Novel Group of AChE Reactivators-Synthesis, In Vitro Reactivation and Molecular Docking Study

. 2018 Sep 07 ; 23 (9) : . [epub] 20180907

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30205495

The acetylcholinesterase (AChE) reactivators (e.g., obidoxime, asoxime) became an essential part of organophosphorus (OP) poisoning treatment, together with atropine and diazepam. They are referred to as a causal treatment of OP poisoning, because they are able to split the OP moiety from AChE active site and thus renew its function. In this approach, fifteen novel AChE reactivators were determined. Their molecular design originated from former K-oxime compounds K048 and K074 with remaining oxime part of the molecule and modified part with heteroarenium moiety. The novel compounds were prepared, evaluated in vitro on human AChE (HssAChE) inhibited by tabun, paraoxon, methylparaoxon or DFP and compared to commercial HssAChE reactivators (pralidoxime, methoxime, trimedoxime, obidoxime, asoxime) or previously prepared compounds (K048, K074, K075, K203). Some of presented oxime reactivators showed promising ability to reactivate HssAChE comparable or higher than the used standards. The molecular modelling study was performed with one compound that presented the ability to reactivate GA-inhibited HssAChE. The SAR features concerning the heteroarenium part of the reactivator's molecule are described.

Zobrazit více v PubMed

Marrs T.C. Organophosphate poisoning. Pharmacol. Ther. 1993;58:51–66. doi: 10.1016/0163-7258(93)90066-M. PubMed DOI

Bajgar J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, prophylaxis, and teratment. Adv. Clin. Chem. 2004;38:151–193. PubMed

Saxena A., Sun W., Luo C., Myers T.M., Koplovitz I., Lenz D.E., Doctor B.P. Bioscavenger for protection from toxicity of organophosphorus compounds. J. Mol. Neurosci. 2006;30:145–147. doi: 10.1385/JMN:30:1:145. PubMed DOI

Newmark J. Therapy for Nerve Agent Poisoning. Arch. Neurol. 2004;61:649–652. doi: 10.1001/archneur.61.5.649. PubMed DOI

Bajgar J., Fusek J., Kassa J., Kuca K., Jun D. Chemical Aspects of Pharmacological Prophylaxis against Nerve Agent Poisoning. Curr. Med. Chem. 2009;16:2977–2986. doi: 10.2174/092986709788803088. PubMed DOI

Doctor B.P., Raveh L., Wolfe A.D., Maxwell D.M., Ashani Y. Enzymes as pretreatment drugs for organophosphate toxicity. Neurosci. Biobehav. Rev. 1991;15:123–128. doi: 10.1016/S0149-7634(05)80103-4. PubMed DOI

Jokanovic M., Stojiljkovic M.P. Current understanding of the application of pyridinium oximes as cholinesterase reactivators in treatment of organophosphate poisoning. Eur. J. Pharmacol. 2006;553:10–17. doi: 10.1016/j.ejphar.2006.09.054. PubMed DOI

Bajgar J., Fusek J., Kuca K., Bartosova L., Jun D. Treatment of Organophosphate Intoxication Using Cholinesterase Reactivators: Facts and Fiction. Mini-Rev. Med. Chem. 2007;7:461–466. doi: 10.2174/138955707780619581. PubMed DOI

Carletti E., Li H., Li B., Ekstrom F., Nicolet Y., Loiodice M., Gillon E., Froment M.T., Lockridge O., Schopfer L.M., et al. Aging of Cholinesterases Phosphylated by Tabun Proceeds through O-Dealkylation. J. Am. Chem. Soc. 2008;130:16011–16020. doi: 10.1021/ja804941z. PubMed DOI

Li H., Schopfer L.M., Nachon F., Froment M.T., Masson P., Lockridge O. Aging Pathways for Organophosphate-Inhibited Human Butyrylcholinesterase, Including Novel Pathways for Isomalathion, Resolved by Mass Spectrometry. Toxicol. Sci. 2007;100:136–145. doi: 10.1093/toxsci/kfm215. PubMed DOI

Kuca K., Musilek K., Jun D., Pohanka M., Zdarova-Karasova J., Novotny L., Musilova L. Could oxime HI-6 really be considered as broad-spectrum antidote? J. Appl. Biomed. 2009;7:143–149.

De Koning M.C., Joosen M.J.A., Noort D., van Zuylen A., Tromp M.C. Peripheral site ligand-oxime conjugates: A novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorg. Med. Chem. 2011;19:588–594. doi: 10.1016/j.bmc.2010.10.059. PubMed DOI

Mercey G., Verdelet T., Saint-Andre G., Gillon E., Wagner A., Baati R., Jean L., Nachon F., Renard P.Y. First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase. Chem. Commun. 2011;47:5295–5297. doi: 10.1039/c1cc10787a. PubMed DOI

Musilek K., Holas O., Jun D., Dohnal V., Gunn-Moore F., Opletalova V., Dolezal M., Kuca K. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker—Preparation and reactivation of tabun- and paraoxon-inhibited acetylcholinesterase. Bioorg. Med. Chem. 2007;15:6733–6741. doi: 10.1016/j.bmc.2007.08.002. PubMed DOI

Musilek K., Komloova M., Holas O., Horova A., Pohanka M., Gunn-Moore F., Dohnal V., Dolezal M., Kuca K. Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage—Preparation, in vitro screening and molecular docking. Bioorg. Med. Chem. 2011;19:754–762. doi: 10.1016/j.bmc.2010.12.021. PubMed DOI

Kuca K., Kassa J. A Comparison of the Ability of a New Bispyridinium Oxime—1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium)butane Dibromide and Currently used Oximes to Reactivate Nerve Agent-inhibited Rat Brain Acetylcholinesterase by In Vitro Methods. J. Enzym. Inhib. Med. Chem. 2003;18:529–535. doi: 10.1080/14756360310001605552. PubMed DOI

Musilek K., Jun D., Cabal J., Kassa J., Gunn-Moore F., Kuca K. Design of a Potent Reactivator of Tabun-Inhibited Acetylcholinesterase Synthesis and Evaluation of (E)-1-(4-Carbamoylpyridinium)-4-(4-hydroxyiminomethylpyridinium)-but-2-ene Dibromide (K203) J. Med. Chem. 2007;50:5514–5518. doi: 10.1021/jm070653r. PubMed DOI

Kuca K., Jun D., Musilek K. Structural Requirements of Acetylcholinesterase Reactivators. Mini Rev. Med. Chem. 2006;6:269–277. doi: 10.2174/138955706776073510. PubMed DOI

Kuca K., Cabal J., Musilek K., Jun D., Bajgar J. Effective bisquaternary reactivators of tabun-inhibited AChE. J. Appl. Toxicol. 2005;25:491–495. doi: 10.1002/jat.1084. PubMed DOI

Lorke D.E., Nurulain S.M., Hasan M.Y., Kuca K., Musilek K., Petroianu G.A. Eight new bispyridinium oximes in comparison with the conventional oximes pralidoxime and obidoxime: In vivo efficacy to protect from diisopropylfluorophosphate toxicity. J. Appl. Toxicol. 2008;28:920–928. doi: 10.1002/jat.1359. PubMed DOI

Sinko G., Brglez J., Kovarik Z. Interactions of pyridinium oximes with acetylcholinesterase. Chem. Biol. Interact. 2010;187:172–176. doi: 10.1016/j.cbi.2010.04.017. PubMed DOI

Pohanka M., Jun D., Kuca K. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators. Talanta. 2008;77:451–454. doi: 10.1016/j.talanta.2008.06.007. PubMed DOI

Calic M., Vrdoljak A.L., Radic M., Jelic D., Jun D., Kuca K., Kovarik Z. In vitro and in vivo evaluation of pyridinium oximes: Mode of interaction with acetylcholinesterase, effect on tabun- and soman-poisoned mice and their cytotoxicity. Toxicology. 2006;219:85–96. doi: 10.1016/j.tox.2005.11.003. PubMed DOI

Kovarik Z., Vrdoljak A.L., Berend S., Katalinic M., Kuca K., Musilek K., Radic B. Evaluation of oxime K203 as antidote in tabun poisoning. Arh. Hig. Rada Toksikol. 2009;60:19–26. doi: 10.2478/10004-1254-60-2009-1890. PubMed DOI

Tattersall J.E.H. Ion channel blockade by oximes and recovery of diaphragm muscle from soman poisoning in vitro. Brit. J. Pharmacol. 1993;108:1006–1015. doi: 10.1111/j.1476-5381.1993.tb13498.x. PubMed DOI PMC

Worek F., Aurbek N., Wille T., Eyer P., Thiermann H. Kinetic analysis of interactions of paraoxon and oximes with human, Rhesus monkey, swine, rabbit, rat and guinea pig acetylcholinesterase. Toxicol. Lett. 2011;200:19–23. doi: 10.1016/j.toxlet.2010.10.009. PubMed DOI

Lorke D.E., Hasan M.Y., Arafat K., Kuca K., Musilek K., Schmitt A., Petroianu G.A. In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate. J. Appl. Toxicol. 2008;28:422–429. doi: 10.1002/jat.1344. PubMed DOI

Odzak R., Calic M., Hrenar T., Primozic I., Kovarik Z. Evaluation of monoquaternary pyridinium oximes potency to reactivate tabun-inhibited human acetylcholinesterase. Toxicology. 2007;233:85–96. doi: 10.1016/j.tox.2006.08.003. PubMed DOI

Musilek K., Holas O., Misik J., Pohanka M., Novotny L., Dohnal V., Opletalova V., Kuca K. Monooxime-monocarbamoyl Bispyridinium Xylene-Linked Reactivators of Acetylcholinesterase—Synthesis, In vitro and Toxicity Evaluation, and Docking Studies. ChemMedChem. 2010;5:247–254. doi: 10.1002/cmdc.200900455. PubMed DOI

Worek F., Aurbek N., Thiermann H. Reactivation of organophosphate-inhibited human AChE by combinations of obidoxime and HI 6 in vitro. J. Appl. Toxicol. 2007;27:582–588. doi: 10.1002/jat.1241. PubMed DOI

Kryger G., Harel M., Giles K., Toker L., Velan B., Lazar A., Kronman C., Barak D., Ariel N., Shafferman A., et al. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr. Sect. D. 2000;56:1385–1394. doi: 10.1107/S0907444900010659. PubMed DOI

Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Mercey G., Verdelet T., Renou J., Kliachyna M., Baati R., Nachon F., Jean L., Renard P.-Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res. 2012;45:756–766. doi: 10.1021/ar2002864. PubMed DOI

Acharya J., Dubey D.K., Srivastava A.K., Raza S.K. In vitro reactivation of sarin-inhibited human acetylcholinesterase (AChE) by bis-pyridinium oximes connected by xylene linkers. Toxicol. In Vitro. 2011;25:251–256. doi: 10.1016/j.tiv.2010.07.024. PubMed DOI

Musilek K., Dolezal M., Gunn-Moore F., Kuca K. Design, evaluation and structure—Activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev. 2011;31:548–575. doi: 10.1002/med.20192. PubMed DOI

Musilek K., Roder J., Komloova M., Holas O., Hrabinova M., Pohanka M., Dohnal V., Opletalova V., Kuca K., Jung Y.S. Preparation, in vitro screening and molecular modelling of symmetrical 4-tert-butylpyridinium cholinesterase inhibitors—Analogues of SAD-128. Bioorg. Med. Chem. Lett. 2011;21:150–154. doi: 10.1016/j.bmcl.2010.11.051. PubMed DOI

Musilek K., Holas O., Kuca K., Jun D., Dohnal V., Dolezal M. Synthesis of asymmetrical bispyridinium compounds bearing cyano-moiety and evaluation of their reactivation activity against tabun and paraoxon-inhibited acetylcholinesterase. Bioorg. Med. Chem. Lett. 2006;16:5673–5676. doi: 10.1016/j.bmcl.2006.08.011. PubMed DOI

Kuca K., Jun D., Junova L., Musilek K., Hrabinova M., da Silva J.A.V., Ramalho T.C., Valko M., Wu Q., Nepovimova E., et al. Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon. Molecules. 2018;23:1103. doi: 10.3390/molecules23051103. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

DeLano W.L. The PyMOL Molecular Graphics System. [(accessed on 6 September 2018)];2002 Available online: http://www.pymol.org.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...