In vitro ability of currently available oximes to reactivate organophosphate pesticide-inhibited human acetylcholinesterase and butyrylcholinesterase
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21673941
PubMed Central
PMC3111652
DOI
10.3390/ijms12032077
PII: ijms12032077
Knihovny.cz E-zdroje
- Klíčová slova
- acetylcholinesterase, butyrylcholinesterase, in vitro, nerve agent, organophosphate, oxime, pesticide, reactivator, scavenger,
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- butyrylcholinesterasa chemie metabolismus MeSH
- cholinesterasové inhibitory chemie metabolismus MeSH
- erytrocyty enzymologie MeSH
- lidé MeSH
- organofosforové sloučeniny chemie metabolismus MeSH
- oximy chemie MeSH
- pesticidy chemie metabolismus MeSH
- reaktivátory cholinesterázy chemie metabolismus MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- organofosforové sloučeniny MeSH
- oximy MeSH
- pesticidy MeSH
- reaktivátory cholinesterázy MeSH
We have in vitro tested the ability of common, commercially available, cholinesterase reactivators (pralidoxime, obidoxime, methoxime, trimedoxime and HI-6) to reactivate human acetylcholinesterase (AChE), inhibited by five structurally different organophosphate pesticides and inhibitors (paraoxon, dichlorvos, DFP, leptophos-oxon and methamidophos). We also tested reactivation of human butyrylcholinesterase (BChE) with the aim of finding a potent oxime, suitable to serve as a "pseudocatalytic" bioscavenger in combination with this enzyme. Such a combination could allow an increase of prophylactic and therapeutic efficacy of the administered enzyme. According to our results, the best broad-spectrum AChE reactivators were trimedoxime and obidoxime in the case of paraoxon, leptophos-oxon, and methamidophos-inhibited AChE. Methamidophos and leptophos-oxon were quite easily reactivatable by all tested reactivators. In the case of methamidophos-inhibited AChE, the lower oxime concentration (10(-5) M) had higher reactivation ability than the 10(-4) M concentration. Therefore, we evaluated the reactivation ability of obidoxime in a concentration range of 10(-3)-10(-7) M. The reactivation of methamidophos-inhibited AChE with different obidoxime concentrations resulted in a bell shaped curve with maximum reactivation at 10(-5) M. In the case of BChE, no reactivator exceeded 15% reactivation ability and therefore none of the oximes can be recommended as a candidate for "pseudocatalytic" bioscavengers with BChE.
Zobrazit více v PubMed
Costa LG. Current issues in organophosphate toxicology. Clin. Chim. Acta. 2006;366:1–13. PubMed
Maxwell DM, Brecht KM, Koplovitz I, Sweeney RE. Acetylcholinesterase inhibition: Does it explain the toxicity of organophosphorus compounds? Arch. Toxicol. 2006;80:756–760. PubMed
Worek F, Koller M, Thiermann H, Szinicz L. Diagnostic aspects of organophosphate poisoning. Toxicology. 2005;214:182–189. PubMed
Elhanany E, Ordentlich A, Dgany O, Kaplan D, Segall Y, Barak R, Velan B, Shafferman A. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl adducts. Chem. Res. Toxicol. 2001;14:912–918. PubMed
Barak D, Ordentlich A, Kaplan D, Barak R, Mizrahi D, Kronman C, Segall Y, Velan B, Shafferman A. Evidence for P-N bond scission in phosphoroamidate nerve agent adducts of human acetylcholinesterase. Biochemistry. 2000;39:1156–1161. PubMed
Millard CB, Kryger G, Ordentlich A, Greenblatt HM, Harel M, Raves ML, Segall Y, Barak D, Shafferman A, Silman I, Sussman JL. Crystal structures of aged phosphonylated acetylcholinesterase: Nerve agent reaction products at the atomic level. Biochemistry. 1999;38:7032–7039. PubMed
Eyer P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol. Rev. 2003;22:165–190. PubMed
Worek F, Backer M, Thiermann H, Szinicz L, Mast U, Klimmek R, Eyer P. Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning. Hum. Exp. Toxicol. 1997;16:466–472. PubMed
Thompson DF, Thompson GD, Greenwood RB, Trammel HL. Therapeutic dosing of pralidoxime chloride. Drug Intell. Clin. Pharm. 1987;21:590–593. PubMed
Eddleston M, Singh S, Buckley N. Acute organophosphorus poisoning. Clin Evid. June. 2003:1542–1553. PubMed
Bajgar J, Fusek J, Kuca K, Bartosova L, Jun D. Treatment of organophosphate intoxication using cholinesterase reactivators: Facts and fiction. Mini. Rev. Med. Chem. 2007;7:461–466. PubMed
Saxena A, Sun W, Luo C, Myers TM, Koplovitz I, Lenz DE, Doctor BP. Bioscavenger for protection from toxicity of organophosphorus compounds. J. Mol. Neurosci. 2006;30:145–148. PubMed
Maxwell DM, Brecht KM, Doctor BP, Wolfe AD. Comparison of antidote protection against soman by pyridostigmine, HI-6 and acetylcholinesterase. J. Pharmacol. Exp. Ther. 1993;264:1085–1089. PubMed
Kolarich D, Weber A, Pabst M, Stadlmann J, Teschner W, Ehrlich H, Schwarz HP, Altmann F. Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics. 2008;8:254–263. PubMed
Lenz DE, Yeung D, Smith JR, Sweeney RE, Lumley LA, Cerasoli DM. Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: A mini review. Toxicology. 2007;233:31–39. PubMed
Jun D, Musilova L, Link M, Loiodice M, Nachon F, Rochu D, Renault F, Masson P. Preparation and characterization of methoxy polyethylene glycol-conjugated phosphotriesterase as a potential catalytic bioscavenger against organophosphate poisoning. Chem. Biol.Inter. 2010;187:380–383. PubMed
Jun D, Musilova L, Kuca K, Kassa J, Bajgar J. Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon in vitro. Chem. Biol. Inter. 2008;175:421–424. PubMed
Bajgar EJ. Central and Peripheral Nervous System: Effects of Highly Toxic Organophosphates and Their Antidotes. Research Signpost; Kerala, India: 2009.
Jun D, Musilova L, Pohanka M, Jung YS, Bostik P, Kuca K. Reactivation of human acetylcholinesterase and butyrylcholinesterase inhibited by leptophos-oxon with different oxime reactivators in vitro. Int. J.Mol. Sci. 2010;11:2856–2863. PubMed PMC
Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and treatment. Adv. Clin. Chem. 2004;38:151–216. PubMed
Lorke DE, Nurulain SM, Hasan MY, Kuca K, Musilek K, Petroianu GA. Eight new bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime: In vivo efficacy to protect from diisopropylfluorophosphate toxicity. J. Appl. Toxicol. 2008;28:920–928. PubMed
Musilek K, Kuca K, Jun D, Dohnal V, Dolezal M. Synthesis of a novel series of bispyridinium compounds bearing a xylene linker and evaluation of their reactivation activity against chlorpyrifos-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem. 2005;20:409–415. PubMed
Kuca K, Cabal J, Jun D, Hrabinova M. In vitro evaluation of acetylcholinesterase reactivators as potential antidotes against tabun nerve agent poisonings. Drug Chem. Toxicol. 2006;29:443–449. PubMed
Kuca K, Kassa J. A comparison of the ability of a new bispyridinium oxime-1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane dibromide and currently used oximes to reactivate nerve agent-inhibited rat brain acetylcholinesterase by in vitro methods. J. Enzyme Inhib. Med. Chem. 2003;18:529–535. PubMed
Kuca K, Musilova L, Palecek J, Cirkva V, Paar M, Musilek K, Hrabinova M, Pohanka M, Karasova JZ, Jun D. Novel bisquaternary oximes—Reactivation of acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon. Molecules. 2009;14:4915–4921. PubMed PMC
Stenzel J, Worek F, Eyer P. Preparation and characterization of dialkylphosphoryl-obidoxime conjugates, potent anticholinesterase derivatives that are quickly hydrolyzed by human paraoxonase (PON1192Q) Biochem. Pharmacol. 2007;74:1390–1400. PubMed
Worek F, Diepold C, Eyer P. Dimethylphosphoryl-inhibited human cholinesterases: Inhibition, reactivation, and aging kinetics. Arch. Toxicol. 1999;73:7–14. PubMed
Kiderlen D, Worek F, Klimmek R, Eyer P. The phosphoryl oxime-destroying activity of human plasma. Arch. Toxicol. 2000;74:27–32. PubMed
Aurbek N, Thiermann H, Eyer F, Eyer P, Worek F. Suitability of human butyrylcholinesterase as therapeutic marker and pseudo catalytic scavenger in organophosphate poisoning: A kinetic analysis. Toxicology. 2009;259:133–139. PubMed
Ellman GL, Courtney KD, Andres V, Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. PubMed
Musilova L, Jun D, Palecek J, Cirkva V, Musilek K, Paar M, Hrabinova M, Pohanka M, Kuca K. Novel nucleophilic compounds with oxime group as reactivators of paraoxon-inhibited cholinesterases. Lett. Drug Design Disc. 2010;7:260–264.
Musilova L, Kuca K, Jung YS, Jun D. In vitro oxime-assisted reactivation of paraoxon-inhibited human acetylcholinesterase and butyrylcholinesterase. Clin. Toxicol. (Phila) 2009;47:545–550. PubMed
Trends in the Recent Patent Literature on Cholinesterase Reactivators (2016-2019)