Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives

. 2024 Oct 16 ; 16 (20) : . [epub] 20241016

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39458739

Grantová podpora
EATRIS.CZ LM2023053 ERIC Ministry of Education, Youth and Sports of the Czech Republic
LUAUS24272 Ministry of Education, Youth and Sports of the Czech Republic

Organophosphate neuroactive agents represent severe security threats in various scenarios, including military conflicts, terrorist activities and industrial accidents. Addressing these threats necessitates effective protective measures, with a focus on decontamination strategies. Adsorbents such as bentonite have been explored as a preliminary method for chemical warfare agent immobilization, albeit lacking chemical destruction capabilities. Chemical decontamination, on the other hand, involves converting these agents into non-toxic or less toxic forms. In this study, we investigated the hydrolytic activity of a Cu(II) complex, previously studied for phosphate ester hydrolysis, as a potential agent for chemical warfare decontamination. Specifically, we focused on a ligand featuring a thiophene anchor bound through an aliphatic spacer, which exhibited high hydrolytic activity in its Cu(II) complex form in our previous studies. Paraoxon, an efficient insecticide, was selected as a model substrate for hydrolytic studies due to its structural resemblance to specific chemical warfare agents and due to the presence of a chromogenic 4-nitrophenolate moiety. Our findings clearly show the hydrolytic activity of the studied Cu(II) complexes. Additionally, we demonstrate the immobilization of the studied complex onto a solid substrate of Amberlite XAD4 via copolymerization of its thiophene side group with dithiophene. The hydrolytic activity of the resultant material towards paraoxon was studied, indicating its potential utilization in organophosphate neuroactive agent decontamination under mild conditions and the key importance of surface adsorption of paraoxon on the polymer surface.

Zobrazit více v PubMed

Bjarnason S., Mikler J., Hill I., Tenn C., Garrett M., Caddy N., Sawyer T.W. Comparison of selected skin decontaminant products and regimens against VX in domestic swine. Hum. Exp. Toxicol. 2008;27:253–261. doi: 10.1177/0960327108090269. PubMed DOI

Silva M., Baltrusaitis J. Destruction of emerging organophosphate contaminants in wastewater using the heterogeneous iron-based photo-Fenton-like process. J. Hazard. Mater. Lett. 2021;2:100012. doi: 10.1016/j.hazl.2020.100012. DOI

Janoš P., Tokar O., Došek M., Mazanec K., Ryšánek P., Kormunda M., Henych J., Janoš P., Jr. Amidoxime-functionalized bead cellulose for the decomposition of highly toxic organophosphates. RSC Adv. 2021;11:17976–17984. doi: 10.1039/D1RA01125A. PubMed DOI PMC

Thakur M., Medintz I.L., Walper S.A. Enzymatic Bioremediation of Organophosphate Compounds–Progress and Remaining Challenges. Front. Bioeng. Biotechnol. 2019;7:289. doi: 10.3389/fbioe.2019.00289. PubMed DOI PMC

Wang L., Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochem. Eng. J. 2021;168:107945. doi: 10.1016/j.bej.2021.107945. DOI

Lou Y., Zhang B., Ye X., Wang Z.-G. Self-assembly of the de novo designed peptides to produce supramolecular catalysts with built-in enzyme-like active sites: A review of structureeactivity relationship. Mater. Today Nano. 2023;21:100302. doi: 10.1016/j.mtnano.2023.100302. DOI

Li S., Zhou Z., Tie Z., Wang B., Ye M., Du L., Cui R., Liu W., Wan C., Liu Q., et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 2022;13:827. doi: 10.1038/s41467-022-28344-2. PubMed DOI PMC

Moon S.-Y., Liu Y., Hupp J.T., Farha O.K. Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal–organic framework. Angew. Chem. Int. Ed. 2015;54:6795–6799. doi: 10.1002/anie.201502155. PubMed DOI

Islamoglu T., Ortuno M.A., Proussaloglou E., Howarth A.J., Vermeulen N.A., Atilgan A., Asiri A.M., Cramer C.J., Farha O.K. Presence versus Proximity: The Role of Pendant Amines in the Catalytic Hydrolysis of a Nerve Agent Simulant. Angew. Chem. Int. Ed. 2018;57:1949–1953. doi: 10.1002/anie.201712645. PubMed DOI

DeCoste J.B., Peterson G.W., Schindler B.J., Killops K.L., Browe M.A., Mahle J.J. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A. 2013;1:11922–11931. doi: 10.1039/c3ta12497e. DOI

DeCoste J.B., Peterson G.W. Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chem. Rev. 2014;114:5695–5727. doi: 10.1021/cr4006473. PubMed DOI

Denet E., Espina-Benitez M.B., Pitault I., Pollet T., Blaha D., Bolzinger M.-A., Rodriguez-Nava V., Briançon S. Metal oxide nanoparticles for the decontamination of toxic chemical and biological compounds. Int. J. Pharm. 2020;583:119373. doi: 10.1016/j.ijpharm.2020.119373. PubMed DOI

Zhan S.-W., Tseng W.-B., Tseng W.-L. Impact of nanoceria shape on degradation of diethyl paraoxon: Synthesis, catalytic mechanism, and water remediation application. Environ. Res. 2020;188:109653. doi: 10.1016/j.envres.2020.109653. PubMed DOI

Pan J., Liu S., Jia H., Yang J., Qin M., Zhou T., Chen Z., Jia X., Guo T. Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc(II)-picolinamine-amidoxime module. J. Catal. 2019;380:83–90. doi: 10.1016/j.jcat.2019.10.023. DOI

Cabal J., Míčová J., Kuča K. Kinetics of hydrolysis of organophosphate soman by cationic surfactant Resamin AE. J. Appl. Biomed. 2010;8:111–116. doi: 10.2478/v10136-009-0009-5. DOI

Zhang B., Breslow R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997;119:1676–1681. doi: 10.1021/ja963769d. DOI

Feng G., Natale D., Prabaharan R., Mareque-Rivas J.C., Williams N.H. Efficient Phosphodiester Binding and Cleavage by a ZnII Complex Combining Hydrogen-Bonding Interactions and Double Lewis Acid Activation. Angew. Chem. Int. Ed. 2006;45:7056–7059. doi: 10.1002/anie.200602532. PubMed DOI

Liu C., Wang L. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. Dalton Trans. 2009:227–239. doi: 10.1039/B811616D. PubMed DOI

Desbouis D., Troitsky I.P., Belousoff M.J., Spiccia L., Graham B. Copper(II), zinc(II) and nickel(II) complexes as nuclease mimetics. Coord. Chem. Rev. 2012;256:897–937. doi: 10.1016/j.ccr.2011.12.005. DOI

Wende C., Lüdtke C., Kulak N. Copper Complexes of N-Donor Ligands as Artificial Nucleases. Eur. J. Inorg. Chem. 2014:2597–2612. doi: 10.1002/ejic.201400032. DOI

Li F.-Z., Feng F.-M., Yu L., Xie J.-Q. Nucleic acid and phosphoester hydrolytic cleavage catalysed by aza-crown ether metal complexes as synthetic nucleases. Prog. React. Kin. Mech. 2014;39:209–232. doi: 10.3184/146867814X14043731662981. DOI

Yu L., Li F.-Z., Wu J.-Y., Xie J.-Q., Li S. Development of the aza-crown ether metal complexes as artificial hydrolase. J. Inorg. Biochem. 2016;154:89–102. doi: 10.1016/j.jinorgbio.2015.09.011. PubMed DOI

Tomczyk M.D., Kuźnik N., Walczak K. Cyclen-based artificial nucleases: Three decades of development (1989–2022). Part a–Hydrolysis of phosphate esters. Coord. Chem. Rev. 2023;481:215047. doi: 10.1016/j.ccr.2023.215047. DOI

Martell A.E., Smith R.M., Motekaitis R.J. NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes) National Institute of Standards and Technology; Gaithersburg, MD, USA: 2003. Version 7.0.

Deal K.A., Burstyn J.N. Mechanistic studies of dichloro(1,4,7-triazacyclononane)copper(II)-catalyzed phosphate diester hydrolysis. Inorg. Chem. 1996;35:2792–2798. doi: 10.1021/ic951488l. DOI

Deck K.M., Tseng T.A., Burstyn J.N. Triisopropyltriazacyclononane copper(II): An efficient phosphodiester hydrolysis catalyst and DNA cleavage agent. Inorg. Chem. 2002;41:669–677. doi: 10.1021/ic0107025. PubMed DOI

Fry F.H., Fischmann A.J., Belousoff M.J., Spiccia L., Brügger J. Kinetics and mechanism of hydrolysis of a model phosphate diester by [Cu(Me3tacn)(OH2)2]2+ (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) Inorg. Chem. 2005;44:941–950. doi: 10.1021/ic049469b. PubMed DOI

Buziková M., Willimetz R., Kotek J. The Hydrolytic Activity of Copper(II) Complexes with 1,4,7-Triazacyclononane Derivatives for the Hydrolysis of Phosphate Diesters. Molecules. 2023;28:7542. doi: 10.3390/molecules28227542. PubMed DOI PMC

Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Academic Press; Cambridge, MA, USA: 2011.

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuča K., Petroianu G.A. Combined Pre- and Posttreatment of Paraoxon Exposure. Molecules. 2020;25:1521. doi: 10.3390/molecules25071521. PubMed DOI PMC

Omnic 9.2.98. Thermo Fisher Scientific Inc.; Carlsbad, CA, USA: Version 9.2.

Shanbhag M.M., Ilager D., Mahapatra S., Shetti N.P., Chandra P. Amberlite XAD-4 based electrochemical sensor for diclofenac detection in urine and commercial tablets. Mater. Chem. Phys. 2021;273:125044. doi: 10.1016/j.matchemphys.2021.125044. DOI

Kara D., Fisher A., Hill S.J. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4. J. Hazard. Mater. 2009;165:1165–1169. doi: 10.1016/j.jhazmat.2008.10.111. PubMed DOI

Solangi I.B., Memon S., Bhanger M.I. Removal of fluoride from aqueous environment by modified Amberlite resin. J. Hazard. Mater. 2009;171:815–819. doi: 10.1016/j.jhazmat.2009.06.072. PubMed DOI

Kyriakopoulos G., Doulia D., Anagnostopoulos E. Adsorption of pesticides on porous polymeric adsorbents. Chem. Eng. Sci. 2005;60:1177–1186. doi: 10.1016/j.ces.2004.09.080. DOI

Ahmad A., Siddique J.A., Laskar M.A., Kumar R., Mohd-Setapar S.H., Khatoon A., Shiekh R.A. New generation Amberlite XAD resin for the removal of metal ions: A review. J. Environmen. Sci. 2015;31:104–123. doi: 10.1016/j.jes.2014.12.008. PubMed DOI

Ji H., Zhang X. Chapter 8: Thiophene-based polymers: Synthesis and applications. In: Zhang X.-H., Theato P., editors. Sulfur-Containing Polymers: From Synthesis to Functional Materials. WILEY-VCH; Weinheim, Germany: 2021. pp. 265–304.

Brambilla L., Capel Ferrón C., Tommasini M., Hong K., López Navarrete J.T., Hernández V., Zerbi G. Infrared and multi-wavelength Raman spectroscopy of regio-regular P3HT and its deutero derivatives. J. Raman Spectrosc. 2018;49:569–580. doi: 10.1002/jrs.5301. DOI

Paternò G.M., Robbiano V., Fraser K.J., Frost C., García Sakai V., Cacialli F. Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: The Importance of Crystallinity for Organic Avionics. Sci. Rep. 2017;7:41013. doi: 10.1038/srep41013. PubMed DOI PMC

Gao Y., Grey J.K. Resonance chemical imaging of polythiophene/fullerene photovoltaic thin films: Mapping morphology-dependent aggregated and unaggregated C=C Species. J. Am. Chem. Soc. 2009;131:9654–9662. doi: 10.1021/ja900636z. PubMed DOI

Tsoi W.C., James D.T., Kim J.S., Nicholson P.G., Murphy C.E., Bradley D.D.C., Nelson J., Kim J.-S. The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J. Am. Chem. Soc. 2011;133:9834–9843. doi: 10.1021/ja2013104. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...