Amidoxime-functionalized bead cellulose for the decomposition of highly toxic organophosphates
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35480219
PubMed Central
PMC9033230
DOI
10.1039/d1ra01125a
PII: d1ra01125a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Regenerated bead cellulose is a promising material with excellent mechanical and rheological properties, ideally suited for advanced environmental applications. By introducing the amidoxime functional group into the glucose unit at the C-6 position, highly effective reactive sorbent was prepared and used to destroy priority hazardous substances such as organophosphate pesticides or nerve-paralytic chemical warfare agents (CWAs). Quantum mechanical (QM) calculations were performed to study the interactions of organophosphates with amidoxime functional groups at the molecular level. It was found that the energetic reaction barrier of the rate-limiting step is markedly reduced (from 31.40 to 11.37 kcal mol-1) in the case of the amidoxime-catalysed degradation of parathion methyl, which resulted in a dramatic increase in the degradation rate; this was fully confirmed by experiments, in which the pesticide degradation proceeded at the time scale of several hours (t 1/2 = 20-30 hours at pH 7.22).
Institute of Inorganic Chemistry Czech Academy of Sciences 250 68 Hsinec Řež Czech Republic
Iontosorb Comp Anežky České 657 400 07 Ústí and Labem Czech Republic
Military Research Institute Veslařská 230 637 00 Brno Czech Republic
Zobrazit více v PubMed
Mukherjee S. Devi Gupta R. J. Toxicol. 2020:3007984. PubMed PMC
Fatah A. A., Barrett J. A., Arcilesi R. D., Ewing K. J., Lattin C. H., Helinski M. S. and Baig I. A., National Institute of Justice Guide for the Selection of Chemical and Biological Decontamination Equipment for Emergency First Responders NIJ Guide, 2001, vol. 103
Jacquet P. Daudé D. Bzdrenga J. Masson P. Elias M. Chabrière E. Environ. Sci. Pollut. Res. 2016;23:8200–8218. doi: 10.1007/s11356-016-6143-1. PubMed DOI
Henych J. Štengl V. Slušná M. Matys Grygar T. Janoš P. Kuráň P. Štastný M. Appl. Surf. Sci. 2015;344:9–16. doi: 10.1016/j.apsusc.2015.02.181. DOI
Ederer J. Šťastný M. Došek M. Henych J. Janoš P. RSC Adv. 2019;9:32058–32065. doi: 10.1039/C9RA06575J. PubMed DOI PMC
Janos P. Kuran P. Kormunda M. Stengl V. Grygar T. M. Dosek M. Stastny M. Ederer J. Pilarova V. Vrtoch L. J. Rare Earths. 2014;32:360–370. doi: 10.1016/S1002-0721(14)60079-X. DOI
Bromberg L. Schreuder-Gibson H. Creasy W. R. McGarvey D. J. Fry R. A. Hatton T. A. Ind. Eng. Chem. Res. 2009;48:1650–1659. doi: 10.1021/ie801150y. DOI
Zhang H., PhD thesis, Masachusetts Institute of Technology, 2008
Chen L. Bromberg L. Schreuder-Gibson H. Walker J. Hatton T. A. Rutledge G. C. J. Mater. Chem. 2009;19:2432–2438. doi: 10.1039/B818639A. DOI
Wen X. Ye L. Chen L. Kong L. Yuan L. Xi H. Zhong J. Chem. Res. Chin. Univ. 2019;35:1095–1104. doi: 10.1007/s40242-019-9105-6. DOI
Medeiros M. Orth E. S. Manfredi A. M. Pavez P. Micke G. A. Kirby A. J. Nome F. J. Org. Chem. 2012;77:10907–10913. doi: 10.1021/jo302374q. PubMed DOI
Wong P. T. Bhattacharjee S. Cannon J. Tang S. Yang K. Bowden S. Varnau V. O'Konek J. J. Choi S. K. Org. Biomol. Chem. 2019;17:3951–3963. doi: 10.1039/C9OB00503J. PubMed DOI
Kubota H. Shigehisa Y. J. Appl. Polym. Sci. 1995;56:147–151. doi: 10.1002/app.1995.070560204. DOI
Rahman L. Yong Wen S. S. Fatt W. H. Bin Arshad S. E. Musta B. Abdullah M. H. MRS Proc. 2010;1219:46–54.
Başarir S. Ş. Bayramgil N. P. Radiochim. Acta. 2012;100:893–899. doi: 10.1524/ract.2012.1983. DOI
Wang Y. Zhang Y. Li Q. Li Y. Cao L. Li W. Carbohydr. Polym. 2020;245:116627. doi: 10.1016/j.carbpol.2020.116627. PubMed DOI
Baek S.-Y. and Park S., Highly-porous Uniformly-sized Amidoxime-functionalized Cellulose Beads Prepared by Microfluidics with N-methylmorpholine N-oxide, 2021, 10.21203/rs.3.rs-221648/v1 DOI
Gemeiner P. Beneš M. J. Štamberg J. Chem. Pap. 1989;43:805–840.
Peška J. Štamberg J. Hradil J. Ilavský M. J. Chromatogr. A. 1976;125:455–469. doi: 10.1016/S0021-9673(00)85709-X. DOI
Lenfeld J. Peška J. Štamberg J. Angew. Makromol. Chem. 1992;197:201–206. doi: 10.1002/apmc.1992.051970117. DOI
Stamberg J. Stud. Environ. Sci. 1982;19:377–378.
Gericke M. Trygg J. Fardim P. Chem. Rev. 2013;113:4812–4836. doi: 10.1021/cr300242j. PubMed DOI
Janoš P. Henych J. Pelant O. Pilařová V. Vrtoch L. Kormunda M. Mazanec K. Štengl V. J. Hazard. Mater. 2016;304:259–268. doi: 10.1016/j.jhazmat.2015.10.069. PubMed DOI
Štamberg J. Sep. Purif. Methods. 1988;17:155–183. doi: 10.1080/03602548808066023. DOI
Pizzi A. Eaton N. J. J. Macromol. Sci., Chem. 1987;24:901–918. doi: 10.1080/00222338708076925. DOI
Park S. Baker J. O. Himmel M. E. Parilla P. A. Johnson D. K. Biotechnol. Biofuels. 2010;3:10. doi: 10.1186/1754-6834-3-10. PubMed DOI PMC
Carrillo F. Colom X. Suñol J. J. Saurina J. Eur. Polym. J. 2004;40:2229–2234. doi: 10.1016/j.eurpolymj.2004.05.003. DOI
Rahman M. L. Fui C. J. Sarjadi M. S. Arshad S. E. Musta B. Abdullah M. H. Sarkar S. M. O'Reilly E. J. Environ. Sci. Pollut. Res. 2020;27:34541–34556. doi: 10.1007/s11356-020-09462-0. PubMed DOI
Yang Y. P., Zhang Y., Lang Y. X. and Yu M. H., in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2017, vol. 213
Atta A. M. Al-Lohedan H. A. Al-Hussain S. A. Int. J. Mol. Sci. 2015;16:6911–6931. doi: 10.3390/ijms16046911. PubMed DOI PMC
Dürüst N. Akay M. A. Dürüst Y. Kiliç E. Anal. Sci. 2000;16:825–827. doi: 10.2116/analsci.16.825. DOI
Columbus I. Waysbort D. Shmueli L. Nir I. Kaplan D. Environ. Sci. Technol. 2006;40:3952–3958. doi: 10.1021/es052226d. PubMed DOI
Štengl V. Henych J. Janoš P. Skoumal M. Rev. Environ. Contam. Toxicol. 2016;236:239–258. doi: 10.1007/978-3-319-20013-2_4. PubMed DOI
Grimme S. Brandenburg J. G. Bannwarth C. Hansen A. J. Chem. Phys. 2015;143:054107. doi: 10.1063/1.4927476. doi: 10.1063/1.4927476. PubMed DOI
Adamo C. Barone V. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI
Klamt A. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;1:e1338. doi: 10.1002/wcms.1338. DOI
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78.
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI
Kirschner K. N. Yongye A. B. Tschampel S. M. González-Outeiriño J. Daniels C. R. Foley B. L. Woods R. J. J. Comput. Chem. 2008;29:622–655. doi: 10.1002/jcc.20820. PubMed DOI PMC
Wang J. Wolf R. M. Caldwell J. W. Kollman P. A. Case D. A. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Chagas M. A. Pereira E. S. Da Silva J. C. S. Rocha W. R. J. Mol. Model. 2018;24:259. doi: 10.1007/s00894-018-3798-1. doi: 10.1007/s00894-018-3798-1. PubMed DOI
Kamiya M. Mitsuhashi S. Makino M. Chemosphere. 1992;25:1783–1796. doi: 10.1016/0045-6535(92)90019-N. DOI
Sato R. Kubo H. Botyu-Kagaku. 1959;24:89–93. doi: 10.1016/0045-6535(92)90570-H. DOI