Amidoxime-functionalized bead cellulose for the decomposition of highly toxic organophosphates

. 2021 May 13 ; 11 (29) : 17976-17984. [epub] 20210518

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35480219

Regenerated bead cellulose is a promising material with excellent mechanical and rheological properties, ideally suited for advanced environmental applications. By introducing the amidoxime functional group into the glucose unit at the C-6 position, highly effective reactive sorbent was prepared and used to destroy priority hazardous substances such as organophosphate pesticides or nerve-paralytic chemical warfare agents (CWAs). Quantum mechanical (QM) calculations were performed to study the interactions of organophosphates with amidoxime functional groups at the molecular level. It was found that the energetic reaction barrier of the rate-limiting step is markedly reduced (from 31.40 to 11.37 kcal mol-1) in the case of the amidoxime-catalysed degradation of parathion methyl, which resulted in a dramatic increase in the degradation rate; this was fully confirmed by experiments, in which the pesticide degradation proceeded at the time scale of several hours (t 1/2 = 20-30 hours at pH 7.22).

Zobrazit více v PubMed

Mukherjee S. Devi Gupta R. J. Toxicol. 2020:3007984. PubMed PMC

Fatah A. A., Barrett J. A., Arcilesi R. D., Ewing K. J., Lattin C. H., Helinski M. S. and Baig I. A., National Institute of Justice Guide for the Selection of Chemical and Biological Decontamination Equipment for Emergency First Responders NIJ Guide, 2001, vol. 103

Jacquet P. Daudé D. Bzdrenga J. Masson P. Elias M. Chabrière E. Environ. Sci. Pollut. Res. 2016;23:8200–8218. doi: 10.1007/s11356-016-6143-1. PubMed DOI

Henych J. Štengl V. Slušná M. Matys Grygar T. Janoš P. Kuráň P. Štastný M. Appl. Surf. Sci. 2015;344:9–16. doi: 10.1016/j.apsusc.2015.02.181. DOI

Ederer J. Šťastný M. Došek M. Henych J. Janoš P. RSC Adv. 2019;9:32058–32065. doi: 10.1039/C9RA06575J. PubMed DOI PMC

Janos P. Kuran P. Kormunda M. Stengl V. Grygar T. M. Dosek M. Stastny M. Ederer J. Pilarova V. Vrtoch L. J. Rare Earths. 2014;32:360–370. doi: 10.1016/S1002-0721(14)60079-X. DOI

Bromberg L. Schreuder-Gibson H. Creasy W. R. McGarvey D. J. Fry R. A. Hatton T. A. Ind. Eng. Chem. Res. 2009;48:1650–1659. doi: 10.1021/ie801150y. DOI

Zhang H., PhD thesis, Masachusetts Institute of Technology, 2008

Chen L. Bromberg L. Schreuder-Gibson H. Walker J. Hatton T. A. Rutledge G. C. J. Mater. Chem. 2009;19:2432–2438. doi: 10.1039/B818639A. DOI

Wen X. Ye L. Chen L. Kong L. Yuan L. Xi H. Zhong J. Chem. Res. Chin. Univ. 2019;35:1095–1104. doi: 10.1007/s40242-019-9105-6. DOI

Medeiros M. Orth E. S. Manfredi A. M. Pavez P. Micke G. A. Kirby A. J. Nome F. J. Org. Chem. 2012;77:10907–10913. doi: 10.1021/jo302374q. PubMed DOI

Wong P. T. Bhattacharjee S. Cannon J. Tang S. Yang K. Bowden S. Varnau V. O'Konek J. J. Choi S. K. Org. Biomol. Chem. 2019;17:3951–3963. doi: 10.1039/C9OB00503J. PubMed DOI

Kubota H. Shigehisa Y. J. Appl. Polym. Sci. 1995;56:147–151. doi: 10.1002/app.1995.070560204. DOI

Rahman L. Yong Wen S. S. Fatt W. H. Bin Arshad S. E. Musta B. Abdullah M. H. MRS Proc. 2010;1219:46–54.

Başarir S. Ş. Bayramgil N. P. Radiochim. Acta. 2012;100:893–899. doi: 10.1524/ract.2012.1983. DOI

Wang Y. Zhang Y. Li Q. Li Y. Cao L. Li W. Carbohydr. Polym. 2020;245:116627. doi: 10.1016/j.carbpol.2020.116627. PubMed DOI

Baek S.-Y. and Park S., Highly-porous Uniformly-sized Amidoxime-functionalized Cellulose Beads Prepared by Microfluidics with N-methylmorpholine N-oxide, 2021, 10.21203/rs.3.rs-221648/v1 DOI

Gemeiner P. Beneš M. J. Štamberg J. Chem. Pap. 1989;43:805–840.

Peška J. Štamberg J. Hradil J. Ilavský M. J. Chromatogr. A. 1976;125:455–469. doi: 10.1016/S0021-9673(00)85709-X. DOI

Lenfeld J. Peška J. Štamberg J. Angew. Makromol. Chem. 1992;197:201–206. doi: 10.1002/apmc.1992.051970117. DOI

Stamberg J. Stud. Environ. Sci. 1982;19:377–378.

Gericke M. Trygg J. Fardim P. Chem. Rev. 2013;113:4812–4836. doi: 10.1021/cr300242j. PubMed DOI

Janoš P. Henych J. Pelant O. Pilařová V. Vrtoch L. Kormunda M. Mazanec K. Štengl V. J. Hazard. Mater. 2016;304:259–268. doi: 10.1016/j.jhazmat.2015.10.069. PubMed DOI

Štamberg J. Sep. Purif. Methods. 1988;17:155–183. doi: 10.1080/03602548808066023. DOI

Pizzi A. Eaton N. J. J. Macromol. Sci., Chem. 1987;24:901–918. doi: 10.1080/00222338708076925. DOI

Park S. Baker J. O. Himmel M. E. Parilla P. A. Johnson D. K. Biotechnol. Biofuels. 2010;3:10. doi: 10.1186/1754-6834-3-10. PubMed DOI PMC

Carrillo F. Colom X. Suñol J. J. Saurina J. Eur. Polym. J. 2004;40:2229–2234. doi: 10.1016/j.eurpolymj.2004.05.003. DOI

Rahman M. L. Fui C. J. Sarjadi M. S. Arshad S. E. Musta B. Abdullah M. H. Sarkar S. M. O'Reilly E. J. Environ. Sci. Pollut. Res. 2020;27:34541–34556. doi: 10.1007/s11356-020-09462-0. PubMed DOI

Yang Y. P., Zhang Y., Lang Y. X. and Yu M. H., in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2017, vol. 213

Atta A. M. Al-Lohedan H. A. Al-Hussain S. A. Int. J. Mol. Sci. 2015;16:6911–6931. doi: 10.3390/ijms16046911. PubMed DOI PMC

Dürüst N. Akay M. A. Dürüst Y. Kiliç E. Anal. Sci. 2000;16:825–827. doi: 10.2116/analsci.16.825. DOI

Columbus I. Waysbort D. Shmueli L. Nir I. Kaplan D. Environ. Sci. Technol. 2006;40:3952–3958. doi: 10.1021/es052226d. PubMed DOI

Štengl V. Henych J. Janoš P. Skoumal M. Rev. Environ. Contam. Toxicol. 2016;236:239–258. doi: 10.1007/978-3-319-20013-2_4. PubMed DOI

Grimme S. Brandenburg J. G. Bannwarth C. Hansen A. J. Chem. Phys. 2015;143:054107. doi: 10.1063/1.4927476. doi: 10.1063/1.4927476. PubMed DOI

Adamo C. Barone V. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Klamt A. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;1:e1338. doi: 10.1002/wcms.1338. DOI

Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78.

Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018;8:e1327. doi: 10.1002/wcms.1327. DOI

Kirschner K. N. Yongye A. B. Tschampel S. M. González-Outeiriño J. Daniels C. R. Foley B. L. Woods R. J. J. Comput. Chem. 2008;29:622–655. doi: 10.1002/jcc.20820. PubMed DOI PMC

Wang J. Wolf R. M. Caldwell J. W. Kollman P. A. Case D. A. J. Comput. Chem. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Chagas M. A. Pereira E. S. Da Silva J. C. S. Rocha W. R. J. Mol. Model. 2018;24:259. doi: 10.1007/s00894-018-3798-1. doi: 10.1007/s00894-018-3798-1. PubMed DOI

Kamiya M. Mitsuhashi S. Makino M. Chemosphere. 1992;25:1783–1796. doi: 10.1016/0045-6535(92)90019-N. DOI

Sato R. Kubo H. Botyu-Kagaku. 1959;24:89–93. doi: 10.1016/0045-6535(92)90570-H. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives

. 2024 Oct 16 ; 16 (20) : . [epub] 20241016

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...