Novel bisquaternary oximes--reactivation of acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20032868
PubMed Central
PMC6255039
DOI
10.3390/molecules14124915
PII: 14124915
Knihovny.cz E-zdroje
- MeSH
- acetylcholinesterasa účinky léků metabolismus MeSH
- butyrylcholinesterasa účinky léků metabolismus MeSH
- enzymové reaktivátory farmakologie MeSH
- magnetická rezonanční spektroskopie MeSH
- oximy chemie MeSH
- paraoxon farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- enzymové reaktivátory MeSH
- oximy MeSH
- paraoxon MeSH
Four novel bisquaternary aldoxime cholinesterase reactivators differing in their chemical structure were prepared. Afterwards, their biological activity was evaluated for their ability to reactivate acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibited by paraoxon. Their reactivation activity was compared with standard reactivators--pralidoxime, obidoxime and HI-6--which are clinically used at present. As it resulted, none of the prepared compounds surpassed obidoxime, which is considered to be the most potent compound if used for reactivation of AChE inhibited by paraoxon. In case of BuChE reactivation, two compounds (K053 and K068) achieved similar results as obidoxime.
Zobrazit více v PubMed
Delfino R.T., Ribeiro T.S., Figueroa-Villar J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009;20:407–428. doi: 10.1590/S0103-50532009000300003. DOI
Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed
Eddleston M., Eyer P., Worek F., Sheriff M.H., Buckley N.A. Predicting outcome using butyrylcholinesterase activity in organophosphorus pesticide self-poisoning. QJM. 2008;101:467–474. doi: 10.1093/qjmed/hcn026. PubMed DOI PMC
Lorke D.E., Petroianu G.A. New series of monoquaternary pyridinium oximes: Synthesis and reactivation potency for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase. J. Appl. Toxicol. 2009;29:459–469. doi: 10.1002/jat.1457. PubMed DOI PMC
Petroianu G.A., Lorke D.E. Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): Predictive value of in-vitro testing for in-vivo efficacy. Mini Rev. Med. Chem. 2008;8:1328–1342. doi: 10.2174/138955708786369555. PubMed DOI
Saxena A., Sun W., Luo C., Myers T.M., Koplovitz I., Lenz D.E., Doctor B.P. Bioscavenger for protection from toxicity of organophosphorus compounds. J. Mol. Neurosci. 2006;30:145–148. doi: 10.1385/JMN:30:1:145. PubMed DOI
Doctor B.P., Saxena A. Bioscavengers for the protection of humus against organophosphate toxicity. Chem. Biol. Interact. 2005;157–158:167–171. doi: 10.1016/j.cbi.2005.10.024. PubMed DOI
Jun D., Musilova L., Kuca K., Kassa J., Bajgar J. Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon and methyl-paraoxon in vitro. Chem. Biol. Interact. 2008;175:421–424. doi: 10.1016/j.cbi.2008.05.004. PubMed DOI
Musilova L., Kuca K., Jung Y.S., Jun D. In vitro oxime-assisted reactivation of paraoxon-inhibited human acetylcholinesterase and butyrylcholinesterase. Clin. Toxicol. 2009;47:545–550. doi: 10.1080/15563650903058914. PubMed DOI
Musilova L., Jun D., Kuca K., Pohanka M., Katalinic M., Kovarik Z. Development of new antidotes of organophosphate intoxications: Oxime-assisted reactivation of dimethoxy- and diethoxy-phosphorylated human butyrylcholinesterase for construction of “pseudo catalytic” bioscavengers. Toxicol. Lett. 2009;189:S216. doi: 10.1016/j.toxlet.2009.06.561. DOI
Kovarik Z., Vrdoljak A.L., Berend S., Katalinic M., Kuca K., Musilek K., Radic B. Evaluation of oxime K203 as antidote in tabun poisoning. Arh. Hig. Rada Toksikol. 2009;60:19–26. doi: 10.2478/10004-1254-60-2009-1890. PubMed DOI
Carletti E., Aurbek N., Gillon E., Loiodice M., Nicolet Y., Fontecilla-Camps J.C., Masson P., Thiermann H., Nachon F. Structure-activity analysis of aging and reactivation of human butyrylcholinesterase inhibited by analogues of tabun. Biochem. J. 2009;421:97–106. doi: 10.1042/BJ20090091. PubMed DOI
Musilek K., Lipka L., Racakova V., Kuca K., Jun D., Dohnal V., Dolezal V. New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE. Chem. Papers. 2006;60:48–51. doi: 10.2478/s11696-006-0008-x. DOI
Musilek K., Holas O., Jun D., Dohnal V., Gunn-Moore F., Opletalova V., Dolezal M., Kuca K. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker – Preparation and reactivation of tabun and paraoxon-inhibited acetylcholinesterase. Biorg. Med. Chem. 2007;15:6733–6741. doi: 10.1016/j.bmc.2007.08.002. PubMed DOI
Jun D., Stodulka P., Kuca K., Koleckar V., Dolezal B., Simon P., Veverka M. HPLC analysis of HI-6 dichloride and dimethanesulfonate – antidotes against nerve agents and organophosphorus pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI
Jun D., Stodulka P., Kuca K., Koleckar V., Dolezal B., Simon P., Veverka M. TLC analysis of intermediates arising during the preparation of oxime HI-6 dimethanesulfonate. J. Chrom. Sci. 2008;46:316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI
Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Strategies for enhanced bioavailability of oxime reactivators in the central nervous system
Experimental and Established Oximes as Pretreatment before Acute Exposure to Azinphos-Methyl