Experimental and Established Oximes as Pretreatment before Acute Exposure to Azinphos-Methyl

. 2021 Mar 17 ; 22 (6) : . [epub] 20210317

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33802843

Poisoning with organophosphorus compounds (OPCs) represents an ongoing threat to civilians and rescue personal. We have previously shown that oximes, when administered prophylactically before exposure to the OPC paraoxon, are able to protect from its toxic effects. In the present study, we have assessed to what degree experimental (K-27; K-48; K-53; K-74; K-75) or established oximes (pralidoxime, obidoxime), when given as pretreatment at an equitoxic dosage of 25% of LD01, are able to reduce mortality induced by the OPC azinphos-methyl. Their efficacy was compared with that of pyridostigmine, the only FDA-approved substance for such prophylaxis. Efficacy was quantified in rats by Cox analysis, calculating the relative risk of death (RR), with RR=1 for the reference group given only azinphos-methyl, but no prophylaxis. All tested compounds significantly (p ≤ 0.05) reduced azinphos-methyl-induced mortality. In addition, the efficacy of all tested experimental and established oximes except K-53 was significantly superior to the FDA-approved compound pyridostigmine. Best protection was observed for the oximes K-48 (RR = 0.20), K-27 (RR = 0.23), and obidoxime (RR = 0.21), which were significantly more efficacious than pralidoxime and pyridostigmine. The second-best group of prophylactic compounds consisted of K-74 (RR = 0.26), K-75 (RR = 0.35) and pralidoxime (RR = 0.37), which were significantly more efficacious than pyridostigmine. Pretreatment with K-53 (RR = 0.37) and pyridostigmine (RR = 0.52) was the least efficacious. Our present data, together with previous results on other OPCs, indicate that the experimental oximes K-27 and K-48 are very promising pretreatment compounds. When penetration into the brain is undesirable, obidoxime is the most efficacious prophylactic agent already approved for clinical use.

Zobrazit více v PubMed

Casida J.E., Quistad G.B. Golden Age of Insecticide Research: Past, Present, or Future? Annu. Rev. Èntomol. 1998;43:1–16. doi: 10.1146/annurev.ento.43.1.1. PubMed DOI

Young R.A., Watson A. Organophosphate nerve agents. In: Gupta R.C., editor. Handbook of Toxicology of Chemical Warfare Agents. 3rd ed. Academic Press; Boston, MA, USA: 2020. pp. 97–126. Chapter 8. DOI

Dworkin J., Prescott M., Jamal R., Hardawan S.A., Abdullah A., Galea S. The Long-Term Psychosocial Impact of a Surprise Chemical Weapons Attack on Civilians in Halabja, Iraqi Kurdistan. J. Nerv. Ment. Dis. 2008;196:772–775. doi: 10.1097/NMD.0b013e3181878b69. PubMed DOI

Macilwain C. Study proves Iraq used nerve gas. Nature. 1993;363:3. doi: 10.1038/363003b0. PubMed DOI

Riley B. The toxicology and treatment of injuries from chemical warfare agents. Curr. Anaesth. Crit. Care. 2003;14:149–154. doi: 10.1016/S0953-7112(03)00035-8. DOI

Balali-Mood M., Balali-Mood K. Neurotoxic disorders of organophosphorus compounds and their managements. Arch. Iran. Med. 2008;11:65–89. PubMed

Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus compounds as chemical warfare agents: A review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI

Yanagisawa N., Morita H., Nakajima T. Sarin experiences in Japan: Acute toxicity and long-term effects. J. Neurol. Sci. 2006;249:76–85. doi: 10.1016/j.jns.2006.06.007. PubMed DOI

Kostadinov R., Kanev K., Dimov D. Chemical Terrorism, History and Threat Assessment. Med. Manag. Chem. Biol. Casualties. 2010;8:77–84.

Brooks J., Erickson T.B., Kayden S., Ruiz R., Wilkinson S., Burklejr F.M., Jr. Responding to chemical weapons violations in Syria: Legal, health, and humanitarian recommendations. Confl. Health. 2018;12:12. doi: 10.1186/s13031-018-0143-3. PubMed DOI PMC

Chowdhary S., Bhattacharyya R., Banerjee D. Acute organophosphorus poisoning. Clin. Chim. Acta. 2014;431:66–76. doi: 10.1016/j.cca.2014.01.024. PubMed DOI

Petroianu G., Toomes L.M., Petroianu A., Bergler W., Rüfer R. Control of blood pressure, heart rate and haematocrit during high-dose intravenous paraoxon exposure in mini pigs. J. Appl. Toxicol. 1998;18:293–298. doi: 10.1002/(SICI)1099-1263(199807/08)18:4<293::AID-JAT509>3.0.CO;2-P. PubMed DOI

Eddleston M., Buckley N.A., Eyer P., Dawson A.H. Management of acute organophosphorus pesticide poisoning. Lancet. 2008;371:597–607. doi: 10.1016/S0140-6736(07)61202-1. PubMed DOI PMC

Masson P., Nachon F. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. J. Neurochem. 2017;142(Suppl. 2):26–40. doi: 10.1111/jnc.14026. PubMed DOI

Lorke D.E., Petroianu G.A. Reversible cholinesterase inhibitors as pretreatment for exposure to organophosphates. A review. J. Appl. Toxicol. 2019;39:101–116. doi: 10.1002/jat.3662. PubMed DOI

Petroianu G.A., Nurulain S.M., Hasan M.Y., Kuca K., Lorke D.E. Reversible cholinesterase inhibitors as pre-treatment for exposure to organophosphates: Assessment using azinphos-methyl. J. Appl. Toxicol. 2015;35:493–499. doi: 10.1002/jat.3052. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Petroianu G.A. Optimal Pre-treatment for Acute Exposure to the Organophosphate Dicrotophos. Curr. Pharm. Des. 2017;23:3432–3439. doi: 10.2174/1381612822666161027154303. PubMed DOI

Lorke D.E., Hasan M.Y., Nurulain S.M., Shafiullah M., Kuca K., Petroianu G.A. Pretreatment for acute exposure to diisopropylfluorophosphate: In vivo efficacy of various acetylcholinesterase inhibitors. J. Appl. Toxicol. 2011;31:515–523. doi: 10.1002/jat.1589. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuča K., Petroianu G.A. Combined Pre- and Posttreatment of Paraoxon Exposure. Molecules. 2020;25:1521. doi: 10.3390/molecules25071521. PubMed DOI PMC

Petroianu G.A., Nurulain S.M., Shafiullah M., Hasan M.Y., Kuča K., Lorke D.E. Usefulness of administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using paraoxon. J. Appl. Toxicol. 2013;33:894–900. doi: 10.1002/jat.2760. PubMed DOI

Lorke D.E., Hasan M.Y., Nurulain S.M., Shafiullah M., Kuča K., Petroianu G.A. Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: Assessment using methyl-paraoxon. CNS Neurol. Disord. Drug Targets. 2012;11:1052–1060. doi: 10.2174/1871527311211080016. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Petroianu G.A. Prophylactic administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: Assessment using terbufos sulfone. J. Appl. Toxicol. 2014;34:1096–1103. doi: 10.1002/jat.2939. PubMed DOI

US Food and Drug Administration FDA Approves Pyridostigmine Bromide as Pretreatment against Nerve Gas. [(accessed on 15 February 2021)]; Available online: http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandDrugPreparedness/ucm130342.htm.

Lorke D.E., Hasan M.Y., Nurulain S.M., Sheen R., Kuča K., Petroianu G.A. Entry of two new asymmetric bispyridinium oximes (K-27 and K-48) into the rat brain: Comparison with obidoxime. J. Appl. Toxicol. 2007;27:482–490. doi: 10.1002/jat.1229. PubMed DOI

Lorke D.E., Kalasz H., Petroianu G.A., Tekes K. Entry of Oximes into the Brain: A Review. Curr. Med. Chem. 2008;15:743–753. doi: 10.2174/092986708783955563. PubMed DOI

Lorke D.E., Petroianu G.A. The Experimental Oxime K027—A Promising Protector from Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front. Neurosci. 2019;13:427. doi: 10.3389/fnins.2019.00427. PubMed DOI PMC

Kuca K., Cabal J. In vitro reactivation of tabun-inhibited acetylcholinesterase using new oximes—K027, K005, K033 and K048. Central Eur. J. Public Health. 2004;12:S59–S61. PubMed

Kuca K., Cabal J., Kassa J. A Comparison of the Potency of Newly Developed Oximes (K005, K027, K033, K048) and Currently Used Oximes (Pralidoxime, Obidoxime, HI-6) to Reactivate Sarin-Inhibited Rat Brain Acetylcholinesterase by In Vitro Methods. J. Toxicol. Environ. Health Part A. 2005;68:677–686. doi: 10.1080/15287390590921784. PubMed DOI

Kuca K., Kassa J. In vitro reactivation of acetylcholinesterase using the oxime K027. Vet. Hum. Toxicol. 2004;46:15–18. PubMed

Kuca K., Musilek K., Jun D., Pohanka M., Ghosh K.K., Hrabinova M. Oxime K027: Novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. J. Enzym. Inhib. Med. Chem. 2010;25:509–512. doi: 10.3109/14756360903357569. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Musilek K., Petroianu G.A. Eight new bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime:in vivoefficacy to protect from diisopropylfluorophosphate toxicity. J. Appl. Toxicol. 2008;28:920–928. doi: 10.1002/jat.1359. PubMed DOI

Petroianu G.A., Lorke D.E., Kalász H. Comparison of the Ability of Pyridinium Aldoximes to Reactivate Human Red Blood Cell Acetylcholinesterases Inhibited by ethyl- and methyl-paraoxon. Curr. Org. Chem. 2012;16:1359–1369. doi: 10.2174/138527212800564277. DOI

Petroianu G.A., Lorke D.E. Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): Predictive value of in-vitro testing for in-vivo efficacy. Mini Rev. Med. Chem. 2008;8:1328–1342. doi: 10.2174/138955708786369555. PubMed DOI

Kayouka M., Houzé P., Lejay M., Baud F.J., Kuca K. Safety and Efficacy of New Oximes to Reverse Low Dose Diethyl-Paraoxon-Induced Ventilatory Effects in Rats. Molecules. 2020;25:3056. doi: 10.3390/molecules25133056. PubMed DOI PMC

Lorke D.E., Petroianu G.A. Treatment of Organophosphate Poisoning with Experimental Oximes: A Review. Curr. Org. Chem. 2019;23:628–639. doi: 10.2174/1385272823666190408114001. DOI

Kassa J., Kuca K., Cabal J., Paar M. A Comparison of the Efficacy of New Asymmetric Bispyridinium Oximes (K027, K048) with Currently Available Oximes against Tabun by In Vivo Methods. J. Toxicol. Environ. Health Part A. 2006;69:1875–1882. doi: 10.1080/15287390600631730. PubMed DOI

Kuca K., Bielavsky J., Cabal J., Bielavska M. Synthesis of a potential reactivator of acetylcholinesterase—1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium)propane dibromide. Tetrahedron Lett. 2003;44:3123–3125. doi: 10.1016/S0040-4039(03)00538-0. DOI

Kuca K., Musilova L., Paleček J., Církva V., Paar M., Musilek K., Hrabinová M., Pohanka M., Karasová J.Ž., Jun D. Novel Bisquaternary Oximes—Reactivation of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon. Molecules. 2009;14:4915–4921. doi: 10.3390/molecules14124915. PubMed DOI PMC

Musilek K., Kuca K., Dohnal V., Jun D., Marek J., Koleckar V. Two Step Synthesis of a Non-symmetric Acetylcholinesterase Reactivator. Molecules. 2007;12:1755–1761. doi: 10.3390/12081755. PubMed DOI PMC

Lorke D.E., Hasan M.Y., Arafat K., Kuča K., Musilek K., Schmitt A., Petroianu G.A. In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate. J. Appl. Toxicol. 2008;28:422–429. doi: 10.1002/jat.1344. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuča K., Petroianu G.A. Oximes as pretreatment before acute exposure to paraoxon. J. Appl. Toxicol. 2019;39:1506–1515. doi: 10.1002/jat.3835. PubMed DOI

Cox D.R. Regression models and life tables. J. R. Stat. Soc. B. 1972;34:189–220. doi: 10.1111/j.2517-6161.1972.tb00899.x. DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Petroianu G.A. Five Experimental Bispyridinium Oximes in Comparison with the Conventional Oximes Pralidoxime and Obidoxime: In Vivo Efficacy to Protect from Azinphos-methyl-induced Toxicity. J. Environ. Immunol. Toxicol. 2013;1:44. doi: 10.7178/jeit.14. PubMed DOI

Lewis C.M. Azinphos-Methyl (Guthion) Risk Characterization Document (Revision No. 1) [(accessed on 4 March 2021)]; Available online: http://www.cdpr.ca.gov/docs/risk/rcd/azmrcdre.pdf.

Belenguer V., Martinez-Capel F., Masiá A., Picó Y. Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (Eastern Spain) J. Hazard. Mater. 2014;265:271–279. doi: 10.1016/j.jhazmat.2013.11.016. PubMed DOI

Schulz R. Field Studies on Exposure, Effects, and Risk Mitigation of Aquatic Nonpoint-Source Insecticide Pollution: A Review. J. Environ. Qual. 2004;33:419–448. doi: 10.2134/jeq2004.4190. PubMed DOI

Stoner K.A., Eitzer B.D. Using a Hazard Quotient to Evaluate Pesticide Residues Detected in Pollen Trapped from Honey Bees (Apis mellifera) in Connecticut. PLoS ONE. 2013;8:e77550. doi: 10.1371/journal.pone.0077550. PubMed DOI PMC

Buratti F.M., Volpe M.T., Fabrizi L., Meneguz A., Vittozzi L., Testai E. Kinetic parameters of OPT pesticide desulfuration by c-DNA expressed human CYPs. Environ. Toxicol. Pharmacol. 2002;11:181–190. doi: 10.1016/S1382-6689(02)00010-8. PubMed DOI

Dubois K.P., Thursh D.R., Murphy S.D. Studies on the toxicity and pharmacologic actions of the dimethoxy ester of benzotriazine dithiophosphoric acid (DBD, guthion) J. Pharmacol. Exp. Ther. 1957;119:208–218. PubMed

Pasquet J., Mazuret A., Fournel J., Koenig F.H. Acute oral and percutaneous toxicity of phosalone in the rat, in comparison with azinphosmethyl and parathion. Toxicol. Appl. Pharmacol. 1976;37:85–92. doi: 10.1016/S0041-008X(76)80010-5. PubMed DOI

Vrdoljak A.L., Čalić M., Radić B., Berend S., Jun D., Kuča K., Kovarik Z. Pretreatment with pyridinium oximes improves antidotal therapy against tabun poisoning. Toxicology. 2006;228:41–50. doi: 10.1016/j.tox.2006.08.012. PubMed DOI

Koelle G.B. Protection of cholinesterase against irreversible inactivation by di-isopropyl fluorophosphate in vitro. J. Pharmacol. Exp. Ther. 1946;88:232–237. PubMed

Koster R. Synergisms and antagonisms between physostigmine and di-isopropyl fluorophosphate in cats. J. Pharmacol. Exp. Ther. 1946;88:39–46. PubMed

Lenina O.A., Zueva I.V., Zobov V.V., Semenov V.E., Masson P., Petrov K.A. Slow-binding reversible inhibitor of acetylcholinesterase with long-lasting action for prophylaxis of organophosphate poisoning. Sci. Rep. 2020;10:16611. doi: 10.1038/s41598-020-73822-6. PubMed DOI PMC

Kaufer D., Friedman A., Seidman S., Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature. 1998;393:373–377. doi: 10.1038/30741. PubMed DOI

Meshorer E., Erb C., Gazit R., Pavlovsky L., Kaufer D., Friedman A., Glick D., Ben-Arie N., Soreq H. Alternative Splicing and Neuritic mRNA Translocation Under Long-Term Neuronal Hypersensitivity. Science. 2002;295:508–512. doi: 10.1126/science.1066752. PubMed DOI

Soreq H., Seidman S. Acetylcholinesterase—New roles for an old actor. Nat. Rev. Neurosci. 2001;2:294–302. doi: 10.1038/35067589. PubMed DOI

Prado A., Petroianu G.A., Lorke D.E., Chambers J.W. A trivalent approach for determining in vitro toxicology: Examination of oxime K027. J. Appl. Toxicol. 2015;35:219–227. doi: 10.1002/jat.3013. PubMed DOI

Jun D., Kuca K., Stodülka P., Koleckar V., Doležal B., Simon P., Veverka M. HPLC Analysis of HI-6 Dichloride and Dimethanesulfonate—Antidotes against Nerve Agents and Organophosphorus Pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI

Jun D., Stodulka P., Kuca K., Koleckar V., Dolezal B., Simon P., Veverka M. TLC analysis of intermediates arising during the preparation of oxime HI-6 dimethanesulfonate. J. Chromatogr. Sci. 2008;46:316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI

Lorke D.E., Petroianu G.A. Minireview: Does in-vitro testing of oximes help predict their in-vivo action after paraoxon exposure? J. Appl. Toxicol. 2009;29:459–469. doi: 10.1002/jat.1457. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...