Combined Pre- and Posttreatment of Paraoxon Exposure
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32230733
PubMed Central
PMC7180863
DOI
10.3390/molecules25071521
PII: molecules25071521
Knihovny.cz E-resources
- Keywords
- carbamates, cholinesterase, cox analysis, organophosphate, oximes, paraoxon, pretreatment, prophylaxis, rat,
- MeSH
- Survival Analysis MeSH
- Cholinesterase Inhibitors administration & dosage toxicity MeSH
- Physostigmine administration & dosage chemistry MeSH
- Rats MeSH
- Organophosphates toxicity MeSH
- Oximes administration & dosage chemistry MeSH
- Paraoxon chemistry toxicity MeSH
- Post-Exposure Prophylaxis MeSH
- Rats, Wistar MeSH
- Pre-Exposure Prophylaxis MeSH
- Proportional Hazards Models MeSH
- Pyridostigmine Bromide administration & dosage chemistry MeSH
- Ranitidine chemistry pharmacology MeSH
- Cholinesterase Reactivators pharmacology MeSH
- Tacrine administration & dosage chemistry MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholinesterase Inhibitors MeSH
- Physostigmine MeSH
- Organophosphates MeSH
- Oximes MeSH
- Paraoxon MeSH
- Pyridostigmine Bromide MeSH
- Ranitidine MeSH
- Cholinesterase Reactivators MeSH
- Tacrine MeSH
AIMS: Organophosphates (OPCs), useful agents as pesticides, also represent a serious health hazard. Standard therapy with atropine and established oxime-type enzyme reactivators is unsatisfactory. Experimental data indicate that superior therapeutic results can be obtained when reversible cholinesterase inhibitors are administered before OPC exposure. Comparing the protective efficacy of five such cholinesterase inhibitors (physostigmine, pyridostigmine, ranitidine, tacrine, or K-27), we observed best protection for the experimental oxime K-27. The present study was undertaken in order to determine if additional administration of K-27 immediately after OPC (paraoxon) exposure can improve the outcome. METHODS: Therapeutic efficacy was assessed in rats by determining the relative risk of death (RR) by Cox survival analysis over a period of 48 h. Animals that received only pretreatment and paraoxon were compared with those that had received pretreatment and paraoxon followed by K-27 immediately after paraoxon exposure. RESULTS: Best protection from paraoxon-induced mortality was observed after pretreatment with physostigmine (RR = 0.30) and K-27 (RR = 0.34). Both substances were significantly more efficacious than tacrine (RR = 0.67), ranitidine (RR = 0.72), and pyridostigmine (RR = 0.76), which were less efficacious but still significantly reduced the RR compared to the no-treatment group (paraoxon only). Additional administration of K-27 immediately after paraoxon exposure (posttreatment) did not further reduce mortality. Statistical analysis between pretreatment before paraoxon exposure alone and pretreatment plus K-27 posttreatment did not show any significant difference for any of the pretreatment regimens. CONCLUSIONS: Best outcome is achieved if physostigmine or K-27 are administered prophylactically before exposure to sublethal paraoxon dosages. Therapeutic outcome is not further improved by additional oxime therapy immediately thereafter.
See more in PubMed
Gupta R.C. Classification and uses of organophosphates and carbamates. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Elsevier Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidelberg, Germany: 2006. pp. 5–24.
Eddleston M., Buckley N.A., Eyer P., Dawson A.H. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371:597–607. doi: 10.1016/S0140-6736(07)61202-1. PubMed DOI PMC
Gunnell D., Eddleston M., Phillips M.R., Konradsen F. The global distribution of fatal pesticide self-poisoning: Systematic review. BMC Public Health. 2007;7:357. doi: 10.1186/1471-2458-7-357. PubMed DOI PMC
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI
Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. 2017;142:26–40. doi: 10.1111/jnc.14026. PubMed DOI
Balali-Mood M., Balali-Mood K. Neurotoxic disorders of organophosphorus compounds and their managements. Arch. Iran. Med. 2008;11:65–89. PubMed
Macilwain C. Study proves Iraq used nerve gas. Nature. 1993;363:3. doi: 10.1038/363003b0. PubMed DOI
Wiener S.W., Hoffman R.S. Nerve agents: A comprehensive review. J. Intensive Care Med. 2004;19:22–37. doi: 10.1177/0885066603258659. PubMed DOI
Yanagisawa N., Morita H., Nakajima T. Sarin experiences in Japan: Acute toxicity and long-term effects. J. Neurol. Sci. 2006;249:76–85. doi: 10.1016/j.jns.2006.06.007. PubMed DOI
Dolnik A., Bhattacharjee A. Hamas: Suicide bombings, rockets, or WMD? Terror. Polit. Violenc. 2002;14:109–128. doi: 10.1080/714005624. DOI
Kostadinov R., Kanev K., Dimov D. Chemical Terrorism, History and Threat Assessment. Med. Manag. Chem. Biol. Casualties. 2010;8:77–84.
Dolgin E. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 2013;19:1194–1195. doi: 10.1038/nm1013-1194. PubMed DOI
Pita R., Domingo J. The Use of Chemical Weapons in the Syrian Conflict. Toxics. 2014;2:391–402. doi: 10.3390/toxics2030391. DOI
Brooks J., Erickson T.B., Kayden S., Ruiz R., Wilkinson S., Burkle Jr F.M. Responding to chemical weapons violations in Syria: Legal, health, and humanitarian recommendations. Confl. Health. 2018;12:12. doi: 10.1186/s13031-018-0143-3. PubMed DOI PMC
Worek F., Wille T., Koller M., Thiermann H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch. Toxicol. 2016;90:2131–2145. doi: 10.1007/s00204-016-1772-1. PubMed DOI
Panchal M., Trivedi D. Clinical profile in patients of organophosphorus poisoning. Int. J. Sci. Res. 2016;5:97–99.
Petroianu G., Toomes L.M., Petroianu A., Bergler W., Rufer R. Control of blood pressure, heart rate and haematocrit during high-dose intravenous paraoxon exposure in mini pigs. J. Appl. Toxicol. 1998;18:293–298. doi: 10.1002/(SICI)1099-1263(199807/08)18:4<293::AID-JAT509>3.0.CO;2-P. PubMed DOI
Petroianu G.A. Organophosphate poisoning: The lesser-known face of a toxidrome. Eur. J. Emerg. Med. 2005;12:102–103. doi: 10.1097/00063110-200504000-00013. PubMed DOI
Antonijevic B., Stojiljkovic M.P. Unequal efficacy of pyridinium oximes in acute organophosphate poisoning. Clin. Med. Res. 2007;5:71–82. doi: 10.3121/cmr.2007.701. PubMed DOI PMC
Hrabetz H., Thiermann H., Felgenhauer N., Zilker T., Haller B., Nahrig J., Saugel B., Eyer F. Organophosphate poisoning in the developed world-a single centre experience from here to the millennium. Chem. Biol. Interact. 2013;206:561–568. doi: 10.1016/j.cbi.2013.05.003. PubMed DOI
Becker G., Kawan A., Gutzeit D., Worek F., Szinicz L. Direct reaction of oximes with crotylsarin, cyclosarin, or VX in vitro. Arch. Toxicol. 2007;81:415–420. doi: 10.1007/s00204-006-0168-z. PubMed DOI
Masson P. Evolution of and perspectives on therapeutic approaches to nerve agent poisoning. Toxicol. Lett. 2011;206:5–13. doi: 10.1016/j.toxlet.2011.04.006. PubMed DOI
Worek F., Thiermann H., Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem.-Biol. Interact. 2016;259:93–98. doi: 10.1016/j.cbi.2016.04.032. PubMed DOI
Eddleston M., Eyer P., Worek F., Juszczak E., Alder N., Mohamed F., Senarathna L., Hittarage A., Azher S., Jeganathan K., et al. Pralidoxime in acute organophosphorus insecticide poisoning--a randomised controlled trial. PLoS Med. 2009;6:e1000104. doi: 10.1371/journal.pmed.1000104. PubMed DOI PMC
Eyer F., Meischner V., Kiderlen D., Thiermann H., Worek F., Haberkorn M., Felgenhauer N., Zilker T., Eyer P. Human parathion poisoning. A toxicokinetic analysis. Toxicol. Rev. 2003;22:143–163. doi: 10.2165/00139709-200322030-00003. PubMed DOI
Lorke D.E., Petroianu G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol. 2019;39:101–116. doi: 10.1002/jat.3662. PubMed DOI
Keeler J.R., Hurst C.G., Dunn M.A. Pyridostigmine used as a nerve agent pretreatment under wartime conditions. J. Am. Med Assoc. (JAMA) 1991;266:693–695. doi: 10.1001/jama.1991.03470050093029. PubMed DOI
McCauley L.A. Organophosphates and the gulf war syndrome. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Elsevier Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidelberg, Germany: 2006. pp. 69–78.
Pope C.N. Central nervous system effects and neurotoxicity. In: Gupta R.C., editor. Toxicology of Organophosphate and Carbamate Compounds. Elsevier Academic Press; Amsterdam, The Netherlands: Boston, MA, USA: Heidelberg, Germany: 2006. pp. 271–291.
US Food and Drug Administration FDA Approves Pyridostigmine Bromide as Pretreatment against Nerve Gas. [(accessed on 20 January 2020)]; Available online: http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130342.htm.
Petroianu G.A., Nurulain S.M., Shafiullah M., Hasan M.Y., Kuca K., Lorke D.E. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using paraoxon. J. Appl. Toxicol. 2013;33:894–900. doi: 10.1002/jat.2760. PubMed DOI
Lorke D.E., Hasan M.Y., Nurulain S.M., Shafiullah M., Kuca K., Petroianu G.A. Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: Assessment using methyl-paraoxon. CNS Neurol. Disord. Drug Targets. 2012;11:1052–1060. doi: 10.2174/1871527311211080016. PubMed DOI
Lorke D.E., Hasan M.Y., Nurulain S.M., Shafiullah M., Kuca K., Petroianu G.A. Pretreatment for acute exposure to diisopropylfluorophosphate: In vivo efficacy of various acetylcholinesterase inhibitors. J. Appl. Toxicol. 2011;31:515–523. doi: 10.1002/jat.1589. PubMed DOI
Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Petroianu G.A. Prophylactic administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using terbufos sulfone. J. Appl. Toxicol. 2014;34:1096–1103. doi: 10.1002/jat.2939. PubMed DOI
Petroianu G.A., Nurulain S.M., Hasan M.Y., Kuca K., Lorke D.E. Reversible cholinesterase inhibitors as pre-treatment for exposure to organophosphates: Assessment using azinphos-methyl. J. Appl. Toxicol. 2015;35:493–499. doi: 10.1002/jat.3052. PubMed DOI
Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Petroianu G.A. Optimal Pre-treatment for Acute Exposure to the Organophosphate Dicrotophos. Curr. Pharm. Des. 2017;23:3432–3439. doi: 10.2174/1381612822666161027154303. PubMed DOI
Kuca K., Bielavsky J., Cabal J., Bielavska M. Synthesis of a potential reactivator of acetylcholinesterase—1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide. Tetrahedron Lett. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI
Kuca K., Cabal J. In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes--K027, K005, K033 and K048. Cent. Eur. J. Public Health. 2004;12:S59–S61. PubMed
Kuča K., Cabal J., Kassa J. A comparison of the potency of newly developed oximes (K005, K027, K033, K048) and currently used oximes (pralidoxime, obidoxime, HI-6) to reactivate sarin-inhibited rat brain acetylcholinesterase by in vitro methods. J. Toxicol. Environ. Health. Part A. 2005;68:677–686. doi: 10.1080/15287390590921784. PubMed DOI
Kuca K., Kassa J. In vitro reactivation of acetylcholinesterase using the oxime K027. Vet. Hum. Toxicol. 2004;46:15–18. PubMed
Kuca K., Musilek K., Jun D., Pohanka M., Ghosh K.K., Hrabinova M. Oxime K027: Novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. J. Enzym. Inhib. Med. Chem. 2010;25:509–512. doi: 10.3109/14756360903357569. PubMed DOI
Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Musilek K., Petroianu G.A. Eight new bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime: In vivo efficacy to protect from diisopropylfluorophosphate toxicity. J. Appl. Toxicol. 2008;28:920–928. doi: 10.1002/jat.1359. PubMed DOI
Petroianu G.A., Lorke D.E., Kalasz H. Comparison of the Ability of Pyridinium Aldoximes to Reactivate Human Red Blood Cell Acetylcholinesterases Inhibited by ethyl- and methyl-paraoxon. Curr. Org. Chem. 2012;16:1359–1369. doi: 10.2174/138527212800564277. DOI
Kassa J., Kuca K., Cabal J., Paar M. A comparison of the efficacy of new asymmetric bispyridinium oximes (K027, K048) with currently available oximes against tabun by in vivo methods. J. Toxicol. Environ. Health. Part A. 2006;69:1875–1882. doi: 10.1080/15287390600631730. PubMed DOI
Nurulain S.M., Lorke D.E., Hasan M.Y., Shafiullah M., Kuca K., Musilek K., Petroianu G.A. Efficacy of eight experimental bispyridinium oximes against paraoxon-induced mortality: Comparison with the conventional oximes pralidoxime and obidoxime. Neurotox. Res. 2009;16:60–67. doi: 10.1007/s12640-009-9048-7. PubMed DOI
Petroianu G.A., Lorke D.E. Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): Predictive value of in-vitro testing for in-vivo efficacy. Mini Rev. Med. Chem. 2008;8:1328–1342. doi: 10.2174/138955708786369555. PubMed DOI
Lorke D.E., Petroianu G.A. The Experimental Oxime K027-A Promising Protector from Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC
Lorke D.E., Petroianu G.A. Treatment of Organophosphate Poisoning with Experimental Oximes: A Review. Curr. Org. Chem. 2019;23:628–639. doi: 10.2174/1385272823666190408114001. DOI
Lorke D.E., Hasan M.Y., Arafat K., Kuca K., Musilek K., Schmitt A., Petroianu G.A. In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate. J. Appl. Toxicol. 2008;28:422–429. doi: 10.1002/jat.1344. PubMed DOI
Dawson R.M. Review of oximes available for treatment of nerve agent poisoning. J. Appl. Toxicol. 1994;14:317–331. doi: 10.1002/jat.2550140502. PubMed DOI
Dunn M.A., Hackley B.E., Sidell F.R. Pretreatment for nerve agent exposure. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Textbook of Military Medicine: Medical Aspects of Chemical & Biological Warfare. Borden Institute, Walter Reed Army Medical Center; Washington, DC, USA: 1997. pp. 181–196.
Inns R.H., Leadbeater L. The efficacy of bispyridinium derivatives in the treatment of organophosphonate poisoning in the guinea-pig. J. Pharm. Pharmacol. 1983;35:427–433. doi: 10.1111/j.2042-7158.1983.tb04316.x. PubMed DOI
Myhrer T., Aas P. Pretreatment and prophylaxis against nerve agent poisoning: Are undesirable behavioral side effects unavoidable? Neurosci. Biobehav. Rev. 2016;71:657–670. doi: 10.1016/j.neubiorev.2016.10.017. PubMed DOI
Wetherell J., Price M., Mumford H., Armstrong S., Scott L. Development of next generation medical countermeasures to nerve agent poisoning. Toxicology. 2007;233:120–127. doi: 10.1016/j.tox.2006.07.028. PubMed DOI
Cox D.R. Regression models and life tables. J. R. Stat. Soc. 1972;34:187–220. doi: 10.1111/j.2517-6161.1972.tb00899.x. DOI
Lorke D.E., Hasan M.Y., Nurulain S.M., Sheen R., Kuca K., Petroianu G.A. Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: Comparison with obidoxime. J. Appl. Toxicol. 2007;27:482–490. doi: 10.1002/jat.1229. PubMed DOI
Lorke D.E., Kalasz H., Petroianu G.A., Tekes K. Entry of oximes into the brain: A review. Curr. Med. Chem. 2008;15:743–753. doi: 10.2174/092986708783955563. PubMed DOI
Stojiljkovic M.P., Jokanovic M. Pyridinium oximes: Rationale for their selection as causal antidotes against organophosphate poisonings and current solutions for auto-injectors. Arh. Hig. Rada Toksikol. 2006;57:435–443. PubMed
Kassa J., Fusek J. Effect of Panpal pretreatment and antidotal treatment (HI-6 plus benactyzine) on respiratory and circulatory function in soman-poisoned rats. Hum. Exp. Toxicol. 1997;16:563–569. doi: 10.1177/096032719701601003. PubMed DOI
Kassa J., Fusek J. The positive influence of a cholinergic-anticholinergic pretreatment and antidotal treatment on rats poisoned with supralethal doses of soman. Toxicology. 1998;128:1–7. doi: 10.1016/S0300-483X(97)00186-8. PubMed DOI
Jun D., Kuca K., Stodulka P., Koleckar V., Dolezal B., Simon P., Veverka M. HPLC Analysis of HI-6 Dichloride and Dimethanesulfonate—Antidotes against Nerve Agents and Organophosphorus Pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI
Jun D., Stodulka P., Kuca K., Koleckar V., Dolezal B., Simon P., Veverka M. TLC analysis of intermediates arising during the preparation of oxime HI-6 dimethanesulfonate. J. Chromatogr. Sci. 2008;46:316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI
Experimental and Established Oximes as Pretreatment before Acute Exposure to Azinphos-Methyl