Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon

. 2018 May 07 ; 23 (5) : . [epub] 20180507

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29735900

Nerve agents and oxon forms of organophosphorus pesticides act as strong irreversible inhibitors of two cholinesterases in the human body: acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8), and are therefore highly toxic compounds. For the recovery of inhibited AChE, antidotes from the group of pyridinium or bispyridinium aldoxime reactivators (pralidoxime, obidoxime, HI-6) are used in combination with anticholinergics and anticonvulsives. Therapeutic efficacy of reactivators (called “oximes”) depends on their chemical structure and also the type of organophosphorus inhibitor. Three novel oximes (K131, K142, K153) with an oxime group in position four of the pyridinium ring were designed and then tested for their potency to reactivate human (Homo sapiens sapiens) AChE (HssACHE) and BChE (HssBChE) inhibited by the pesticide paraoxon (diethyl 4-nitrophenyl phosphate). According to the obtained results, none of the prepared oximes were able to satisfactorily reactivate paraoxon-inhibited cholinesterases. On the contrary, extraordinary activity of obidoxime in the case of paraoxon-inhibited HssAChE reactivation was confirmed. Additional docking studies pointed to possible explanations for these results.

Zobrazit více v PubMed

Newmark J. Therapy for Nerve Agent Poisoning. Arch. Neurol. 2004;61:649–652. doi: 10.1001/archneur.61.5.649. PubMed DOI

Gorecki L., Korabecny J., Musilek K., Malinak D., Nepovimova E., Dolezal R., Jun D., Soukup O., Kuca K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016;90:2831–2859. doi: 10.1007/s00204-016-1827-3. PubMed DOI

Carletti E., Aurbek N., Gillon E., Loiodice M., Nicolet Y., Fontecilla-Camps J.-C., Masson P., Thiermann H., Nachon F., Worek F. Structure-Activity Analysis of Aging and Reactivation of Human Butyrylcholinesterase Inhibited by Analogues of Tabun. Biochem. J. 2009;412:97–106. doi: 10.1042/BJ20090091. PubMed DOI

Musilova L., Jun D., Kuca K., Pohanka M., Katalinic M., Kovarik Z. Development of New Antidotes of Organophosphate Intoxications: Oxime-Assisted Reactivation of Dimethoxy- and Diethoxy-Phosphorylated Human Butyrylcholinesterase for Construction of “pseudo Catalytic” Bioscavengers. Toxicol. Lett. 2009;189:S216. doi: 10.1016/j.toxlet.2009.06.561. DOI

Jun D., Musilova L., Kuca K., Kassa J., Bajgar J. Potency of Several Oximes to Reactivate Human Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon in Vitro. Chem. Biol. Interact. 2008;175:421–424. doi: 10.1016/j.cbi.2008.05.004. PubMed DOI

Wiesner J., Kriz Z., Kuca K., Jun D., Koca J. Why Acetylcholinesterase Reactivators Do Not Work in Butyrylcholinesterase. J. Enzyme Inhib. Med. Chem. 2010;25:318–322. doi: 10.3109/14756360903179427. PubMed DOI

Musilova L., Kuca K., Jung Y.-S., Jun D. In Vitro Oxime-Assisted Reactivation of Paraoxon-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase. Clin. Toxicol. 2009;47:545–550. doi: 10.1080/15563650903058914. PubMed DOI

Kuca K., Jun D., Musilek K. Structural Requirements of Acetylcholinesterase Reactivators. Mini-Rev. Med. Chem. 2006;6:269–277. doi: 10.2174/138955706776073510. PubMed DOI

Kuca K., Jun D., Bajgar J. Currently Used Cholinesterase Reactivators against Nerve Agent Intoxication: Comparison of Their Effectivity in Vitro. Drug Chem. Toxicol. 2007;30:31–40. doi: 10.1080/01480540601017637. PubMed DOI

Binder J., Paar M., Jun D., Pohanka M., Hrabinova M., Opletalova V., Kuca K. New Bisquaternary Isoquinolinium Inhibitors of Brain Cholinesterases-Synthesis and Anticholinesterase Activity. Lett. Drug Des. Discov. 2010;7:1–4.

Komloova M., Horova A., Hrabinova M., Jun D., Dolezal R., Vinsova J., Kuca K., Musilek K. Preparation, in Vitro Evaluation and Molecular Modelling of Pyridinium-Quinolinium/isoquinolinium Non-Symmetrical Bisquaternary Cholinesterase Inhibitors. Bioorg. Med. Chem. Lett. 2013;23:6663–6666. doi: 10.1016/j.bmcl.2013.10.043. PubMed DOI

Nepovimova E., Korabecny J., Dolezal R., Nguyen T.D., Jun D., Soukup O., Pasdiorova M., Jost P., Muckova L., Malinak D., et al. A 7-methoxytacrine–4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res. 2016;5:1012–1016. doi: 10.1039/C6TX00130K. PubMed DOI PMC

Jun D., Kuca K., Stodulka P., Koleckar V., Dolezal R., Simon P., Veverka M. HPLC Analysis of HI-6 Dichloride and Dimethanesulfonate-Antidotes against Nerve Agents and Organophosphorus Pesticides. Anal. Lett. 2007;40:2783–2787. doi: 10.1080/00032710701588531. DOI

Jun D., Stodulka P., Kuca K., Koleckar V., Dolezal B., Simon P., Veverka M. TLC Analysis of Intermediates Arising during the Preparation of Oxime HI-6 Dimethanesulfonate. J. Chromatogr. Sci. 2008;46:316–319. doi: 10.1093/chromsci/46.4.316. PubMed DOI

Jun D., Musilova L., Musilek K., Kuca K. In Vitro Ability of Currently Available Oximes to Reactivate Organophosphate Pesticide-Inhibited Human Acetylcholinesterase and Butyrylcholinesterase. Int. J. Mol. Sci. 2011;12:2077–2087. doi: 10.3390/ijms12032077. PubMed DOI PMC

Ellman G., Courtney K., Andres V., Featherstone R. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Deppmeier B.J., Driessen A.J., Hehre W.J., Johnson J.A., Klunzinger P.E., Watanabe M., Yu J. PC Spartan Pro, Version 1.0.5. Wavefunction Inc.; Irvine, CA: 2000.

Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 1985;107:3902–3909. doi: 10.1021/ja00299a024. DOI

Swain M. Chemicalize.org. J. Chem. Inf. Mod. 2012;52:613–615. doi: 10.1021/ci300046g. DOI

Discovery Studio Modeling Environment. BIOVIA, Dassault Systèmes; San Diego, CA, USA: 2015. Release 4.5.

Almeida J.S.F.A., Guizado T.R.C., Guimaraes A.P., Ramalho T.C., Gonçalves A.S., Koning M.C., França T.C.C. Docking and molecular dynamics studies of peripheral site ligand-oximes as reactivators of sarin-inhibited human acetylcholinesterase. J. Biomol. Struc. Dyn. 2016;34:2632–2642. doi: 10.1080/07391102.2015.1124807. PubMed DOI

Thomsen R., Christensen M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006;49:3315–3321. doi: 10.1021/jm051197e. PubMed DOI

Kovarik Z., Vrdoljak A.L., Berend S., Katalinić M., Kuca K., Musilek K., Radić B. Evaluation of Oxime k203 as Antidote in Tabun Poisoning. Arh. Hig. Rada Toksikol. 2009;60:19–26. doi: 10.2478/10004-1254-60-2009-1890. PubMed DOI

Musilova L., Jun D., Palecek J., Cirkva V., Musilek K., Paar M., Hrabinova M., Pohanka M., Kuca K. Novel Nucleophilic Compounds with Oxime Group as Reactivators of Paraoxon-Inhibited Cholinesterases. Lett. Drug Des. Discov. 2010;7:260–264. doi: 10.2174/157018010790945823. DOI

Kontoyianni M., McClellan L.M., Sokol G.S. Evaluation of docking performance: Comparative data on docking algorithms. J. Med. Chem. 2004;47:558–565. doi: 10.1021/jm0302997. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace