• This record comes from PubMed

Combined Pre- and Posttreatment of Paraoxon Exposure

. 2020 Mar 27 ; 25 (7) : . [epub] 20200327

Language English Country Switzerland Media electronic

Document type Journal Article

Links

PubMed 32230733
PubMed Central PMC7180863
DOI 10.3390/molecules25071521
PII: molecules25071521
Knihovny.cz E-resources

AIMS: Organophosphates (OPCs), useful agents as pesticides, also represent a serious health hazard. Standard therapy with atropine and established oxime-type enzyme reactivators is unsatisfactory. Experimental data indicate that superior therapeutic results can be obtained when reversible cholinesterase inhibitors are administered before OPC exposure. Comparing the protective efficacy of five such cholinesterase inhibitors (physostigmine, pyridostigmine, ranitidine, tacrine, or K-27), we observed best protection for the experimental oxime K-27. The present study was undertaken in order to determine if additional administration of K-27 immediately after OPC (paraoxon) exposure can improve the outcome. METHODS: Therapeutic efficacy was assessed in rats by determining the relative risk of death (RR) by Cox survival analysis over a period of 48 h. Animals that received only pretreatment and paraoxon were compared with those that had received pretreatment and paraoxon followed by K-27 immediately after paraoxon exposure. RESULTS: Best protection from paraoxon-induced mortality was observed after pretreatment with physostigmine (RR = 0.30) and K-27 (RR = 0.34). Both substances were significantly more efficacious than tacrine (RR = 0.67), ranitidine (RR = 0.72), and pyridostigmine (RR = 0.76), which were less efficacious but still significantly reduced the RR compared to the no-treatment group (paraoxon only). Additional administration of K-27 immediately after paraoxon exposure (posttreatment) did not further reduce mortality. Statistical analysis between pretreatment before paraoxon exposure alone and pretreatment plus K-27 posttreatment did not show any significant difference for any of the pretreatment regimens. CONCLUSIONS: Best outcome is achieved if physostigmine or K-27 are administered prophylactically before exposure to sublethal paraoxon dosages. Therapeutic outcome is not further improved by additional oxime therapy immediately thereafter.

See more in PubMed

Gupta R.C. Classification and uses of organophosphates and carbamates. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Elsevier Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidelberg, Germany: 2006. pp. 5–24.

Eddleston M., Buckley N.A., Eyer P., Dawson A.H. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371:597–607. doi: 10.1016/S0140-6736(07)61202-1. PubMed DOI PMC

Gunnell D., Eddleston M., Phillips M.R., Konradsen F. The global distribution of fatal pesticide self-poisoning: Systematic review. BMC Public Health. 2007;7:357. doi: 10.1186/1471-2458-7-357. PubMed DOI PMC

Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI

Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. 2017;142:26–40. doi: 10.1111/jnc.14026. PubMed DOI

Balali-Mood M., Balali-Mood K. Neurotoxic disorders of organophosphorus compounds and their managements. Arch. Iran. Med. 2008;11:65–89. PubMed

Macilwain C. Study proves Iraq used nerve gas. Nature. 1993;363:3. doi: 10.1038/363003b0. PubMed DOI

Wiener S.W., Hoffman R.S. Nerve agents: A comprehensive review. J. Intensive Care Med. 2004;19:22–37. doi: 10.1177/0885066603258659. PubMed DOI

Yanagisawa N., Morita H., Nakajima T. Sarin experiences in Japan: Acute toxicity and long-term effects. J. Neurol. Sci. 2006;249:76–85. doi: 10.1016/j.jns.2006.06.007. PubMed DOI

Dolnik A., Bhattacharjee A. Hamas: Suicide bombings, rockets, or WMD? Terror. Polit. Violenc. 2002;14:109–128. doi: 10.1080/714005624. DOI

Kostadinov R., Kanev K., Dimov D. Chemical Terrorism, History and Threat Assessment. Med. Manag. Chem. Biol. Casualties. 2010;8:77–84.

Dolgin E. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 2013;19:1194–1195. doi: 10.1038/nm1013-1194. PubMed DOI

Pita R., Domingo J. The Use of Chemical Weapons in the Syrian Conflict. Toxics. 2014;2:391–402. doi: 10.3390/toxics2030391. DOI

Brooks J., Erickson T.B., Kayden S., Ruiz R., Wilkinson S., Burkle Jr F.M. Responding to chemical weapons violations in Syria: Legal, health, and humanitarian recommendations. Confl. Health. 2018;12:12. doi: 10.1186/s13031-018-0143-3. PubMed DOI PMC

Worek F., Wille T., Koller M., Thiermann H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch. Toxicol. 2016;90:2131–2145. doi: 10.1007/s00204-016-1772-1. PubMed DOI

Panchal M., Trivedi D. Clinical profile in patients of organophosphorus poisoning. Int. J. Sci. Res. 2016;5:97–99.

Petroianu G., Toomes L.M., Petroianu A., Bergler W., Rufer R. Control of blood pressure, heart rate and haematocrit during high-dose intravenous paraoxon exposure in mini pigs. J. Appl. Toxicol. 1998;18:293–298. doi: 10.1002/(SICI)1099-1263(199807/08)18:4<293::AID-JAT509>3.0.CO;2-P. PubMed DOI

Petroianu G.A. Organophosphate poisoning: The lesser-known face of a toxidrome. Eur. J. Emerg. Med. 2005;12:102–103. doi: 10.1097/00063110-200504000-00013. PubMed DOI

Antonijevic B., Stojiljkovic M.P. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC

Hrabetz H., Thiermann H., Felgenhauer N., Zilker T., Haller B., Nahrig J., Saugel B., Eyer F. Organophosphate poisoning in the developed world-a single centre experience from here to the millennium. Chem. Biol. Interact. 2013;206:561–568. doi: 10.1016/j.cbi.2013.05.003. PubMed DOI

Becker G., Kawan A., Gutzeit D., Worek F., Szinicz L. Direct reaction of oximes with crotylsarin, cyclosarin, or VX in vitro. Arch. Toxicol. 2007;81:415–420. doi: 10.1007/s00204-006-0168-z. PubMed DOI

Masson P. Evolution of and perspectives on therapeutic approaches to nerve agent poisoning. Toxicol. Lett. 2011;206:5–13. doi: 10.1016/j.toxlet.2011.04.006. PubMed DOI

Worek F., Thiermann H., Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem.-Biol. Interact. 2016;259:93–98. doi: 10.1016/j.cbi.2016.04.032. PubMed DOI

Eddleston M., Eyer P., Worek F., Juszczak E., Alder N., Mohamed F., Senarathna L., Hittarage A., Azher S., Jeganathan K., et al. Pralidoxime in acute organophosphorus insecticide poisoning--a randomised controlled trial. PLoS Med. 2009;6:e1000104. doi: 10.1371/journal.pmed.1000104. PubMed DOI PMC

Eyer F., Meischner V., Kiderlen D., Thiermann H., Worek F., Haberkorn M., Felgenhauer N., Zilker T., Eyer P. Human parathion poisoning. A toxicokinetic analysis. Toxicol. Rev. 2003;22:143–163. doi: 10.2165/00139709-200322030-00003. PubMed DOI

Lorke D.E., Petroianu G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol. 2019;39:101–116. doi: 10.1002/jat.3662. PubMed DOI

Keeler J.R., Hurst C.G., Dunn M.A. Pyridostigmine used as a nerve agent pretreatment under wartime conditions. J. Am. Med Assoc. (JAMA) 1991;266:693–695. doi: 10.1001/jama.1991.03470050093029. PubMed DOI

McCauley L.A. Organophosphates and the gulf war syndrome. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Elsevier Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidelberg, Germany: 2006. pp. 69–78.

Pope C.N. Central nervous system effects and neurotoxicity. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Elsevier Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidelberg, Germany: 2006. pp. 271–291.

US Food and Drug Administration FDA Approves Pyridostigmine Bromide as Pretreatment against Nerve Gas. [(accessed on 20 January 2020)]; Available online: http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130342.htm.

Petroianu G.A., Nurulain S.M., Shafiullah M., Hasan M.Y., Kuca K., Lorke D.E. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using paraoxon. J. Appl. Toxicol. 2013;33:894–900. doi: 10.1002/jat.2760. PubMed DOI

Lorke D.E., Hasan M.Y., Nurulain S.M., Shafiullah M., Kuca K., Petroianu G.A. Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: Assessment using methyl-paraoxon. CNS Neurol. Disord. Drug Targets. 2012;11:1052–1060. doi: 10.2174/1871527311211080016. PubMed DOI

Lorke D.E., Hasan M.Y., Nurulain S.M., Shafiullah M., Kuca K., Petroianu G.A. Pretreatment for acute exposure to diisopropylfluorophosphate: In vivo efficacy of various acetylcholinesterase inhibitors. J. Appl. Toxicol. 2011;31:515–523. doi: 10.1002/jat.1589. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Petroianu G.A. Prophylactic administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using terbufos sulfone. J. Appl. Toxicol. 2014;34:1096–1103. doi: 10.1002/jat.2939. PubMed DOI

Petroianu G.A., Nurulain S.M., Hasan M.Y., Kuca K., Lorke D.E. Reversible cholinesterase inhibitors as pre-treatment for exposure to organophosphates: Assessment using azinphos-methyl. J. Appl. Toxicol. 2015;35:493–499. doi: 10.1002/jat.3052. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Petroianu G.A. Optimal Pre-treatment for Acute Exposure to the Organophosphate Dicrotophos. Curr. Pharm. Des. 2017;23:3432–3439. doi: 10.2174/1381612822666161027154303. PubMed DOI

Kuca K., Bielavsky J., Cabal J., Bielavska M. Synthesis of a potential reactivator of acetylcholinesterase—1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide. Tetrahedron Lett. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI

Kuca K., Cabal J. In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes--K027, K005, K033 and K048. Cent. Eur. J. Public Health. 2004;12:S59–S61. PubMed

Kuča K., Cabal J., Kassa J. A comparison of the potency of newly developed oximes (K005, K027, K033, K048) and currently used oximes (pralidoxime, obidoxime, HI-6) to reactivate sarin-inhibited rat brain acetylcholinesterase by in vitro methods. J. Toxicol. Environ. Health. Part A. 2005;68:677–686. doi: 10.1080/15287390590921784. PubMed DOI

Kuca K., Kassa J. In vitro reactivation of acetylcholinesterase using the oxime K027. Vet. Hum. Toxicol. 2004;46:15–18. PubMed

Kuca K., Musilek K., Jun D., Pohanka M., Ghosh K.K., Hrabinova M. Oxime K027: Novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. J. Enzym. Inhib. Med. Chem. 2010;25:509–512. doi: 10.3109/14756360903357569. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Musilek K., Petroianu G.A. Eight new bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime: In vivo efficacy to protect from diisopropylfluorophosphate toxicity. J. Appl. Toxicol. 2008;28:920–928. doi: 10.1002/jat.1359. PubMed DOI

Petroianu G.A., Lorke D.E., Kalasz H. Comparison of the Ability of Pyridinium Aldoximes to Reactivate Human Red Blood Cell Acetylcholinesterases Inhibited by ethyl- and methyl-paraoxon. Curr. Org. Chem. 2012;16:1359–1369. doi: 10.2174/138527212800564277. DOI

Kassa J., Kuca K., Cabal J., Paar M. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vivo methods. J. Toxicol. Environ. Health. Part A. 2006;69:1875–1882. doi: 10.1080/15287390600631730. PubMed DOI

Nurulain S.M., Lorke D.E., Hasan M.Y., Shafiullah M., Kuca K., Musilek K., Petroianu G.A. Efficacy of eight experimental bispyridinium oximes against paraoxon-induced mortality: Comparison with the conventional oximes pralidoxime and obidoxime. Neurotox. Res. 2009;16:60–67. doi: 10.1007/s12640-009-9048-7. PubMed DOI

Petroianu G.A., Lorke D.E. Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): Predictive value of in-vitro testing for in-vivo efficacy. Mini Rev. Med. Chem. 2008;8:1328–1342. doi: 10.2174/138955708786369555. PubMed DOI

Lorke D.E., Petroianu G.A. The Experimental Oxime K027-A Promising Protector from Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC

Lorke D.E., Petroianu G.A. Treatment of Organophosphate Poisoning with Experimental Oximes: A Review. Curr. Org. Chem. 2019;23:628–639. doi: 10.2174/1385272823666190408114001. DOI

Lorke D.E., Hasan M.Y., Arafat K., Kuca K., Musilek K., Schmitt A., Petroianu G.A. In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate. J. Appl. Toxicol. 2008;28:422–429. doi: 10.1002/jat.1344. PubMed DOI

Dawson R.M. Review of oximes available for treatment of nerve agent poisoning. J. Appl. Toxicol. 1994;14:317–331. doi: 10.1002/jat.2550140502. PubMed DOI

Dunn M.A., Hackley B.E., Sidell F.R. Pretreatment for nerve agent exposure. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Textbook of Military Medicine: Medical Aspects of Chemical & Biological Warfare. Borden Institute, Walter Reed Army Medical Center; Washington, DC, USA: 1997. pp. 181–196.

Inns R.H., Leadbeater L. The efficacy of bispyridinium derivatives in the treatment of organophosphonate poisoning in the guinea-pig. J. Pharm. Pharmacol. 1983;35:427–433. doi: 10.1111/j.2042-7158.1983.tb04316.x. PubMed DOI

Myhrer T., Aas P. Pretreatment and prophylaxis against nerve agent poisoning: Are undesirable behavioral side effects unavoidable? Neurosci. Biobehav. Rev. 2016;71:657–670. doi: 10.1016/j.neubiorev.2016.10.017. PubMed DOI

Wetherell J., Price M., Mumford H., Armstrong S., Scott L. Development of next generation medical countermeasures to nerve agent poisoning. Toxicology. 2007;233:120–127. doi: 10.1016/j.tox.2006.07.028. PubMed DOI

Cox D.R. Regression models and life tables. J. R. Stat. Soc. 1972;34:187–220. doi: 10.1111/j.2517-6161.1972.tb00899.x. DOI

Lorke D.E., Hasan M.Y., Nurulain S.M., Sheen R., Kuca K., Petroianu G.A. Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: Comparison with obidoxime. J. Appl. Toxicol. 2007;27:482–490. doi: 10.1002/jat.1229. PubMed DOI

Lorke D.E., Kalasz H., Petroianu G.A., Tekes K. Entry of oximes into the brain: A review. Curr. Med. Chem. 2008;15:743–753. doi: 10.2174/092986708783955563. PubMed DOI

Stojiljkovic M.P., Jokanovic M. Pyridinium oximes: Rationale for their selection as causal antidotes against organophosphate poisonings and current solutions for auto-injectors. Arh. Hig. Rada Toksikol. 2006;57:435–443. PubMed

Kassa J., Fusek J. Effect of Panpal pretreatment and antidotal treatment (HI-6 plus benactyzine) on respiratory and circulatory function in soman-poisoned rats. Hum. Exp. Toxicol. 1997;16:563–569. doi: 10.1177/096032719701601003. PubMed DOI

Kassa J., Fusek J. The positive influence of a cholinergic-anticholinergic pretreatment and antidotal treatment on rats poisoned with supralethal doses of soman. Toxicology. 1998;128:1–7. doi: 10.1016/S0300-483X(97)00186-8. PubMed DOI

Jun D., Kuca K., Stodulka P., Koleckar V., Dolezal B., Simon P., Veverka M. HPLC Analysis of HI-6 Dichloride and Dimethanesulfonate—Antidotes against Nerve Agents and Organophosphorus Pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI

Jun D., Stodulka P., Kuca K., Koleckar V., Dolezal B., Simon P., Veverka M. TLC analysis of intermediates arising during the preparation of oxime HI-6 dimethanesulfonate. J. Chromatogr. Sci. 2008;46:316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...