenol (Ph). The key parameter increasing the degradation efficiency of CeO2 is the temperature of calcination. At optimum calcination temperature (500 °C), the produced ceria retains a sufficiently high surface area and attains an optimum degree of crystallinity (related to a number of crystal defects, and thus potential reactive sites). The fast and efficient degradation of organophosphorus flame retardant TPP was observed in a polar aprotic solvent (acetonitrile) that is miscible with water.
See more in PubMed
Möller A. Sturm R. Xie Z. Cai M. He J. Ebinghaus R. Environ. Sci. Technol. 2012;46:3127–3134. doi: 10.1021/es204272v. PubMed DOI
Zhang C. C. Zhang F. S. Chem. Eng. J. 2014;240:10–15. doi: 10.1016/j.cej.2013.11.048. DOI
Anderson C. Wischer D. Schmieder A. Spiteller M. Chemosphere. 1993;27:869–879. doi: 10.1016/0045-6535(93)90017-Y. DOI
Lin K. Environ. Chem. Lett. 2009;7:309–312. doi: 10.1007/s10311-008-0170-1. DOI
Brandsma S. H. De Boer J. Leonards P. E. G. Cofino W. P. Covaci A. TrAC, Trends Anal. Chem. 2013;43:217–228. doi: 10.1016/j.trac.2012.12.004. DOI
Meyer H. Neupert M. Pump W. Willenberg B. Kunstst. Ger. Plast. 1993;83:3–6.
Suuronen K. Pesonen M. Henriks-Eckerman M. L. Aalto-Korte K. Contact Dermatitis. 2013;68:42–49. doi: 10.1111/j.1600-0536.2012.02159.x. PubMed DOI
Keogh T. P. J. Am. Dent. Assoc. 1999;130:474–476. doi: 10.14219/jada.archive.1999.0231. PubMed DOI
Kawagoshi Y. Nakamura S. Fukunaga I. Chemosphere. 2002;48:219–225. doi: 10.1016/S0045-6535(02)00051-6. PubMed DOI
Janoš P. Kuráň P. Kormunda M. Štengl V. Grygar T. M. Došek M. Štastný M. Ederer J. Pilařová V. Vrtoch L. J. Rare Earths. 2014;32:360–370. doi: 10.1016/S1002-0721(14)60079-X. DOI
Zhou Y. Switzer J. a. J. Alloys Compd. 1996;237:1–5. doi: 10.1016/0925-8388(95)02048-9. DOI
Bumajdad A. Eastoe J. Mathew A. Adv. Colloid Interface Sci. 2009;147–148:56–66. doi: 10.1016/j.cis.2008.10.004. PubMed DOI
Pollard K. D. Jenkins H. A. Puddephatt R. J. Chem. Mater. 2000;12:701–710. doi: 10.1021/cm990455r. DOI
Zhou Y. Phillips R. J. Switzer J. A. J. Am. Ceram. Soc. 1995;78:981–985. doi: 10.1111/j.1151-2916.1995.tb08425.x. DOI
Lin K. S. Chowdhury S. Int. J. Mol. Sci. 2010;11:3226–3251. doi: 10.3390/ijms11093226. PubMed DOI PMC
Gel B. M. Priya G. S. Kanneganti A. Kumar K. A. Rao K. V. Bykkam S. International Journal of Scientific and Research Publications. 2014;4:1–4.
Li M. Liu Z. Hu Y. Shi Z. Li H. Colloids Surf., A. 2007;301:153–157. doi: 10.1016/j.colsurfa.2006.12.042. DOI
Cho M.-Y. Roh K.-C. Park S.-M. Choi H.-J. Lee J.-W. Mater. Lett. 2010;64:323–326. doi: 10.1016/j.matlet.2009.11.004. DOI
Zhai Y. Zhang S. Pang H. Mater. Lett. 2007;61:1863–1866. doi: 10.1016/j.matlet.2006.07.146. DOI
Janoš P. Hladík T. Kormunda M. Ederer J. Šťastný M. Adv. Mater. Sci. Eng. 2014;2014:1–12. doi: 10.1155/2014/706041. DOI
Luňáček J. Životský O. Janoš P. Došek M. Chrobak A. Maryško M. Buršík J. Jirásková Y. J. Alloys Compd. 2018;753:167–175. doi: 10.1016/j.jallcom.2018.04.115. DOI
Janoš P. Ederer J. Došek M. Nova Biotechnol. Chim. 2014;13:148–161.
Eguchi K. Setoguchi T. Inoue T. Arai H. Solid State Ionics. 1992;52:165–172. doi: 10.1016/0167-2738(92)90102-U. DOI
Janoš P. Kuráň P. Ederer J. Šastný M. Vrtoch L. Pšenička M. Henych J. Mazanec K. Skoumal M. Adv. Mater. Sci. Eng. 2015;2015:1–8. doi: 10.1155/2015/241421. DOI
Janoš P. Ederer J. Pilařová V. Henych J. Tolasz J. Milde D. Opletal T. Wear. 2016;362–363:114–120. doi: 10.1016/j.wear.2016.05.020. DOI
Hirst S. M. Karakoti A. S. Tyler R. D. Sriranganathan N. Seal S. Reilly C. M. Small. 2009;5:2848–2856. doi: 10.1002/smll.200901048. PubMed DOI
Deshpande S. Patil S. Kuchibhatla S. V. Seal S. Appl. Phys. Lett. 2005;87:133113. doi: 10.1063/1.2061873. DOI
Minervini L. Solid State Ionics. 1999;116:339–349. doi: 10.1016/S0167-2738(98)00359-2. DOI
Aškrabiac̈ S. Dohčeviac̈-Mitrovia Z. Kremenoviac̈ A. Lazareviac̈ N. Kahlenberg V. Popoviac̈ Z. V. J. Raman Spectrosc. 2012;43:76–81. doi: 10.1002/jrs.2987. DOI
Caruso F., Gmbh W. V. and Isbn W., Colloids and Colloid Assemblies, 2004, vol. 14
Chelliah M. Rayappan J. B. B. Krishnan U. M. J. Appl. Sci. 2012;12:1734–1737. doi: 10.3923/jas.2012.1734.1737. DOI
Mecozzi M. Pietrantonio E. Amici M. Romanelli G. Analyst. 2001;126:144–146. doi: 10.1039/B009031J. PubMed DOI
Kovac N. Faganeli J. Bajt O. Orel B. Surca Vuk A. Mater. Geoenvirnment. 2005;52:81–85.
Ansari A. a. Solanki P. R. Malhotra B. D. J. Biotechnol. 2009;142:179–184. doi: 10.1016/j.jbiotec.2009.04.005. PubMed DOI
Štengl V. Houšková V. Bakardjieva S. Murafa N. Maříková M. Opluštil F. Němec T. Mater. Charact. 2010;61:1080–1088. doi: 10.1016/j.matchar.2010.06.021. DOI
Rajagopalan S. Koper O. Decker S. Klabunde K. J. Chem. - Eur. J. 2002;8:2602–2607. doi: 10.1002/1521-3765(20020603)8:11<2602::AID-CHEM2602>3.0.CO;2-3. PubMed DOI
Mahato T. H. Prasad G. K. Singh B. Batra K. Ganesan K. Microporous Mesoporous Mater. 2010;132:15–21. doi: 10.1016/j.micromeso.2009.05.035. DOI
Wagner G. W. Koper O. B. Lucas E. Decker S. Klabunde K. J. J. Phys. Chem. B. 2000;104:5118–5123. doi: 10.1021/jp000101j. DOI
Missen R. W., Mims C. A. and Saville B. A., Introduction to Chemical Reaction Engineering, Wiley, 1998
Bondarenko S. Gan J. Environ. Toxicol. Chem. 2004;23:1809. doi: 10.1897/03-344. PubMed DOI
Lee S.-Y. Park S.-J. J. Ind. Eng. Chem. 2014;23:1–11.
Carnes C. L. Klabunde K. J. J. Mol. Catal. A: Chem. 2003;194:227–236. doi: 10.1016/S1381-1169(02)00525-3. DOI
Mahato T. H. Prasad G. K. Singh B. Acharya J. Srivastava a. R. Vijayaraghavan R. J. Hazard. Mater. 2009;165:928–932. doi: 10.1016/j.jhazmat.2008.10.126. PubMed DOI
Sharma N. Kakkar R. Adv. Mater. Lett. 2013;4:508–521. doi: 10.5185/amlett.2012.12493. DOI
Zhang Y.-C. Li Z. Zhang L. Pan L. Zhang X. Wang L. Fazal-e-Aleem Zou J.-J. Appl. Catal., B. 2018;224:101–108. doi: 10.1016/j.apcatb.2017.10.049. DOI
Rao Y. Antonelli D. M. J. Mater. Chem. 2009;19:1937. doi: 10.1039/B813533A. DOI
Mitchell M. B. Sheinker V. N. a Mintz E. J. Phys. Chem. B. 1997;101:11192–11203. doi: 10.1021/jp972724b. DOI
Lucas E. Decker S. Khaleel A. Seitz A. Fultz S. Ponce A. Li W. Carnes C. Klabunde K. J. Chem. - Eur. J. 2001;7:2505–2510. doi: 10.1002/1521-3765(20010618)7:12<2505::AID-CHEM25050>3.0.CO;2-R. PubMed DOI