Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EATRIS.CZ LM2023053 ERIC
Ministry of Education, Youth and Sports of the Czech Republic
LUAUS24272
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39458739
PubMed Central
PMC11510994
DOI
10.3390/polym16202911
PII: polym16202911
Knihovny.cz E-zdroje
- Klíčová slova
- catalysis, hydrolysis, macrocyclic copper complexes, nerve agents, paraoxon, thiophene polymers,
- Publikační typ
- časopisecké články MeSH
Organophosphate neuroactive agents represent severe security threats in various scenarios, including military conflicts, terrorist activities and industrial accidents. Addressing these threats necessitates effective protective measures, with a focus on decontamination strategies. Adsorbents such as bentonite have been explored as a preliminary method for chemical warfare agent immobilization, albeit lacking chemical destruction capabilities. Chemical decontamination, on the other hand, involves converting these agents into non-toxic or less toxic forms. In this study, we investigated the hydrolytic activity of a Cu(II) complex, previously studied for phosphate ester hydrolysis, as a potential agent for chemical warfare decontamination. Specifically, we focused on a ligand featuring a thiophene anchor bound through an aliphatic spacer, which exhibited high hydrolytic activity in its Cu(II) complex form in our previous studies. Paraoxon, an efficient insecticide, was selected as a model substrate for hydrolytic studies due to its structural resemblance to specific chemical warfare agents and due to the presence of a chromogenic 4-nitrophenolate moiety. Our findings clearly show the hydrolytic activity of the studied Cu(II) complexes. Additionally, we demonstrate the immobilization of the studied complex onto a solid substrate of Amberlite XAD4 via copolymerization of its thiophene side group with dithiophene. The hydrolytic activity of the resultant material towards paraoxon was studied, indicating its potential utilization in organophosphate neuroactive agent decontamination under mild conditions and the key importance of surface adsorption of paraoxon on the polymer surface.
Zobrazit více v PubMed
Bjarnason S., Mikler J., Hill I., Tenn C., Garrett M., Caddy N., Sawyer T.W. Comparison of selected skin decontaminant products and regimens against VX in domestic swine. Hum. Exp. Toxicol. 2008;27:253–261. doi: 10.1177/0960327108090269. PubMed DOI
Silva M., Baltrusaitis J. Destruction of emerging organophosphate contaminants in wastewater using the heterogeneous iron-based photo-Fenton-like process. J. Hazard. Mater. Lett. 2021;2:100012. doi: 10.1016/j.hazl.2020.100012. DOI
Janoš P., Tokar O., Došek M., Mazanec K., Ryšánek P., Kormunda M., Henych J., Janoš P., Jr. Amidoxime-functionalized bead cellulose for the decomposition of highly toxic organophosphates. RSC Adv. 2021;11:17976–17984. doi: 10.1039/D1RA01125A. PubMed DOI PMC
Thakur M., Medintz I.L., Walper S.A. Enzymatic Bioremediation of Organophosphate Compounds–Progress and Remaining Challenges. Front. Bioeng. Biotechnol. 2019;7:289. doi: 10.3389/fbioe.2019.00289. PubMed DOI PMC
Wang L., Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem. Eng. J. 2021;168:107945. doi: 10.1016/j.bej.2021.107945. DOI
Lou Y., Zhang B., Ye X., Wang Z.-G. Self-assembly of the de novo designed peptides to produce supramolecular catalysts with built-in enzyme-like active sites: A review of structureeactivity relationship. Mater. Today Nano. 2023;21:100302. doi: 10.1016/j.mtnano.2023.100302. DOI
Li S., Zhou Z., Tie Z., Wang B., Ye M., Du L., Cui R., Liu W., Wan C., Liu Q., et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 2022;13:827. doi: 10.1038/s41467-022-28344-2. PubMed DOI PMC
Moon S.-Y., Liu Y., Hupp J.T., Farha O.K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal–organic framework. Angew. Chem. Int. Ed. 2015;54:6795–6799. doi: 10.1002/anie.201502155. PubMed DOI
Islamoglu T., Ortuno M.A., Proussaloglou E., Howarth A.J., Vermeulen N.A., Atilgan A., Asiri A.M., Cramer C.J., Farha O.K. Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angew. Chem. Int. Ed. 2018;57:1949–1953. doi: 10.1002/anie.201712645. PubMed DOI
DeCoste J.B., Peterson G.W., Schindler B.J., Killops K.L., Browe M.A., Mahle J.J. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A. 2013;1:11922–11931. doi: 10.1039/c3ta12497e. DOI
DeCoste J.B., Peterson G.W. Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chem. Rev. 2014;114:5695–5727. doi: 10.1021/cr4006473. PubMed DOI
Denet E., Espina-Benitez M.B., Pitault I., Pollet T., Blaha D., Bolzinger M.-A., Rodriguez-Nava V., Briançon S. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds. Int. J. Pharm. 2020;583:119373. doi: 10.1016/j.ijpharm.2020.119373. PubMed DOI
Zhan S.-W., Tseng W.-B., Tseng W.-L. Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis, catalytic mechanism, and water remediation application. Environ. Res. 2020;188:109653. doi: 10.1016/j.envres.2020.109653. PubMed DOI
Pan J., Liu S., Jia H., Yang J., Qin M., Zhou T., Chen Z., Jia X., Guo T. Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc(II)-picolinamine-amidoxime module. J. Catal. 2019;380:83–90. doi: 10.1016/j.jcat.2019.10.023. DOI
Cabal J., Míčová J., Kuča K. Kinetics of hydrolysis of organophosphate soman by cationic surfactant Resamin AE. J. Appl. Biomed. 2010;8:111–116. doi: 10.2478/v10136-009-0009-5. DOI
Zhang B., Breslow R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997;119:1676–1681. doi: 10.1021/ja963769d. DOI
Feng G., Natale D., Prabaharan R., Mareque-Rivas J.C., Williams N.H. Efficient Phosphodiester Binding and Cleavage by a ZnII Complex Combining Hydrogen-Bonding Interactions and Double Lewis Acid Activation. Angew. Chem. Int. Ed. 2006;45:7056–7059. doi: 10.1002/anie.200602532. PubMed DOI
Liu C., Wang L. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. Dalton Trans. 2009:227–239. doi: 10.1039/B811616D. PubMed DOI
Desbouis D., Troitsky I.P., Belousoff M.J., Spiccia L., Graham B. Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coord. Chem. Rev. 2012;256:897–937. doi: 10.1016/j.ccr.2011.12.005. DOI
Wende C., Lüdtke C., Kulak N. Copper Complexes of N-Donor Ligands as Artificial Nucleases. Eur. J. Inorg. Chem. 2014:2597–2612. doi: 10.1002/ejic.201400032. DOI
Li F.-Z., Feng F.-M., Yu L., Xie J.-Q. Nucleic acid and phosphoester hydrolytic cleavage catalysed by aza-crown ether metal complexes as synthetic nucleases. Prog. React. Kin. Mech. 2014;39:209–232. doi: 10.3184/146867814X14043731662981. DOI
Yu L., Li F.-Z., Wu J.-Y., Xie J.-Q., Li S. Development of the aza-crown ether metal complexes as artificial hydrolase. J. Inorg. Biochem. 2016;154:89–102. doi: 10.1016/j.jinorgbio.2015.09.011. PubMed DOI
Tomczyk M.D., Kuźnik N., Walczak K. Cyclen-based artificial nucleases: Three decades of development (1989–2022). Part a–Hydrolysis of phosphate esters. Coord. Chem. Rev. 2023;481:215047. doi: 10.1016/j.ccr.2023.215047. DOI
Martell A.E., Smith R.M., Motekaitis R.J. NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes) National Institute of Standards and Technology; Gaithersburg, MD, USA: 2003. Version 7.0.
Deal K.A., Burstyn J.N. Mechanistic studies of dichloro(1,4,7-triazacyclononane)copper(II)-catalyzed phosphate diester hydrolysis. Inorg. Chem. 1996;35:2792–2798. doi: 10.1021/ic951488l. DOI
Deck K.M., Tseng T.A., Burstyn J.N. Triisopropyltriazacyclononane copper(II): An efficient phosphodiester hydrolysis catalyst and DNA cleavage agent. Inorg. Chem. 2002;41:669–677. doi: 10.1021/ic0107025. PubMed DOI
Fry F.H., Fischmann A.J., Belousoff M.J., Spiccia L., Brügger J. Kinetics and mechanism of hydrolysis of a model phosphate diester by [Cu(Me3tacn)(OH2)2]2+ (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) Inorg. Chem. 2005;44:941–950. doi: 10.1021/ic049469b. PubMed DOI
Buziková M., Willimetz R., Kotek J. The Hydrolytic Activity of Copper(II) Complexes with 1,4,7-Triazacyclononane Derivatives for the Hydrolysis of Phosphate Diesters. Molecules. 2023;28:7542. doi: 10.3390/molecules28227542. PubMed DOI PMC
Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Academic Press; Cambridge, MA, USA: 2011.
Lorke D.E., Nurulain S.M., Hasan M.Y., Kuča K., Petroianu G.A. Combined Pre- and Posttreatment of Paraoxon Exposure. Molecules. 2020;25:1521. doi: 10.3390/molecules25071521. PubMed DOI PMC
Omnic 9.2.98. Thermo Fisher Scientific Inc.; Carlsbad, CA, USA: Version 9.2.
Shanbhag M.M., Ilager D., Mahapatra S., Shetti N.P., Chandra P. Amberlite XAD-4 based electrochemical sensor for diclofenac detection in urine and commercial tablets. Mater. Chem. Phys. 2021;273:125044. doi: 10.1016/j.matchemphys.2021.125044. DOI
Kara D., Fisher A., Hill S.J. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4. J. Hazard. Mater. 2009;165:1165–1169. doi: 10.1016/j.jhazmat.2008.10.111. PubMed DOI
Solangi I.B., Memon S., Bhanger M.I. Removal of fluoride from aqueous environment by modified Amberlite resin. J. Hazard. Mater. 2009;171:815–819. doi: 10.1016/j.jhazmat.2009.06.072. PubMed DOI
Kyriakopoulos G., Doulia D., Anagnostopoulos E. Adsorption of pesticides on porous polymeric adsorbents. Chem. Eng. Sci. 2005;60:1177–1186. doi: 10.1016/j.ces.2004.09.080. DOI
Ahmad A., Siddique J.A., Laskar M.A., Kumar R., Mohd-Setapar S.H., Khatoon A., Shiekh R.A. New generation Amberlite XAD resin for the removal of metal ions: A review. J. Environmen. Sci. 2015;31:104–123. doi: 10.1016/j.jes.2014.12.008. PubMed DOI
Ji H., Zhang X. Chapter 8: Thiophene-based polymers: Synthesis and applications. In: Zhang X.-H., Theato P., editors. Sulfur-Containing Polymers: From Synthesis to Functional Materials. WILEY-VCH; Weinheim, Germany: 2021. pp. 265–304.
Brambilla L., Capel Ferrón C., Tommasini M., Hong K., López Navarrete J.T., Hernández V., Zerbi G. Infrared and multi-wavelength Raman spectroscopy of regio-regular P3HT and its deutero derivatives. J. Raman Spectrosc. 2018;49:569–580. doi: 10.1002/jrs.5301. DOI
Paternò G.M., Robbiano V., Fraser K.J., Frost C., García Sakai V., Cacialli F. Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: The Importance of Crystallinity for Organic Avionics. Sci. Rep. 2017;7:41013. doi: 10.1038/srep41013. PubMed DOI PMC
Gao Y., Grey J.K. Resonance chemical imaging of polythiophene/fullerene photovoltaic thin films: Mapping morphology-dependent aggregated and unaggregated C=C Species. J. Am. Chem. Soc. 2009;131:9654–9662. doi: 10.1021/ja900636z. PubMed DOI
Tsoi W.C., James D.T., Kim J.S., Nicholson P.G., Murphy C.E., Bradley D.D.C., Nelson J., Kim J.-S. The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J. Am. Chem. Soc. 2011;133:9834–9843. doi: 10.1021/ja2013104. PubMed DOI